Minutes of the Second Meeting of Senate Friday, January 11, 2019 3:00 – 5:00 pm 618 University Avenue

Present: A. Abd-El-Aziz (Chair), A. Braithwaite, M. Buote, B. Campbell, E. Côté, D. Dahn,

L. Doiron, M. Doyle, E. Drake, N. Etkin, A. Fenech, R. Gilmour, K. Gottschall-Pass, L. Hammell, L. Heider, A. Hsiao, G. Irvine, G. Jiwani, R. Kays, G. Keefe, J. Krause, N. Krouglicof, N. Kujundzic, R. MacDonald, A. MacFarlane, W. McGuigan, J. Moran,

D. Moses, M. Murray, J. Podger R. Raiswell, K. Ross, C Ryan, C. Stevenson,

D. Sutton, C. Thorne, and B. Waterman

Regrets: R. Bissessur, D. Coll, R. Dennis, C. Murray and S. Grant

Absent: K. Bonamy, C. Kamunde, and J. McIntyre

Recorder: D. MacLean, Administrative Assistant to Senate

President Alaa Abd-El-Aziz wished everyone a Happy New Year and called the meeting to order at 3:03 p.m. A special welcome was granted to Corey Stevenson, Alumni Rep, who was attending his first Senate meeting.

1. Approval of Agenda

MOTION (L. Doiron/R. Raiswell) to approve the agenda as presented. CARRIED

2. Approval of Minutes – November 23, 2018

MOTION (L. Doiron/A. Braithwaite) to approve the minutes of November 23, 2018 as presented. CARRIED

3. Business Arising

i) Changes to Admin Requirements for MBA: Dean J. Krause was asked to discuss with APCC the rewording of the Admin Requirements for Motion #19 of the 3rd Curriculum Report, November 23, 2018. The previous wording was "The equivalent of a GMAT score of 570 or greater would typically be competitive. The score should be less than five years old. The requirements for a GMAT/GRE score may be waived for students with a high average grade (85% or higher) in their undergraduate degree. For international applicants, the admissions committee may adjust the grade threshold for a GMAT/GRE waiver upwards or downwards, to reflect the grading norms of educational institutions outside of Canada."

The new wording states the following: ""The equivalent of a GMAT score of 570 or greater would typically be competitive. The score should be less than five years old. The requirement for a GMAT/GRE score may be waived for students with a high average (85% or higher) an exceptional

<u>academic record</u> in their undergraduate degree." Senators agreed to the new wording and the following motion was proposed:

MOTION (J. Krause/R. MacDonald) to approve the revised wording of the Admin Requirements for MBA as presented. CARRIED

ii) Revised Senate Dates - 2019 Winter Semester

Greg Irvine presented revised Senate Dates for Winter Semester 2019 as well as the following preamble:

"At the November Senate meeting, discussion about the winter schedule of Senate meetings occurred and based on experience during the last two years, Senate asked the Senate Steering and Nominating Committee to revise the schedule. To avoid any overlap with the University's mid-term break, the school system's March break, and Fridays before and after these two breaks, the following motion was approved by the Senate Steering and Nominating Committee:

That the 2019 Winter Senate meeting schedule be changed to the following dates:

Friday, January 11th
Friday, March 1st
Friday, April 5th
Friday, May 3^{rd"}

The following motion was proposed to Senators:

MOTION (G. Irvine/G. Jiwani) that the 2019 Winter Senate Schedule be changed as presented. CARRIED

4. President's Report

The President indicated there were two items he wished to address.

Convocation: The President noted that over the past few years there has been an increase in the number of graduating students, thus making each Convocation ceremony long. As well, a number of attendees had to sit in other rooms to watch the Convocation ceremonies due to space limitations in the gym. It has been suggested that perhaps now is the time to move to three Convocation ceremonies. The President discussed this with Sue Dawson, Chair of the Convocation Committee and Brian Wagner, Convocation Marshall, and they will be discussing this suggestion with the Convocation Committee when it meets next week. Senators were asked to consider this suggestion and provide any comments to the President's office so that their views can be passed along to the Committee for consideration. One suggestion from Senate was a possible move to a different venue. Another Senator suggested changing the Convocation dates to a different weekend other than Mother's Day Weekend. All of these suggestions will be given consideration by the committee and a proposal will be provided at the next Senate meeting.

Interest in Programs: The President informed Senators that he recently spoke at a National

Conference on Education in Egypt. He noted there was a lot of interest around what UPEI is doing in the following programs: Psychology, Political Science, Economics, Applied Communication, Leadership and Culture and Theatre Arts. The Chair of the Board of UCE is coming to campus next week and will be meeting with deans. The outcome of these meetings will be reported at the next Senate meeting.

Our collaboration with King Juan Carlos University in Spain is working out very well. Currently we have 14 students enrolled in the program, and they are on their way to Madrid to start the second semester.

President Abd-El-Aziz informed Senators that he just recently returned from Dubai where there is very strong interest in two of our programs – Climate Change and Environmental Studies. The process to approve programs in Dubai is a similar process to our MPHEC process. We are preparing materials to send to Dubai by the end of January and if things work out, we hope to have our first cohort in place in September 2019.

MEETING MOVED IN CAMERA

5. Students Applying to Graduate before Convocation

At this time there are 120 students applying to graduate before Convocation.

The following motions were brought forward by R. Gilmour and individually seconded by Senators;

Omnibus motion (R. Gilmour/N.Kujundzic) that Senate approve the credentials for the 17 candidates listed as having completed the requirements for the following degrees with the Faculty of Arts:

FACULTY OF ARTS	
Bachelor of Arts	16
Master of Arts	1
TOTAL - Faculty of Arts	17

CARRIED

Omnibus motion (R. Gilmour/B. Waterman) that Senate approve the credentials for the 20 candidates listed as having completed the requirements for the following degrees and/or certificates with the Faculty of Business:

FACULTY OF BUSINESS	
Bachelor of Business Administration	19
Master of Business Administration	1
TOTAL - Faculty of Business	20

CARRIED

Omnibus motion (R. Gilmour/R. MacDonald) that Senate approve the credentials for the 43 candidates listed as having completed the requirements for the following degrees and/or certificates with the Faculty of Education:

FACULTY OF EDUCATION Certificate in Adult Education 7 Certificate in Education Leadership 2 Master of Education 33 PhD in Educational Studies 1 TOTAL - Faculty of Education 43

CARRIED

Omnibus motion (R. Gilmour/N. Krouglicof) that Senate approve the credentials for the 3 candidates listed as having completed the requirements for the following degrees with the Faculty of Sustainable Design Engineering:

FACULTY OF SUSTAINABLE DESIGN ENGINEERING	
Engineering Diploma	2
Master of Science in Sustainable Design Engineering	1
TOTAL - Faculty of Sustainable Design Engineering	3

CARRIED

Omnibus motion (R. Gilmour/G. Keefe) that Senate approve the credentials for the 3 candidates listed as having completed the requirements for the following degrees with the Faculty of Veterinary Medicine:

FACULTY OF VETERINARY MEDICINE	
Master of Science (Veterinary Medicine)	2
PhD in Biomedical Sciences	1
TOTAL - Faculty of Veterinary Medicine	3

CARRIED

Enabling Motion (R. Gilmour/B. Campbell) to empower the President, relevant Dean and Registrar, acting together in full agreement to approve any degrees, diplomas or certificates that may surface as unexpected cases. CARRIED

Dr. Gilmour informed Senators that all of these files were vetted by the Registrar and it was determined that every graduate had completed their degree and paid all pertinent fees. Such was not the case for some Master of Education students this year. Some students completed their degree early but hadn't paid all their fees, and refused to pay after completing the degree requirements early. Dr. Gilmour noted that students are required to pay the same amount for the same degree, regardless if they finish the course work early. A solution needs to be determined in order to avoid this scenario in the future.

6. Update on Search for University Librarian

At this time, Donald Moses was asked to leave the meeting, as he is one of the candidates vying for the position. Dr. Gilmour informed Senators that three candidates have been shortlisted and will be providing a public presentation to the members of the Search Committee as well as the University community in the next 2-3 weeks. These presentations will be videotaped and available for viewing after the events. Dr. Gilmour noted that feedback would be appreciated on all candidates.

7. Update on the Suggestion of a Mid-term Break – Fall Semester 2020-2021

Dr. Gilmour reported that discussions took place at APCC regarding the above-mentioned suggestion. The Registrar will look into best practices at other Universities and report back to APCC. The Student Union agreed to canvass students here and off island as to the impact this would have on students. APCC will consider specific options and bring these options to Senate for further discussion.

8. Update on the Academic Planning and Curriculum Committee membership

Dr. Gilmour noted that at the last meeting of Senate, questions were raised about the accurateness of the membership of the APCC in the Annual Report of 2017-2018. Larry Hammell was listed as Dean of Graduate Studies, but this should have read "Interim Dean" of Graduate Studies. There was also a lack of mention of the Dean of Sustainable Design Engineering, but Dr. Krouglicof was not Dean during the timeframe of this report.

9. Senate Reports

- a. Academic Planning and Curriculum Committee Report
 - i) Fourth Curriculum Report

FACULTY OF ARTS

Psychology

1. Motion (R. Gilmour/K. Gottschall-Pass) to approve the new course PSY 4130 – Psychology of Social Class.

(See details on the Curriculum Report Attached – Pages 3-4)

CARRIED

FACULTY OF EDUCATION

2. Motion (R. Gilmour/R. MacDonald) that the prerequisite for ED 6950 – Graduate Seminar be revised.

(See details on the Curriculum Report Attached – Page 5)

CARRIED

FACULTY OF SUSTAINABLE DESIGN ENGINEERING

OMNIBUS Motion (R. Gilmour/N. Krouglicof) that motions 3-10 be approved as noted below:

3. That ENGN 2120 (Geology for Engineers) be deleted.

(See details on the Curriculum Report Attached – Page 6)

4. That ENGN 2240 (Introduction to Structural Engineering) be deleted.

(See details on the Curriculum Report Attached – Page 7)

5. That ENGN 2350 (Kinematics and Dynamics of Machines) be deleted.

(See details on the Curriculum Report Attached – Page 8)

6. That ENGN 2420 (Fundamentals of Environment Engineering) be deleted.

(See details on the Curriculum Report Attached – Page 9)

7. That ENGN 2430 (Engineering Economics) be deleted.

(See details on the Curriculum Report Attached – Page 10)

8. That ENGN 2520 (Fundamentals of Process Engineering) be deleted.

(See details on the Curriculum Report Attached – Page 11)

9. That ENGN 2820 (Electric Circuits) be deleted.

(See details on the Curriculum Report Attached - Page 12)

10. That ENGN 3850 (Engineering Applications of Numerical Methods) be deleted.

(See details on the Curriculum Report Attached – Page 13)

OMNIBUS Motion (R. Gilmour/A. Hsiao) that motions 11-15 be approved as noted below:

11. That a new course entitled ENGN 1230 (Engineering Mechanics I: Statics) be approved as presented.

(See details on the Curriculum Report Attached – Pages 14-16)

12. To approve the new course ENGN 2130 (statistics for Engineering Applications).

(See details on the Curriculum Report Attached – Pages 17-19)

13. That ENGN 2350 (Kinematics and Dynamics of Machines) be deleted.

(See details on the Curriculum Report Attached – Pages 20-22)

14. To approve the new course ENGN 4830 (Biomedical Signal Processing).

(See details on the Curriculum Report Attached – Pages 23-25)

15. To approve the new course ENGN 4850 (Computational Methods for Engineering Design).

(See details on the Curriculum Report Attached – Pages 26-28)

OMNIBUS Motion (R. Gilmour/A. Hsiao) that motions 16-37 be approved as noted below:

16. To approve the proposed changes for ENGN 1210 (Engineering Communications).

(See details on the Curriculum Report Attached – Page 29)

17. To approve the proposed changes for ENGN 1220 (Engineering Analysis).

(See details on the Curriculum Report Attached – Pages 30-31)

18. To approve the proposed changes for ENGN 2250 (Materials Science).

(See details on the Curriculum Report Attached - Page 32)

19. To approve the proposed changes for ENGN 1310 (Computer Programming with Engineering Applications).

(See details on the Curriculum Report Attached – Page 33)

20. To approve the proposed changes for ENGN 2340 (Engineering Dynamics)

(See details on the Curriculum Report Attached – Page 34)

21. To approve the proposed changes for ENGN 2210 (Engineering Projects I).

(See details on the Curriculum Report Attached – Page 35)

22. To approve the proposed changes for ENGN 2220 (Engineering Projects II).

(See details on the Curriculum Report Attached – Page 36)

23. To have the change in prerequisite for ENGN 2310 (Strength of Materials) be approved as proposed.

(See details on the Curriculum Report Attached – Page 37)

24. To have the change in course number and description for ENGN 3260 (Materials, Mechanics, and Manufacturing) be approved das proposed.

(See details on the Curriculum Report Attached – Pages 38-39)

25. To have the change in course title and prerequisite for ENGN 2610 (Thermo Fluids I) be approved as proposed.

(See details on the Curriculum Report Attached – Page 40)

26. To have the change in course title for ENGN 2620 (Thermo Flujis II) be approved as proposed.

(See details on the Curriculum Report Attached – Page 41)

27. To approve the proposed changes for ENGN 2810 (Electric Circuits I).

(See details on the Curriculum Report Attached – Page 42)

28. To approve the proposed changes for ENGN 4230 (Technology Management & Entrepreneurship).

(See details on the Curriculum Report Attached – Page 43)

29. To approve the proposed changes for ENGN 3630 (Thermo Fluids III with Heat Transfer). (See details on the Curriculum Report Attached – Page 44)

- **30.** To approve the proposed changes for ENGN 3710 (Project-Based Professional Practice I). (See details on the Curriculum Report Attached Page 45)
- **31.** To approve the proposed changes for ENGN 3720 (Project-Based Professional Practice II). (See details on the Curriculum Report Attached Page 46)
- 32. To approve the prerequisite change for ENGN 4310 (Advanced Fabrication Techniques and Computer-Integrated Manufacturing).

(See details on the Curriculum Report Attached – Page 47)

33. To have the change in the course title and course description of ENGN 4550 (Chemical and Biological Processes) be approved as proposed.

(See details on the Curriculum Report Attached – Page 48)

34. To approve the proposed changes for ENGN 4710 (Project-Based Professional Practice III). (See details on the Curriculum Report Attached – Pages 49-50)

35. To approve the proposed changes for ENGN 4720 (Project-Based Professional Practice IV). (See details on the Curriculum Report Attached – Pages 51-52)

36. To revise the calendar entry for admission criteria for high school applicants to the Bachelor of Science in Sustainable Design Engineering degree program.

(See details on the Curriculum Report Attached – Pages 53-54)

37. To revise the calendar entry for the Bachelor of Science in Sustainable Design Engineering degree program.

(See details on the Curriculum Report Attached – Pages 55-63)

Master of Science in Sustainable Design Engineering

OMNIBUS Motion (R. Gilmour/A. Hsiao) that motions 38-49 be approved as noted below:

38. To approve a new cross-listing for ENGN 4310 (Advanced Fabrication Techniques and Computer-Integrated Manufacturing).

(See details on the Curriculum Report Attached – Pages 64-65)

39. To approve a new ross-listing for ENGN 4320 Control System Design.

(See details on the Curriculum Report Attached – Page 66)

40. To approve a new cross-listing for ENGN 4350 Advanced Robotic Dynamics and Control.

(See details on the Curriculum Report Attached – Page 67)

41. To approve a new cross-listing for ENGN 4370 Fluid Power Control.

(See details on the Curriculum Report Attached - Page 68)

42. To approve a new cross-listing for ENGN 4410 Macro Energy Systems.

(See details on the Curriculum Report Attached – Page 69)

43. To approve a new cross-listing for ENGN 4440 Advanced Energy Storage.

(See details on the Curriculum Report Attached – Page 70)

44. To approve a new cross-listing for ENGN 4450 Fluid Loads on Energy Structures.

(See details on the Curriculum Report Attached – Page 71)

45. To approve a new cross-listing for ENGN 4470 Micro Grids.

(See details on the Curriculum Report Attached – Page 72)

46. To approve a new cross-listing for ENGN 4510 Geoinformatics in Bioresources.

(See details on the Curriculum Report Attached – Page73)

47. To approve a new cross-listing for ENGN 4530 Fundamentals of Agriculture Machinery.

(See details on the Curriculum Report Attached – Page 74)

48. To approve a new cross-listing for ENGN 4550 Chemical and Biological Processes.

(See details on the Curriculum Report Attached - Page 75)

49. To approve a new cross-listing for ENGN 4830 Biomedical Signal Processing.

(See details on the Curriculum Report Attached – Page 76)

FACULTY OF SCIENCE

Applied Human Sciences

OMNIBUS Motion (R. Gilmour/K. Gottschall-Pass) that motions 50-55 be approved as noted below:

50. That the course title and description for FN 1010 Nutrition for Living be approved as proposed.

(See details on the Curriculum Report Attached – Page 79)

51. That the pre-requisite change for FN 3820 be approved as proposed.

(See details on the Curriculum Report Attached – Page 80)

52. To approve the proposed changes to the Foods and Nutrition Minor.

(See details on the Curriculum Report Attached – Page 81)

53. To approve the proposed changes to the Foods and Nutrition Major.

(See details on the Curriculum Report Attached – Pages 82-84)

54. To approve the proposed changes to the Foods and Nutrition Dietetic Option.

(See details on the Curriculum Report Attached – Pages 85-86)

55. To approve the proposed changes to the Foods and Nutrition Honours.

(See details on the Curriculum Report Attached – Pages 87-89)

Biology

56. Motion (R. Gilmour/K. Gottshall-Pass) to approve the proposed changes for the Paramedicine program.

(See details on the Curriculum Report Attached – Pages 90-92)

Chemistry

OMNIBUS Motion (R. Gilmour/K. Gottschall-Pass) that motions 57-61 be approved as noted below:

57. To approve the new courses MMS 8140 Marine Natural Products Chemistry.

(See details on the Curriculum Report Attached – Pages 93-95)

58. To approve the new course CHEM 4140 Marine Natural Products Chemistry.

(See details on the Curriculum Report Attached – Pages 96-98)

59. That CHEM 4690 Materials Chemistry be cross-listed with MMS 8690 Materials Chemistry.

(See details on the Curriculum Report Attached – Page 99)

60. To approve the proposed changes for MMS 8090 Biomaterials.

(See details on the Curriculum Report Attached – Page 100)

61. To approve the proposed changes for MMS 8050 Advanced Studies in NMR Spectroscopy.

(See details on the Curriculum Report Attached – Pages 101-102)

Environmental Studies

62. Motion (R. Gilmour/L. Doiron) to approve the proposed changes for ESC 8020 Communication Strategies.

(See details on the Curriculum Report Attached – Pages 103-104)

Physics

OMNIBUS Motion (R. Gilmour/D. Dahn) that motions 63-64 be approved as noted below:

63. To approve the proposed changes for PHYSICS 1110 General Physics I.

(See details on the Curriculum Report Attached – Page 105)

64. To approve the proposed changes for PHYSICS 1120 General Physics II.

(See details on the Curriculum Report Attached – Page 106)

8. Other Business

There was no other business.

9. Adjournment

MOTION (L. Doiron) that the meeting be adjourned at 4:15 p.m.

Attachment: Fourth Curriculum Report – January 11, 2019

Fourth Curriculum Report December 20, 2018 (APCC) January 11, 2019 (Senate)

Motion			Page
	FACULTY OF ARTS		
	Psychology		
1	PSY 4130	New Course Proposal	3-4
	FACULTY OF EDUCATION		
2	ED-6950	Calendar & Curriculum Change – Pre-requisite Change	5
	FACULTY OF SUSTAINABLE DESIG	N ENGINEERING	
3-10	ENGN 2120, 2240, 2350, 2420, 2430, 2520, 2820, 3850	Course Deletions	6-13
11-15	ENGN 1230, 2130, 2830, 4830, 4850	New Course Proposals	14-28
16	ENGN 1210	Calendar & Curriculum Change – Course Description/Prerequisite and laboratory wording change	29
17	ENGN 1220	Calendar & Curriculum Change – Course Description/Laboratory wording change	30-31
18	ENGN 2250	Calendar & Curriculum Change – Course Number/Course Description and Prerequisite change	32
19	ENGN 1310	Calendar & Curriculum Change – Course Description/Laboratory hours change	33
20	ENGN 2340	Calendar & Curriculum Change – Course Number/Course Name/Prerequisite change	34
21	ENGN 2210	Calendar & Curriculum Change – Course Description/Prerequisite/laboratory wording change	35
22	ENGN 2220	Calendar & Curriculum Change – Course Description/laboratory wording change	36
23	ENGN 2310	Calendar & Curriculum Change – Prerequisite change	37
24	ENGN 3260	Calendar & Curriculum Change – Course Number/Description change	38-39
25	ENGN 2610	Calendar & Curriculum Change – Course Title/Prerequisite change	40
26	ENGN 2620	Calendar & Curriculum Change – Course Title change	41
27	ENGN 2810	Calendar & Curriculum Change – Course Title/Description/Prerequisite/Laboratory wording change	42
28	ENGN 4230	Calendar & Curriculum Change – Course Number/Description/Prerequisite change	43
29	ENGN 3630	Calendar & Curriculum Change – Course Title/Description/Prerequisite change	44
30	ENGN 3710	Calendar & Curriculum Change – Course Description/Prerequisite/laboratory wording change	45
31	ENGN 3720	Calendar & Curriculum Change – Course Description/laboratory wording change	46
32	ENGN 4310	Calendar & Curriculum Change – Course Prerequisite change	47
33	ENGN 4550	Calendar & Curriculum Change – Course Title/Description change	48

Fourth Curriculum Report December 20, 2018 (APCC) January 11, 2019 (Senate)

34	ENGN 4710	Calendar & Curriculum Change - Course Description/Prerequisite/laboratory	49-50
35	ENGN 4720	wording change Calendar & Curriculum Change – Course Description/laboratory wording change	51-52
36	Engineering Program	Calendar Entry Change – Admission Requirements	53-54
37	Engineering Degree Program	Calendar Entry Change	55-63
	3 - 3 - 3 - 3 - 3 - 3 - 3	Salondar Entry Shangs	00 00
	Master of Science in Sustainable De	sign Engineering	
38-49	SDE 8310, 8320, 8350, 8370, 8410,		
	8440, 8450, 8470, 8510, 8530, 8550, 8830	Calendar & Curriculum Change – Cross-listing change	64-77
	0030		
	FACULTY OF SCIENCE		
	Summary of Motions 50-64		78
	Applied Human Sciences		
50	FN-1010	Calendar & Curriculum Change – Course Description/Title Change	79
51	FN-3820	Calendar & Curriculum Change – Pre-requisite Change	80
52	Foods and Nutrition Minor	Calendar Entry Change	81
53	Foods and Nutrition Major	Calendar Entry Change	82-84
54	Foods and Nutrition Dietetic Option	Calendar Entry Change	85-86
55	Foods and Nutrition Honours	Calendar Entry Change	87-89
	Biology		
56	Paramedicine Program	Calendar Entry Change	90-92
	· aramoulomo · rogiam	Galchadi Entily Ghange	70-72
	Chemistry		
57	MMS 8140	New Course Proposal	93-95
58	CHEM 4140	New Course Proposal	96-98
59	CHEM 4690	Calendar & Curriculum Change – Pre-requisite Change	99
60	MMS 8090	Calendar & Curriculum Change – Cross-listing	100
61	MMS 8050	Calendar & Curriculum Change – Cross-listing	101-102
	Environmental Studies		
62	ENV-4330	Calendar & Curriculum Change – Cross-listing and Course Description	103-104
		Change	. 30 .0
	Physics		
63-64	PHYS-1110, 1120	Calendar & Curriculum Change – Course Description Changes	105-106

NEW COURSE PROPOSAL

Motion #1

Faculty/School: Arts

Department/Program(s): **Department of Psychology**

MOTION: To approve the new course PSY 4130 - Psychology of Social Class.

Course Number and Title	PSY 4130 – Psychology of Social Class	
Description	This course explores the role that social stratification plays in human thought, behaviour and experience. It studies the history of social stratification and the relatively recent emergence of a class based society. It examines some of the ways that psychologists and other social scientists have integrated social class into their work. A rigorous interrogation of everyday experiences of economic injustice is central to this course. Topics may include the way that social class intersects with a range of identity categories, classism, poverty, inequality, commodity fetishism, and consumer society.	
Cross-Listing	Diversity and Social Justice Studies 4130	
Prerequisite/Co-Requisite	Psychology 1010-1020, 2020 and 2780-2790, or 2510, or Permission of Instructor. If taking DSJS 4130, the prerequisites are DSJS 1090 and two other DSJS courses at the 3000 or 4000 level	
Credit(s)	3	
Notation	Three hours a week.	

This is: An Elective Course Grade Mode: Numeric (Standard)

Anticipated Enrolment: 20 Is there an Enrolment Cap: Yes

It is a seminar style fourth year course.

Rationale for New Course: To encourage students to see the role that class stratification plays in modern psychological research and practice and to understand how critical psychology can inform modern social justice movements

<u>Impact on Students Currently Enrolled</u>: This course provides another course at a 4000-level for students.

Resources Required: No resources or library support needed.

In offering this course will UPEI require facilities or staff at other institutions: No

Departmental Approval: Dr. Jason Doiron	March 9, 2018
Faculty/School Approval: Arts Curriculum Cttee	September 17, 2018
Faculty Dean's Approval: Neb Kujundzic	September 17, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	October 5, 2018
APCC Meeting Date Approval	December 20, 2018

Motion #1

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

PSY 4130 – Psychology of Social Class

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

Existing resources:

- Collections Holdings, Subscriptions, Other PsycInfo, PsycArticles, SocIndex with Full Text
- Subscription Dependencies (in interdisciplinary packages) key journals to support this
 course are included in the multi-disciplinary "Big Deal" publisher packages: Taylor &
 Francis Social Sciences and Humanities, Wiley Online Library, and Sage Premier. Many
 relevant ebooks are included in our two big ebook subscription packages, EBSCO North
 American Academic Collection and Proquest Academic Complete.
- Physical Space in Library (other than holdings, explain): none
- Library Administrative/Research Support : none

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific) none
- Collections: none
 - Monographs
 - Subscriptions
 - Databases
 - Other
- Physical Space in Library (other than holdings, explain) none
- Library Administrative/Research Support none
- Other One-Time or Ongoing Library expenses (e.g. software licenses)

Sumn	nary of addition	al budget	allocation required:	
•	One-time:	0	For each of	consecutive years
•	Annual:	0		
	o Per-y	ear percer	ntage increase in ann	ual:0

Does the budget allocation for library resources in this proposal meet the requirement? yes

Date Received by Liaison/Collections Librarian	May 31, 2018
Name of Librarian to be Contacted for Questions	Melissa Belvadi
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	June 5, 2018

CALENDAR & CURRICULUM CHANGE

Motion #2

Revision is for a: Co-requisite Addition/Change

Faculty/School/Department: Education

Department/Program(s)/Academic Regulations: MEd Graduate Studies

MOTION: That the prerequisite for ED 6950 - Graduate Seminar be revised.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ED 6950 Graduate Seminar	ED 6950 Graduate Seminar
In this course, students attend and present seminars on	In this course, students attend and present seminars on
topics in their discipline, are evaluated on their	topics in their discipline, are evaluated on their seminars,
seminars, and provide constructive criticism to others	and provide constructive criticism to others giving
giving seminars in the course.	seminars in the course.
PREREQUISITE: Education 6110, 6120/6130, 6140,	CO- or PREREQUISITE: Education 6110, 6120/6130,
6150, 6160, or permission of the instructor	6140, 6150, 6160, or permission of the instructor
HOURS OF CREDIT: 3	Graduate Studies Coordinator
	HOURS OF CREDIT: 3

Rationale for Change: ED-6950 is one of the first courses students take in their MEd program, as it provides a foundational overview of topics in Education and is designed to deepen the knowledge and presentation skills required to be successful in the program. Given the timing of the course, ED-6120, ED-6130, ED-6140, ED-6150, and ED-6160 are no longer required as pre-requisites.

Effective Date: January 2019

<u>Implications for Other Programs</u>: no implications

Impact on Students Currently Enrolled: no implications

Departmental Approval: Faculty of Educ. Graduate Studies Committee	September 19, 2018
Faculty/School Approval: Faculty of Education Council	November 7, 2018
Faculty Dean's Approval: Dr. Ron MacDonald, Dean	November 7, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 14, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #3

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 2120 (Geology for Engineers) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2120 GEOLOGY FOR ENGINEERS	2120 GEOLOGY FOR ENGINEERS
This course provides a basic overview of key geological	This course provides a basic overview of key geological
processes and principles with emphasis on practical	processes and principles with emphasis on practical
aspects of geology as they apply to engineering and	aspects of geology as they apply to engineering and
related disciplines. Topics include rock types, rock	related disciplines. Topics include rock types, rock
formation, plate tectonics, glaciation, erosion, earth	formation, plate tectonics, glaciation, erosion, earth
materials, geological mapping, stratigraphy and	materials, geological mapping, stratigraphy and
structural geology. An appreciation for ore forming	structural geology. An appreciation for ore forming
processes, mineral resources, geothermal energy,	processes, mineral resources, geothermal energy,
environmental geology, and groundwater resources is	environmental geology, and groundwater resources is
also development. Laboratory activities focus on basic	also development. Laboratory activities focus on basic
mineral and rock identification, and interpretation of	mineral and rock identification, and interpretation of
topographic and geological maps.	topographic and geological maps.
PREREQUISITE: Admission to the Engineering	PREREQUISITE: Admission to the Engineering
Program or admission to the Environmental Studies	Program or admission to the Environmental Studies
Program	Program
Three lecture hours per week	Three lecture hours per week

<u>Rationale for Change</u>: This course will no longer be offered starting in September 2020 due to the termination of the degree transfer options with UNB and DAL.

Effective Date: September 2020

Implications for Other Programs: None

Impact on Students Currently Enrolled: None. No students remaining for transfer past this date.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 14, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #4

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

 $\label{lem:decomposition} Department/Program (s)/A cademic \ Regulations: \ \textbf{Bachelor of Science in Sustainable Design}$

Engineering

MOTION: That ENGN 2240 (Introduction to Structural Engineering) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2240 INTRODUCTION TO STRUCTURAL	2240 INTRODUCTION TO STRUCTURAL
ENGINEERING	ENGINEERING
This course is an introduction to the field of structural	This course is an introduction to the field of structural
analysis as an applied discipline. Building on deflection	analysis as an applied discipline. Building on deflection
and truss analysis from previous mechanics courses,	and truss analysis from previous mechanics courses,
students are exposed to concepts of influence,	students are exposed to concepts of influence, flexibility,
flexibility, stiffness, impact and other analytical	stiffness, impact and other analytical techniques and
techniques and dynamic loading in rigid structures.	dynamic loading in rigid structures. The National
The National Building Code and material resistance is	Building Code and material resistance is also introduced.
also introduced.	PREREQUISITE: Engineering 2310
PREREQUISITE: Engineering 2310	Three hours of lecture and three hours of lab per week
Three hours of lecture and three hours of lab per week	

<u>Rationale for Change</u>: This course will no longer be offered starting in September 2020 due to the termination of the degree transfer options with UNB and DAL.

Effective Date: September 2020

Implications for Other Programs: None.

Impact on Students Currently Enrolled: None. No students remaining for transfer past this date.

AuthorizationDate:Departmental Approval: N/AN/AFaculty/School Approval: N/AN/AFaculty Dean's Approval: Dr. Nicholas KrouglicofOctober 24, 2018Graduate Studies Dean's Approval: N/AN/ARegistrar's Office Approval: Pam McGuiganNovember 13, 2018APCC Meeting Date ApprovalDecember 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #5

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 2350 (Kinematics and Dynamics of Machines) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	·
2350 KINEMATICS AND DYNAMICS OF	2350 KINEMATICS AND DYNAMICS OF
MACHINES	MACHINES
This course introduces fundamental concepts in the	This course introduces fundamental concepts in the
analysis of linkages and other aspects of complex	analysis of linkages and other aspects of complex
machinery. Using graphical and analytical methods	machinery. Using graphical and analytical methods and
and relying on static and dynamic principles previously	relying on static and dynamic principles previously
learned, students are exposed to a variety of cams,	learned, students are exposed to a variety of cams, gears
gears and trains in an applied context. Simple	and trains in an applied context. Simple gyroscopic
gyroscopic effects are also introduced.	effects are also introduced.
PREREQUISITE: Engineering 2340 and Math 1920	PREREQUISITE: Engineering 2340 and Math 1920
Three hours lecture and three hours of laboratory per	Three hours lecture and three hours of laboratory per
week	week

<u>Rationale for Change</u>: This course will no longer be offered starting in September 2020 due to the termination of the degree transfer options with UNB and DAL.

Effective Date: September 2020

Implications for Other Programs: None.

Impact on Students Currently Enrolled: None. No students remaining for transfer past this date.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #6

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 2420 (Fundamentals of Environment Engineering) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2420 FUNDAMENTALS OF ENVIRONMENTAL	2420 FUNDAMENTALS OF ENVIRONMENTAL
ENGINEERING	ENGINEERING
This course is an introduction to the field of	This course is an introduction to the field of
environmental engineering with a focus on	environmental engineering with a focus on
understanding the effects of man-made pollutants on	understanding the effects of man-made pollutants on
natural systems (physical, chemical). Particular	natural systems (physical, chemical). Particular
emphasis is placed on the identification, analysis	emphasis is placed on the identification, analysis
and design of solid and wastewater management	and design of solid and wastewater management systems
systems in a sustainable and responsible manner.	in a sustainable and responsible manner.
PREREQUISITE: Engineering 1410 and Chemistry	PREREQUISITE: Engineering 1410 and Chemistry
1120	1120
Three hours of lecture and two hours of tutorial per	Three hours of lecture and two hours of tutorial per
week	week

Rationale for Change: This course is no longer offered.

Effective Date: September 2019

Implications for Other Programs: None.

Impact on Students Currently Enrolled: None

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #7

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 2430 (Engineering Economics) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	<u>indicated clearly</u>
2430 ENGINEERING ECONOMICS	2430 ENGINEERING ECONOMICS
This course provides students with the fundamentals of	This course provides students with the fundamentals of
engineering economics and finance financial aspects in	engineering economics and finance financial aspects in
the context of professional engineering practice. Topics	the context of professional engineering practice. Topics
include the time value of money, project screening, cost	include the time value of money, project screening, cost
estimation, and discounting analysis techniques.	estimation, and discounting analysis techniques.
Economic analysis of depreciation, maintenance,	Economic analysis of depreciation, maintenance,
replacement and upgrading and the impact of taxes,	replacement and upgrading and the impact of taxes,
inflation and time on infrastructure development.	inflation and time on infrastructure development.
Relevant software and projects are used.	Relevant software and projects are used.
PREREQUISITE: Admission to the Engineering	PREREQUISITE: Admission to the Engineering
Program	Program
Three hours lecture and three-hour tutorial per week	Three hours lecture and three hour tutorial per week

Rationale for Change: This course will no longer be offered starting in September 2020 due to the termination of the degree transfer options with UNB and DAL.

Effective Date: September 2020

Implications for Other Programs: None.

Impact on Students Currently Enrolled: None. No students remaining for transfer past this date.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #8

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 2520 (Fundamentals of Process Engineering) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	·
2520 FUNDAMENTALS OF PROCESS	2520 FUNDAMENTALS OF PROCESS
ENGINEERING	ENGINEERING
The main objective of this course is to develop the	The main objective of this course is to develop the
student's ability to perform mass and energy balances	student's ability to perform mass and energy balances on
on reactive and non-reactive processes. Introductory	reactive and non-reactive processes. Introductory topics
topics include systems of units and a study of process	include systems of units and a study of process variables
variables such as temperature, pressure, and flowrate.	such as temperature, pressure, and flowrate. Also
Also covered are fundamental properties of multiphase	covered are fundamental properties of multiphase
systems: phase equilibrium, vapour pressure, phase	systems: phase equilibrium, vapour pressure, phase rule,
rule, Raoult's and Henry's Laws, and colligative	Raoult's and Henry's Laws, and colligative properties.
properties. Emphasis is placed on developing problem-	Emphasis is placed on developing problem solving skills.
solving skills.	PREREQUISITE: Engineering 2610
PREREQUISITE: Engineering 2610	Three lecture hours and two tutorial hours per week
Three lecture hours and two tutorial hours per week	

<u>Rationale for Change</u>: This course will no longer be offered starting in September 2020 due to the termination of the degree transfer options with UNB and DAL.

Effective Date: September 2020

Implications for Other Programs: None.

Impact on Students Currently Enrolled: None. No students remaining for transfer past this date.

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #9

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 2820 (Electric Circuits II) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2820 ELECTRIC CIRCUITS II	2820 ELECTRIC CIRCUITS II
This course is a continuation of Engineering 2810,	This course is a continuation of Engineering 2810,
expanding upon concepts introduced in the first course.	expanding upon concepts introduced in the first course.
This will include two port networks, Fourier series and	This will include two port networks, Fourier series and
Fourier transforms, Laplace transforms, Bode and	Fourier transforms, Laplace transforms, Bode and Polar
Polar plots, and Filters.	plots, and Filters.
PREREQUISITE: Engineering 2810	PREREQUISITE: Engineering 2810
Three hours lecture and two hours tutorial per week	Three hours lecture and two hours tutorial per week

Rationale for Change: This course is being replaced by ENGN 2830 Digital Logic Design.

Effective Date: September 2020

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #10

Revision is for a: Course Deletion

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: That ENGN 3850 (Engineering Applications of Numerical Methods) be deleted.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
3850 ENGINEERING APPLICATIONS OF	3850 ENGINEERING APPLICATIONS OF
NUMERICAL METHODS	NUMERICAL METHODS
This course focuses on the use of numerical techniques	This course focuses on the use of numerical techniques
and engineering tools, including industrial statistical	and engineering tools, including industrial statistical
tools for the design of experiments (DOE), to solve	tools for the design of experiments (DOE), to solve
complex real world engineering problems. Students are	complex real world engineering problems. Students are
introduced to numerical algorithms with primary	introduced to numerical algorithms with primary
objective of the course to be development of the basic	objective of the course to be development of the basic
understanding of the construction of applicability and	understanding of the construction of applicability and
limits of these algorithms and their appropriate use.	limits of these algorithms and their appropriate use.
Recommended list of topics includes accuracy and	Recommended list of topics includes accuracy and
efficiency of numerical approximation, root finding of	efficiency of numerical approximation, root finding of
nonlinear equations, interpolation and approximation,	nonlinear equations, interpolation and approximation,
numerical differentiation, numerical integration and	numerical differentiation, numerical integration and
quadrature, Fourier Transform and its applications and	quadrature, Fourier Transform and its applications and
solution of differential equations and boundary value	solution of differential equations and boundary value
problems. Extensive use of high level programing tools	problems. Extensive use of high level programing tools
like MATLAB is expected.	like MATLAB is expected.
PREREQUISITES: Engineering 1310 and Math 3010	PREREQUISITES: Engineering 1310 and Math 3010
Three hours of lecture and three hours of lab per week	Three hours of lecture and three hours of lab per week

<u>Rationale for Change</u>: This course is being replaced by ENGN 4850 Computational Methods for Engineering Design.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #11

Faculty/School: Sustainable Design Engineering

Department/Program(s): Bachelor of Science in Sustainable Design Engineering

MOTION: That a new course entitled ENGN 1230 (Engineering Mechanics I: Statics) be

approved as presented.

Course Number and Title	ENGN 1230 Engineering Mechanics I: Statics	
Description	This course focuses on the equilibrium conditions for the state of rest of particles and rigid bodies subject to forces and moments. Topics to be discussed include vector operations, equilibrium conditions, free-body diagrams, moments and couples, distributed loadings, support reactions, truss analysis, centroids, moments of inertia, products of inertia, shear and bending moment diagrams, and friction.	
Cross-Listing	N/A	
Prerequisite/Co-Requisite	Admission to the Engineering Program. Math 1910 must be completed or taken concurrently.	
Credit(s)	3	
Notation	Three lecture hours and three lab hours per week	

This is: A Core Course Grade Mode: Numeric (Standard)

Anticipated Enrolment: 100 Is there an Enrolment Cap: No

Rationale for New Course: The content for this course is currently covered in ENGN 1220, as one of a number of components, and in PHYS 1110. This course is being created to allow the subject matter to be covered in a more substantial manner with a focus on engineering approaches and applications. The existing material in the ENGN 1220 course will be removed from it. PHYS 1110 will no longer be required.

Effective Date: September 2019

Implications for Other Programs: PHYS 1110 will no longer be a required course in the engineering program.

<u>Impact on Students Currently Enrolled</u>: Engineering students will no longer be required to take PHYS 1110.

<u>Resources Required</u>: Existing personnel and laboratory resources within the Faculty of Sustainable Design Engineering.

In offering this course will UPEI require facilities or staff at other institutions: No

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #11

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

ENGN 1230 Engineering Mechanics I: Statics

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

Existing resources include:

- Collections Holdings, Subscriptions, Other
 - An attached document lists selected resources from the Library's collection and beyond that may be of interest to the instructor. Also available at: tinyurl.com/engn1230-resources
 - o Books
 - Keyword search
 - engineering statics: 721 books
 - "mechanics of materials": 62 books
 - Subject search
 - Statics: 91 books
 - Mechanics, Applied: 232 books
 - Subscriptions
 - Access Engineering provides handbooks that contain the basic engineering concepts and equations for statics. They also present the material in the form of videos of working through example problems, and in the form of "spreadsheet calculators"
- Subscription Dependencies (in interdisciplinary packages)
 - Several texts on Statics appear in interdisciplinary book packages.
- Physical Space in Library (other than holdings, explain) none
- Library Administrative/Research Support The engineering subject librarian is available to assist students if needed.

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific) none
- Collections: none
 - o Monographs
 - o Subscriptions
 - o Databases
 - Other
- Physical Space in Library (other than holdings, explain) none
- Library Administrative/Research Support none
- Other One-Time or Ongoing Library expenses (e.g. software licenses) none

Summa	ry of add	itional bu	dget allocat	ion required:		
•	One-time	e:	_n/a	For each of		consecutive years
•	Annual:	n/a_				
	0	Per-year	percentage	increase in an	ınual: ˌ	

NEW COURSE PROPOSAL

Motion #11

Does the budget allocation for library resources in this proposal meet the requirement?

The existing budget allocation for Engineering is sufficient at the moment, however the existing Engineering library budget does not increase with inflation or annual increases in subscription prices. We are exposed to further risk of exchange rate fluctuations as a large majority of our subscriptions are purchased in American Dollars. This makes existing resources (heavily subscription-based) unsustainable on a long-term basis, and core resources will soon have to be cut. As agreed in August 2017 (as part of the Interdisciplinary PhD in Engineering proposal), we still expect that when the original engineering undergraduate student enrollment target is met, we will see the sustainability of this budget addressed.

Date Received by Liaison/Collections Librarian	October 24, 2018
Name of Librarian to be Contacted for Questions	Rosie Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	November 7, 2018

NEW COURSE PROPOSAL

Motion #12

Faculty/School: Sustainable Design Engineering

Department/Program(s): Bachelor of Science in Sustainable Design Engineering

MOTION: To approve the new course ENGN 2130 (Statistics for Engineering Applications).

me note. To approve the new course Entert 2100 (etationes for Engineering Approacherie).		
ENGN 2130 Statistics for Engineering Applications		
This course provides an introduction to statistics through its application to engineering in the areas of reliability and experimentation. Basic statistical concepts, such as probability, descriptive measures, population distributions, and hypothesis testing will be taught in the context of engineering reliability and experimentation scenarios. Students will be introduced to fundamental concepts of reliability, such as failure and repairability rates, and analysis techniques such as reliability block diagrams and fault tree analysis. Student will also learn the basics of experimental design, including one-factor-at-a-time and factorial testing, and get hands on experience with the design, execution, analysis and interpretation of experimental results.		
N/A		
Mathematics 1920		
3		
Three lecture hours and three lab hours per week		

<u>This is</u>: A Core Course <u>Grade Mode</u>: Numeric (Standard)

Anticipated Enrolment: 100 Is there an Enrolment Cap: No

Rationale for New Course: The creation of this new course will provide engineering students with an introductory course in statistics that focuses on engineering applications and an introduction to experimental design content, which is not covered in the existing STAT 1210. This course will replace the existing requirement for STAT 1210.

Effective Date: September 2019 Implications for Other Programs: STAT 1210 will no longer be a required course in the engineering program.

Impact on Students Currently Enrolled: Engineering students will no longer be required to take STAT 1210.

<u>Resources Required</u>: Existing personnel and laboratory resources within the Faculty of Sustainable Design Engineering.

In offering this course will UPEI require facilities or staff at other institutions: No

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #12

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

ENGN 2130 Statistics for Engineering Applications

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

Existing resources:

- Collections
 - An attached document lists selected resources from the Library's collection and beyond that may be of interest to the instructor. Also available at: https://tinyurl.com/engn2110-resources
 - o Books
 - Subject search 'Engineering Statistical methods': 131 books. 54 published after 2010.
 - Subject search 'Statistical analysis': 728 books. 236 published after 2010.
 - Engineering data processing; 194 published after 2010.
 - Subject search 'experimental design': 234 books, 66 published after 2010.
 - Keyword search 'engineering statistics': 1838 books. 734 after 2010.
 - Subscriptions
 - The **Wiley EBA**¹ program provides access to many relevant books through their Engineering and Math&Stats collections, which we 'subscribe' to.
 - AccessEngineering provides many classic engineering handbooks, and several are about or have chapters covering statistics. There are also some video tutorials available on the platform demonstrating working through problems.
- Subscription Dependencies (in interdisciplinary packages)
 - Interdisciplinary collections such as our Proquest and Ebscohost book subscriptions provide resources relating to the course material.
- Physical Space in Library (other than holdings, explain)
 - None needed.
- Library Administrative/Research Support
 - o If any research assistance is needed, the Engineering subject librarian can assist.

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific) none
- Collections:
 - Monographs

_

¹ Evidence Based Acquisition: for an annual fee, we (the University) get unlimited access to the publisher's collection (often the full catalogue) then at the end of the year we "spend out" the deposit by purchasing titles that we (librarians) get to select, based on usage data.

NEW COURSE PROPOSAL

Motion #12

- Existing book collections are dated and could use a refresher. Existing resources are electronic and some are limited to a single user – more licenses may be desired.
- Subscriptions
 - No new subscriptions needed.
- Databases
 - no new resources needed.
- Other
- Physical Space in Library (other than holdings, explain)
 - o no new resources needed.
- Library Administrative/Research Support
 - o no new resources needed.
- Other One-Time or Ongoing Library expenses (e.g. software licenses)
 - If there is statistical software that will be required for exercises or lab reports, which should be installed on Library public computers, please let the Library know. We may also want to provide additional resources such as manuals/tutorials for that software.

Summ	ary of addition	onal budget allo	ocation required:	
•	One-time: _	n/a	For each of _	consecutive years
•	Annual:	n/a	_	
	o Per	-year percentag	ge increase in ann	ual:

Does the budget allocation for library resources in this proposal meet the requirement?

The existing budget allocation for Engineering is sufficient at the moment, however the existing Engineering library budget does not increase with inflation or annual increases in subscription prices. We are exposed to further risk of exchange rate fluctuations as a large majority of our subscriptions are purchased in American Dollars. This makes existing resources (heavily subscription-based) unsustainable on a long-term basis, and core resources will soon have to be cut. As agreed in August 2017 (as part of the Interdisciplinary PhD in Engineering proposal), we still expect that when the original engineering undergraduate student enrollment target is met, we will see the sustainability of this budget addressed.

Date Received by Liaison/Collections Librarian	October 24, 2018
Name of Librarian to be Contacted for Questions	Rosemary Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	November 7, 2018

NEW COURSE PROPOSAL

Motion #13

Faculty/School: Sustainable Design Engineering

Department/Program(s): Bachelor of Science in Sustainable Design Engineering

MOTION: To approve the new course ENGN 2830 (Digital Logic Design).

Course Number and Title	ENGN 2830 DIGITAL LOGIC DESIGN
Description	This course is a study of topics such as: digital and binary systems, Boolean algebra, combinational logic, sequential logic, minimization, registers and counters, clocks and synchronization, state machines, and programmable logic devices. Ladder logic and programmable logic controllers are also introduced.
Cross-Listing	N/A
Prerequisite/Co-Requisite	Engineering 1310, Engineering 2810
Credit(s)	3
Notation	Three lecture hours and three lab hours per week

<u>This is:</u> A Core Course <u>Grade Mode</u>: Numeric (Standard)

Anticipated Enrolment: 100 Is there an Enrolment Cap: No

If there is an enrolment limit, please explain.

Rationale for New Course: This new course provides new content that better positions students for subsequent courses in the mechatronics focus area.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

<u>Resources Required:</u> Existing personnel and laboratory resources within the Faculty of Sustainable Design Engineering.

In offering this course will UPEI require facilities or staff at other institutions: No

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #13

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

ENGN 2830 Digital Logic Design

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

Existing resources:

- Collections
 - An attached document lists selected resources from the Library's collection and beyond that may be of interest to the instructor. Also available at: https://tinyurl.com/engn2830-resources.
 - o Books
 - A keyword search for digital logic design brings back 414 books, 118 of them published after 2010.
 - A subject search for "logic design" found 381 books, 25 of them published after 2010.
 - Subject search "Digital electronics" found 130 books, 36 published after 2010.
 - Subject search Integrated circuits > Design and construction found 278 books,
 104 published after 2010.
 - Subscriptions
 - IEEE Digital Library supports this program by providing access to over 200 journals, 1400 proceedings, and over 2800 IEEE standards.
 - ACM Digital Library supports this course by providing the full text of all ACM publications (journals, conference proceedings, technical magazines, newsletters, and books).
 - Subscription to AccessEngineering provides McGraw-Hill's handbooks in an interactive format, with videos and calculators available.
 - Wiley EBA² package for Engineering provides several recent introductory-level texts.
 - o Databases
 - Compendex and INSPEC provide indexing and coverage of engineering with INSPEC having a stronger focus on electrical engineering, electronics, computing, and control.
- Subscription Dependencies (in interdisciplinary packages)
 - Wiley, ScienceDirect, and other interdisciplinary packages like Academic Search Complete provide additional access to journals.
 - Book subscription packages through Proquest and EBSCO provide additional monographs.
- Physical Space in Library (other than holdings, explain)
 - o none is required.
- Library Administrative/Research Support
 - o The subject librarian for Engineering can provide research assistance as needed.

New resources needed to support this proposal:

• Capital Requirements (other than new course-specific)

2

² Evidence Based Acquisition: for an annual fee, we (the University) get unlimited access to the publisher's collection (often the full catalogue) then at the end of the year we "spend out" the deposit by purchasing titles that we (librarians) get to select, based on usage data.

NEW COURSE PROPOSAL

Motion #13

- o none
- Collections:
 - Monographs
 - The collection of monographs is dated and needs to be refreshed. Recent introductory-level works will be sought.
 - Subscriptions
 - Additional subscriptions may be needed if this course had a research focus, but as an introductory course the existing subscriptions suffice.
 - Databases
 - no new resources needed.
 - Other
- Physical Space in Library (other than holdings, explain)
 - no new resources needed.
- Library Administrative/Research Support
 - no new resources needed.
- Other One-Time or Ongoing Library expenses (e.g. software licenses)
 - None (the library will not be providing licences to design software. If a software (such as Quartus or ModelSIM) has been selected to use for this course, please let us know if it needs to be installed on Library computers. Additional resources such as manuals/tutorials for that specific software may also be desired)

Summary of additional budget allocation required:						
•	One-time:	n/a	For each of	consecutive years		
•	Annual:	n/a				
 Per-year percentage increase in annual: 						

Does the budget allocation for library resources in this proposal meet the requirement?

The existing budget allocation for Engineering is sufficient at the moment, however the existing Engineering library budget does not increase with inflation or annual increases in subscription prices. We are exposed to further risk of exchange rate fluctuations as a large majority of our subscriptions are purchased in American Dollars. This makes existing resources (heavily subscription-based) unsustainable on a long-term basis, and core resources will soon have to be cut. As agreed in August 2017 (as part of the Interdisciplinary PhD in Engineering proposal), we still expect that when the original engineering undergraduate student enrollment target is met, we will see the sustainability of this budget addressed.

Date Received by Liaison/Collections Librarian	October 24, 2018
Name of Librarian to be Contacted for Questions	Rosemary Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	November 7, 2018

NEW COURSE PROPOSAL

Motion #14

Faculty/School: Sustainable Design Engineering

Department/Program(s): Bachelor of Science in Sustainable Design Engineering MOTION: To approve the new course ENGN 4830 (Biomedical Signal Processing).

Course Number and Title	ENGN 4830 Biomedical Signal Processing
Description	This course is an introduction to the basics of viewing, processing, and analyzing of biosignals, or signals originating from living beings. Biosignals may be characterized as bioelectrical signals which can be composed of both electrical and non-electrical parts. Topics include both linear and nonlinear systems, signal conditioning or filtering, improving signal quality (signal-to-noise ratio) through averaging techniques, and signal representations in both the time and frequency domains.
Cross-Listing	N/A
Prerequisite/Co-Requisite	Engineering 3220
Credit(s)	3
Notation	Three lecture hours and three lab hours per week

<u>This is:</u> An Elective Course <u>Grade Mode</u>: Numeric (Standard)

Anticipated Enrolment: 30 Is there an Enrolment Cap: No

Rationale for New Course: Provides additional elective course offering.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Resources Required: Existing personnel and laboratory resources within the Faculty of Sustainable

Design Engineering.

In offering this course will UPEI require facilities or staff at other institutions: No

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #14

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

ENGN 4830 (Biomedical Signal Processing)

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

Existing resources:

- Collections:
 - An attached document lists selected resources from the Library's collection and beyond that may be of interest to the instructor. Also available at: http://tinyurl.com/engn4830-resources.
 - o Books
 - Keyword search: Biomedical signal: 331 books
 - Keyword search: biosignal: 24 books.
 - See attached document for selected introductory monographs. However, all but one are over 5 years old.
 - Subscriptions
 - Signal processing is very strongly supported by the IEEE/IEL Digital Library, which includes all journals and proceedings from the IEEE and other partner organizations.
 - Databases
 - Compendex and Inspec provide engineering-focused indexing of literature including books, articles, and proceedings.
- Subscription Dependencies (in interdisciplinary packages)
 - While not a subscription per se, the DDA deposit account with Proquest provides access to over 1000 titles in Springer's book series including "Lecture Notes in Computer Science". However, the contents of this DDA collection may change.
 - Our subscriptions to SpringerLink, ScienceDirect, and Wiley also provide relevant journal titles relating to biomedical engineering.
- Physical Space in Library (other than holdings, explain)
 - o none is required.
- Library Administrative/Research Support
 - o The subject librarian for Engineering can provide research assistance as needed.

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific)
- Collections:
 - Monographs
 - Full access to more Springer series would be an asset
 - More recent monographs on the topic would be an asset.
 - Subscriptions
 - Proceedings of the SPIE

NEW COURSE PROPOSAL

Motion #14

- World Scientific journals such as Journal of Mechanics in Medicine and Biology, and Biomedical Engineering – Applications, Basis and Communications.
- Databases
 - none
- Other
 - none
- Physical Space in Library (other than holdings, explain)
 - no space is needed.
- Library Administrative/Research Support
 - o no new support is needed
- Other One-Time or Ongoing Library expenses (e.g. software licenses)
 - none required.

Summary of additional budget allocation required:				
•	One-time:	n/a	For each of	consecutive years
•	Annual:	n/a		
	Per	-year percentag	ge increase in anr	ual:

Does the budget allocation for library resources in this proposal meet the requirement?

The existing budget allocation for Engineering is sufficient at the moment, however the existing Engineering library budget does not increase with inflation or annual increases in subscription prices. We are exposed to further risk of exchange rate fluctuations as a large majority of our subscriptions are purchased in American Dollars. This makes existing resources (heavily subscription-based) unsustainable on a long-term basis, and core resources will soon have to be cut. As agreed in August 2017 (as part of the Interdisciplinary PhD in Engineering proposal), we still expect that when the original engineering undergraduate student enrollment target is met, we will see the sustainability of this budget addressed.

Date Received by Liaison/Collections Librarian	October 24, 2018
Name of Librarian to be Contacted for Questions	Rosemary Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	November 7, 2018

NEW COURSE PROPOSAL

Motion #15

Faculty/School: Sustainable Design Engineering

Department/Program(s): Bachelor of Science in Sustainable Design Engineering

MOTION: To approve the new course ENGN 4850 (Computational Methods for Engineering Design).

Course Number and Title	ENGN 4850 Computational Methods for Engineering Design
Description	This course covers the numerical methods that form the basis of many engineering techniques and applies these methods to quantitative engineering design. The fundamentals of numerical approaches are reviewed, including iteration, approximation, and numerical errors. Methods are presented for numerical integration, differentiation, and nonlinear equation solving. Numerical approaches to solving differential equations are examined and their applications to numerical modelling, including finite-element analysis and computation fluid dynamics, are explored. Computational approaches to frequency-domain analysis using discrete Fourier transforms are introduced, along with related topics such as digital filtering and numerical convolution. Algorithms are presented for array and matrix computation, solving systems of equations, regression, curve fitting, and numerical optimization. Finally, these computational techniques are brought to bear on the topic of design optimization, emphasizing the transformation of real-world engineering design problems into quantitative formulations to which computational design optimization techniques can be applied.
Cross-Listing	N/A
Prerequisite/Co-Requisite	Engineering 1310 and Mathematics 3010
Credit(s)	3
Notation	Three lecture hours and three lab hours per week

This is: A Core Course Grade Mode: Numeric (Standard)

Anticipated Enrolment: 30 Is there an Enrolment Cap: No

<u>Rationale for New Course</u>: This new course provides content relevant to modelling and simulation which supports the Year 4 design courses. It replaces ENGN 3850 (Engineering Applications of Numerical Methods).

<u>Effective Date</u>: September 2019 <u>Implications for Other Programs:</u> None

<u>Impact on Students Currently Enrolled</u>: None <u>Resources Required</u>: Existing personnel and laboratory resources within the Faculty of Sustainable Design Engineering.

In offering this course will UPEI require facilities or staff at other institutions: No

,	2440.
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #15

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

ENGN 4850 (Computational Methods for Engineering Design)

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

Existing resources:

- Collections
 - A list of selected resources for this course was not prepared due to time constraints, and can be requested by the instructor if desired.
 - o Books
 - Book Collections:
 - AccessEngineering
 - "ENGnetBASE" from Taylor & Francis / CRC
 - Subject searches
 - Engineering mathematics: 1551 books. (incl 1444 e-books)
 - Engineering design > Mathematical models: 33 books
 - Mathematical optimization: 712 books
 - Engineering > Computer simulation: 217 books
 - Numerical analysis: 593 books
 - Differential equations > Numerical solutions: 254 books
 - Differential equations, Partial > Numerical solutions: 100 books
 - Finite element method: 242 books
 - Keyword searches
 - "Numerical methods": 828 books
 - "Numerical methods" engineering: 403 books
 - "Numerical methods" design: 176 books
 - "finite element method": 484 books
 - "computational fluid dynamics": 203 books
 - Within Full Text book databases
 - AccessEngineering: 1215 results for "numerical methods"
 - EBSCOhost books: 5027 results for "numerical methods"
 - Wiley: 75,238 results for "numerical methods"
 - Proguest: 7029 results for "numerical methods"
 - Taylor & Francis: 95 results for "numerical methods"
 - ASME books & Journals: 78 ebook matches for "numerical methods"
 - Journals and Databases
 - Title search
 - "Numerical methods" 18 journals
 - "Engineering" and "optimization": 11 journals
 - "engineering" and "math*": 90 journals

NEW COURSE PROPOSAL

Motion #15

- o Open Textbooks and Courses
 - "Introduction to Numerical Analysis", MIT OpenCourseware, 2012
 - Masenge, R.W.P. <u>Numerical methods</u>. African Virtual University.
 - "Introduction to Linear Dynamical Systems", Stanford Engineering Everywhere
 - "The Fourier Transform and its Applications". Stanford Engineering Everywhere
- Subscription Dependencies (in interdisciplinary packages)
 - EBSCOhost, Proquest, Wiley, and Taylor & Francis are our largest sources of e-books, and these include some Engineering titles.
- Physical Space in Library (other than holdings, explain)
 - o no resources needed.
- Library Administrative/Research Support
 - o The Engineering subject librarian can provide research support as needed.

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific) none
- Collections:
 - Monographs -
 - Subscriptions
 - Databases
 - o Other
- Physical Space in Library (other than holdings, explain)
- Library Administrative/Research Support
- Other One-Time or Ongoing Library expenses (e.g. software licenses)
 - None (the library will not be providing licences to computational software. If there is software that will be required for exercises/labs, which should be installed on Library public computers, please let the Library know. We may also want to provide additional resources such as manuals/tutorials for that software.)

•	One-time:	n/a	For each of	consecutive years
•	Annual:	n/a		
	o Pe	r-year percent	tage increase in annu	ıal:

Does the budget allocation for library resources in this proposal meet the requirement?

The existing budget allocation for Engineering is sufficient at the moment, however the existing Engineering library budget does not increase with inflation or annual increases in subscription prices. We are exposed to further risk of exchange rate fluctuations as a large majority of our subscriptions are purchased in American Dollars. This makes existing resources (heavily subscription-based) unsustainable on a long-term basis, and core resources will soon have to be cut. As agreed in August 2017 (as part of the Interdisciplinary PhD in Engineering proposal), we still expect that when the original engineering undergraduate student enrollment target is met, we will see the sustainability of this budget addressed.

Date Received by Liaison/Collections Librarian	October 24, 2018
Name of Librarian to be Contacted for Questions	Rosemary Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	November 7, 2018

CALENDAR & CURRICULUM CHANGE

Motion #16

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 1210 (Engineering Communications).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	<u>indicated clearly</u>
1210 ENGINEERING COMMUNICATIONS	1210 ENGINEERING COMMUNICATIONS
This course is a basic introduction to the profession, to	This course is the first in a series of design courses
the design process, and to the way that engineers	structured to foster development toward becoming a
communicate through drawing, writing and speaking.	professional engineer. It provides is a basic introduction
The course stresses the importance of creativity and	to the profession, to the design process, and to the way
social responsibility in engineering. Topics include	that engineers communicate through drawing, writing,
basic engineering concepts, simple engineering design	and speaking, and presenting. The course stresses the
projects, presentation of graphical material for	importance of creativity and social responsibility in
engineering designs, and technical reporting, which	engineering. Students learn about the engineering design
includes verbal, written, and graphical means. There is	process by completing simple engineering design projects
an emphasis on group work in engineering.	in a team-based environment. There is a strong focus on
PREREQUISITE: Admission to the Engineering	writing and computer-aided drawing. Topics include
Program. Math 1910 and Physics 1110 must be	basic engineering concepts, simple engineering design
completed or taken concurrently	projects, presentation of graphical material for
Three hours lecture and three hours laboratory per	engineering designs, and technical reporting, which
week	includes verbal, written, and graphical means. There is
	an emphasis on group work in engineering.
	PREREQUISITE: Admission to the Engineering
	Program. Engineering 1410 and Math 1910 and Physics
	1110 must both be completed or taken concurrently
	Three hours lecture and three hours laboratory design
	studio per week

Rationale for Change: To more accurately reflect the existing course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours. The pre-requisite change is due to Physics 1110 no longer being required for students in the Bachelor of Sustainable Design Engineering program.

Effective Date: September 2019 Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #17

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To approve the proposed changes for ENGN 1220 (Engineering Analysis).

-	Proposed revision with changes underlined and deletions indicated clearly
This course is a continuation of the design process and engineering professionalism introduced in Engineering 1210. Emphasis is placed on the development of a structured problem solving capability that can be generally applied in most industrial environments. As with all UPEI design courses, the content is delivered primarily through facilitated exercises and a project based learning environment. Students are expected to be self-directed and are required to analyze situations in a systematic and scientific manner. In order to perform engineering analysis, a basic understanding of math and engineering science (i.e. statics, strength of materials, material science, material balance, fluid mechanics, thermodynamics, circuits, measurements, etc.) is required and an overview of these areas is provided. Students are also expected to integrate the knowledge and skills from other engineering science, math and general science courses. Computer aided tools introduced include Microsoft Excel, DataStudio, MatLab and Simulink. Demonstration of design concepts during end of year industry expo is required. PREREQUISITE: Engineering 1210 with a grade of at least 60%. Engineering 1310 must be completed or taken concurrently. Three hours lecture and three hours of lab per week	This course is the second in a series of design courses structured to foster development toward becoming a professional engineer. a continuation of the design process and engineering professionalism introduced in Engineering 1210. It further introduces the engineering design process through team-based engineering design projects. Additionally, Eemphasis is placed on the development of a structured problem-solving and analysis ability that can be applied to most engineering applications. eapability that can be generally applied in most industrial environments. As with all UPEI design courses, the content is delivered primarily through facilitated exercises and a project based learning environment. Students are expected to be self directed and are required to analyze situations in a systematic and scientific manner. In order to perform engineering analysis, a basic understanding of math and engineering science (i.e. statics, strength of materials, material science, material balance, fluid mechanics, thermodynamics, circuits, measurements, etc.). is required and an overview of these areas is provided. Analysis topics include: basic concepts of electricity; estimation; statistics; graphing; and regression. Students are also expected to integrate the knowledge and skills from other engineering science, math and general science courses. Computer-aided tools, such as Microsoft Excel, DataStudio, and MatLab are introduced, and Simulink. Demonstration of design concepts during end of year industry expo is required. PREREQUISITE: Engineering 1210 with a grade of at least 60%. Engineering 1310 must be completed or taken concurrently. Three hours lecture and three hours of lab design studio per week

<u>Rationale for Change</u>: To more accurately reflect the existing course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours.

CALENDAR & CURRICULUM CHANGE

Motion #17

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #18

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 2250 (Materials Science).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2250 MATERIALS SCIENCE	2250 1250 MATERIALS SCIENCE
This course is an introduction to the properties and	This course is an introduction focuses on the
behaviour of engineering materials. Topics include	fundamental principles of chemistry as they relate to the
atomic structure and bonding, crystalline structures,	properties and behaviour of engineering materials <u>in</u>
deformation, metallic structures, hardening and	application to engineering systems. Topics include
annealing, phase diagrams, ceramics, polymers,	atomic structure and bonding, crystalline structures,
composites, electrical and optical properties. Computer	deformation, metallic structures, hardening and
applications are used.	annealing, phase diagrams, ceramics, polymers,
PREREQUISITE: Chemistry 1110 and Math 1920	composites, electrical and optical properties. Computer
Three hours lecture and three hours lab per week	applications are used. The relationship between
	electronic structure, chemical bonding, and atomic order
	is emphasized. The characterization of atomic
	arrangements in crystalline and amorphous solids, i.e.
	that of metals, ceramics, polymers, and composites are
	introduced. Knowledge of materials phenomena,
	including chemical equilibrium and kinetics, diffusion,
	electrochemistry, and phase transformations will be
	gained through experiential labs and lecture. Examples
	from industrial practice and emerging technologies will
	be used to illustrate the materials science concepts in this
	<u>course.</u>
	PREREQUISITE: Chemistry 1110 and Mathematics
	1920 must be completed or taken concurrently.
	Chemistry 1110
	Three hours lecture and three hours lab per week

Rationale for Change: This course is being renumbered as a result of being moved to the first year of the BSc Sustainable Design Engineering Program. The course description is being updated to more accurately reflect the course content and to include those CHEM 1120 topics which are specifically relevant to engineering. CHEM 1120 is being removed as a program requirement. The change in the pre-requisite is due to the course being moved into the first year of the program.

<u>Effective Date</u>: September 2019 <u>Implications for Other Programs</u>: CHEM 1120 will no longer be a required course in the engineering program.

Impact on Students Currently Enrolled: Engineering students will no longer be required to take CHEM 1120.

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #19

Revision is for a: Course Description Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 1310 (Computer Programming with **Engineering Applications).**

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	·
1310 (formerly 1320) COMPUTER	1310 (formerly 1320) COMPUTER PROGRAMMING
PROGRAMMING WITH ENGINEERING	WITH ENGINEERING APPLICATIONS
APPLICATIONS	This <u>introductory</u> course is a study of <u>in</u> computer
This course is a study of computer programming as it	programming as it relates to engineering is specifically
relates to engineering. Topics include problem solving,	designed for engineering students with no previous
algorithm design, software standards, operating	programming experience. The learning objectives are
systems, computer components, data types, control	twofold: 1) to gain the ability to write scripts and solve
structures, repetition, loops, nested structures, modular	basic engineering problems using the Matlab® numerical
programming and arrays. Several programming	computing environment, 2) to introduce embedded
languages and programs are used including MS Excel,	systems and the fundamentals of interfacing and real-time
Matlab and C.	programming using the Arduino open-source platform.
PREREQUISITE: Admission to the Engineering	Topics include problem solving, algorithm design,
Program	software standards, operating systems, computer
Three lecture hours and two lab hours per week	components, data types, control structures, repetition,
	loops, nested structures, modular programming, data types
	and number systems, operators, functions, decision
	statements, loops, and arrays. The latter part of the course
	deals with the fundamentals of interfacing peripheral
	devices including sensors and actuators to design small
	embedded systems. and arrays. Several programming
	languages and programs are used including MS Excel,
	Matlab and C.
	PREREQUISITE: Admission to the Engineering Program
	Three lecture hours and two three lab hours per week

Rationale for Change: To more accurately reflect the course content and the manner in which the lab is

operated.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #20

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 2340 (Engineering Dynamics).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions indicated clearly
2340 ENGINEERING DYNAMICS This course is a study of mechanics concerned with the state of motion of rigid bodies that are subject to the action of forces. The course considers the kinematics and kinetics of motion applied particles and rigid bodies particularly as it relates to engineering applications and design. Topics include rectilinear and curvilinear motions, normal and tangential coordinates, dependent motion, Newton's Laws of Motion, energy and momentum methods. PREREQUISITE: Engineering 1220 and Math 1920 Three hours lecture and three hours lab per week	2340 1340 ENGINEERING MECHANICS II: DYNAMICS This course is a study of mechanics concerned with the state of motion of rigid bodies that are subject to the action of forces. The course considers the kinematics and kinetics of motion applied to particles and rigid bodies particularly as they relate to engineering applications and design. Topics include rectilinear and curvilinear motions, normal and tangential coordinates, dependent motion, Newton's Laws of Motion, energy and momentum methods. PREREQUISITE: Engineering 1220 Mathematics 1920 must be completed or taken concurrently. Engineering 1230 Three hours lecture and three hours lab per week

Rationale for Change: This course is being renumbered as a result of being moved to the first year of the BSc Sustainable Design Engineering Program. The change in the pre-requisite reflects the addition of the new course Engineering 1230 which is the appropriate prerequisite for this course.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: As this course is being moved from Year 2 to Year 1, students currently enrolled in Year 1 will need to be able to take it in their Year 2. To facilitate this, the new prerequisites will need to be waived for these students.

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #21

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 2210 (Engineering Projects I).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2210 ENGINEERING PROJECTS I	2210 ENGINEERING PROJECTS I
This course is the first in a two-course sequence, which	This course is the first in a two-course sequence, which
provides a complete community design experience. In	Combined with Engineering 2220, this course provides a
2210, students go through a self-selecting team and	complete community/industry design project experience. In
project based process in response to request for	2210, students go through a self selecting team and project
proposals prepared by community partners. Students are	based process in response to request for proposals prepared
required to research and analyze the client's situation	by community partners. Emphasis is placed on strong
(internal/external) and develop detailed analytical	technical design knowledge and team dynamics to facilitate
proposals and conceptual design options for their	learning and critical thinking. Students are encouraged to
community partner. Concepts are developed into	develop and apply CAD, economics, sustainability, social
detailed designs and prototypes in Engineering 222. End	justice, and ethics concepts in their own
of term client presentation are used as hold points and to	community/industry design projects. Students are required
provide focus and direction for the second term.	to research and analyze the client's situation
PREREQUISITE: Engineering 1220 with a grade of at	(internal/external) and develop detailed analytical proposals
least 60%	and conceptual design options for their community partner.
Three hours lecture and three hours lab per week	Innovative project management tools and communication skills (team/client) are also introduced to achieve project
	deliverables in an effective manner. Concepts are developed
	into detailed designs and prototypes in Engineering 222. End
	of term client presentation are used as hold points and to
	provide focus and direction for the second term.
	PREREQUISITE: Engineering 1220 with a grade of at least
	60%. Engineering 2310, Engineering 2610 and Engineering
	2810 must be completed or taken concurrently and UPEI
	1010
	Three hours lecture and three hours lab design studio per
	week

Rationale for Change: To more accurately reflect the course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours.

Effective Date: September 2019 Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #22

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 2220 (Engineering Projects II).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2220 ENGINEERING PROJECTS II	2220 ENGINEERING PROJECTS II
A continuation of Engineering 2210, students will	A continuation of Building on the work in Engineering
complete detailed paper designs of their concepts, in-	2210, students will complete detailed paper designs of
depth engineering analysis, as well as develop a	their concepts, in-depth engineering analysis <u>analyses</u> , as
physical model or demonstration to support the	well as and develop a physical model or demonstration
recommended design solution. Working closely with	to support the recommended design solution. Working
community partners and faculty, students will learn	closely with community/industry partners and faculty,
how to manage a complex client oriented project,	students will learn how to manage a complex client
supported by accurate numerical analysis and	oriented project, supported by accurate numerical
professional documentation. Client interaction and	analysis and professional documentation. Client
presentations occur at selected hold points and	interaction and presentations occur at selected hold
demonstration of concept at a public industry expo is	points and demonstration of concept at a public industry
required.	expo is required. Emphasis is placed on hands-on
PREREQUISITE: Engineering 2210 with a grade of at	activities in a team-oriented environment to achieve an
least 60%	optimal working prototype, keeping in view the concepts
Three hours of lecture and three hours of lab per week	of practicality, adoptability, economics and
	sustainability.
	PREREQUISITE: Engineering 2210 with a grade of at
	least 60%
	Three hours of lecture and three hours of lab design
	studio per week

Rationale for Change: To more accurately reflect the existing course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Registrar's Office Approval: Pam McGuigan

AuthorizationDate:Departmental Approval: N/AN/AFaculty/School Approval: N/AN/AFaculty Dean's Approval: Dr. Nicholas KrouglicofOctober 24, 2018Graduate Studies Dean's Approval: N/AN/A

APCC Meeting Date Approval December 20, 2018

November 13, 2018

CALENDAR & CURRICULUM CHANGE

Motion #23

Revision is for a: Pre-requisite Addition/Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To have the change in prerequisite for ENGN 2310 (Strength of Materials) be approved as proposed.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions indicated clearly
ENGN 2310 Strength of Materials	ENGN 2310 Strength of Materials
PREREQUISITE: Engineering 1220 and Math 1920	PREREQUISITE: Engineering 1220 1230 and
	Mathematics 1920.

Rationale for Change: The change in the pre-requisite is due to the new course offering of Engineering 1230 being more closely related in applicable content.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: The ENGN 1230 prerequisite will need to be waived for

students with the existing ENGN 1220 course.

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #24

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

 $\label{lem:decomposition} Department/Program (s)/A cademic \ Regulations: \ \textbf{Bachelor of Science in Sustainable Design}$

Engineering

MOTION: To have the change in course number and description for ENGN 3260 (Materials,

Mechanics, and Manufacturing) be approved as proposed.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
3260 MATERIALS, MECHANICS, AND	3260 2360 MATERIALS, MECHANICS, AND
MANUFACTURING	MANUFACTURING
This course covers the basic theory and practice of	This course covers the basic theory and practice of
modern manufacturing processes in an applied context.	modern manufacturing processes in an applied context.
Students will experience machining, forming, and	Students will experience machining, forming, and
casting of objects using a variety of materials. Material	casting of objects using a variety of materials. Material
properties are investigated and mechanical properties	properties are investigated and mechanical properties
analyzed with consideration for optimal performance.	analyzed with consideration for optimal performance.
Students will produce parts using CAD/CAM/CNC	Students will produce parts using CAD/CAM/CNC
tools and assess part quality to predefined	tools and assess part quality to predefined specifications
specifications and tolerances. Lab periods will include	and tolerances. Lab periods will include hands on
hands-on machining and industrial field tours.	machining and industrial field tours.
PREREQUISITE: Engineering 2310	This course advances the fundamental knowledge of
Three lecture hours and three lab hours per week	materials science to focus on materials processing and
	industrial manufacturing techniques for metals,
	ceramics, polymers, and composites. Knowledge of heat
	treatment and various metallurgical processes, as well as
	cold-working, subtractive and additive manufacturing,
	corrosion and fatigue, will be linked to an evaluation of
	materials properties, materials performance and mechanical behavior, and microstructure. Students will
	apply the materials life cycle and use various tools to
	assess quality and integrity to predefined specifications
	and tolerances. The materials phenomena and
	manufacturing techniques discussed in lecture will be
	demonstrated through experiential labs.
	PREREQUISITE: Engineering 2310
	Three lecture hours and three lab hours per week
	Por Moore and another per work

Rationale for Change: This course is being renumbered as a result of being moved to the second year of the BSc Sustainable Design Engineering Program. The course description is being updated to more accurately reflect the existing course content.

Effective Date: September 2019

Implications for Other Programs: None

CALENDAR & CURRICULUM CHANGE

Motion #24

<u>Impact on Students Currently Enrolled</u>: As this course is being moved from Year 3 to Year 2, students currently enrolled in Year 2 will need to be able to take it in their Year 3.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #25

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To have the change in course title and prerequisite for ENGN 2610 (Thermo Fluids I) be approved as proposed.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions indicated clearly
2610 THERMO FLUIDS I	2610 THERMO FLUIDS I: THERMODYNAMICS
PREREQUISITE: Chemistry 1120 and Mathematics 1920	PREREQUISITE: Chemistry 1120 1110 must be completed or taken concurrently; and Mathematics 1920
Three hours lecture and three lab hours per week	Three hours lecture and three lab hours per week

<u>Rationale for Change</u>: The name change is to better reflect the course content. The prerequisite change is due to Chemistry 1120 no longer being a required course in the Bachelor of Science in Sustainable Design Engineering program.

Effective Date: September 2019

Implications for Other Programs: None.

Impact on Students Currently Enrolled: None.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #26

Revision is for a: Course Title Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To have the change in course title for ENGN 2620 (Thermo Fluids II) be approved as proposed.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2620 THERMO FLUIDS II	2620 THERMO FLUIDS II: FLUID MECHANICS

Rationale for Change: The name change revision is to better reflect the course content.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #27

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To approve the proposed changes for ENGN 2810 (Electric Circuits I).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
2810 ELECTRIC CIRCUITS I	2810 ELECTRIC CIRCUITS I
This course is a study of topics such as Ohm's laws,	This course is a study of topics such as: voltage, current,
Kirchoff's laws, equilibrium, equations, Thevenin's	resistance, power, Ohm's laws, Kirchhoff's laws,
and Norton's theorems, transient circuit sinusoidal	equilibrium, equations, sources, voltage and current
steady state response, complex impedance, complex	division, nodal and mesh analysis, linearity and
frequency, and magnetically coupled circuits,	superposition, Thevenin's and Norton's theorems,
PREREQUISITE: Math 1920 and Physics 1120	transient circuit sinusoidal steady state response,
Three hours lecture and two hours tutorial per week	complex impedance, complex frequency, and
	magnetically coupled circuits, capacitance and
	inductance, RL and RC circuits. Concepts of electric
	charge, force and field are also introduced.
	PREREQUISITE: Mathematics 1920 and Physics 1120
	Three hours lecture and two three hours tutorial lab per
	week

Rationale for Change: The course name and description are being updated to better reflect the existing course content and to include those PHYS 1120 topics which are specifically relevant to engineering. PHYS 1120 is being removed as a program requirement. The prerequisite change is due to Physics 1120 no longer being a required course in the Bachelor of Sustainable Design Engineering program.

Effective Date: September 2019

<u>Implications for Other Programs</u>: PHYS 1120 will no longer be a required course in the engineering program.

<u>Impact on Students Currently Enrolled</u>: Engineering students will no longer be required to take PHYS 1120.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 13, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #28

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 4230 (Technology Management & Entrepreneurship).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
4230 (formerly 4430) TECHNOLOGY	4230 (formerly 4430) 3230 TECHNOLOGY
MANAGEMENT & ENTREPRENEURSHIP	MANAGEMENT & ENTREPRENEURSHIP
This course provides an overview on how to start and	This course provides an overview on how to start and
sustain a technology-oriented company. Topics	sustain a technology-oriented company. Topics
discussed will include the role of technology in society,	discussed will include the role of technology in society,
intellectual property, patents, business plans, financial	intellectual property, patents, business plans <u>feasibility</u>
planning, sources of capital, business structure,	studies, financial planning, sources of capital, business
liability, tax implications, sales, marketing, operational	structure, liability, tax implications, sales, marketing,
and human resource management. This course will be	operational and human resource management. The
taught using problem-based and experiential learning	focus will be on students as engineers-entrepreneurs with
strategies with involvement from real life entrepreneurs	<u>involvement from real life entrepreneurs as motivators</u>
as motivators and facilitators.	and facilitators. This course will be taught using use
Cross-listed with Computer Science 3840 and SSDE-	problem-based and experiential learning strategies to
8230 (Graduate-level project will be defined).	develop new ventures with involvement from real life
PREREQUISITE: Engineering 3710 must be	entrepreneurs as motivators and facilitators. Students
completed or taken concurrently	who produce a well-developed business idea from this
Three lecture hours per week	course may be considered for approval to use this as the
	basis for their final year engineering design project.
	Cross-listed with Computer Science 3840 and SSDE-
	8230 (Graduate level project will be defined).
	PREREQUISITE: Engineering 3710 must be completed
	or taken concurrently
	Three lecture hours per week

Rationale for Change: This course is being renumbered as a result of being moved to the third year of the BSc Sustainable Design Engineering Program.

Effective Date: September 2019

<u>Implications for Other Programs</u>: As this course is cross-listed with Computer Science 3840, changes proposed here should also be made in the calendar description for Computer Science 3840.

<u>Impact on Students Currently Enrolled</u>: As this course is being moved from Year 4 to Year 3, students currently enrolled in Year 3 will need to be able to take it in their Year 4.

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 14, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #29

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To approve the proposed changes for ENGN 3630 (Thermo Fluids III with Heat Transfer).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	-
3630 THERMOFLUIDS III WITH HEAT	3630 THERMO FLUIDS III: WITH HEAT
TRANSFER	TRANSFER AND THERMODYNAMIC CYCLES
This course advances student knowledge across the	This course advances student knowledge across the
related fields of thermodynamics, fluid mechanics, and	related fields of thermodynamics, fluid mechanics, and
heat transfer. Generalized relationships are reviewed	heat transfer with an emphasis on engineering
including ideal and real gas effects, gas tables,	applications. Generalized relationships are reviewed
equations of state and generalized compressibility,	including ideal and real gas effects, gas tables, equations
enthalpy, and entropy charts. Applied experimentation	of state and generalized compressibility, enthalpy, and
with refrigerators, air conditioning and heat pumps is	entropy charts. Applied experimentation with
used to further enhance focus on conversion efficiency	refrigerators, air conditioning and heat pumps is used to
and performance. Flow in constant area ducts with	further enhance focus on conversion efficiency and
friction and heat exchange, steady and unsteady heat	performance. Heat transfer topics include: flows with
conduction, convection and radiation phenomena with	Flow in constant area ducts with friction and heat
application to selected problems in several fields of	exchange, steady and unsteady heat conduction,
engineering is also introduced.	convection and radiation phenomena; and heat
PREREQUISITE: Engineering 2610	exchanger analysis, Thermodynamic cycles topics
Three lecture hours and three lab hours per week	include: internal combustion as it applies to power
	generation; air standard and vapour cycles; gas turbines;
	jet engine; and steam power plants. with application to
	selected problems in several fields of engineering is also
	introduced.
	PREREQUISITE: Engineering 2610-2620
	Three lecture hours and three lab hours per week

<u>Rationale for Change</u>: The name change and the course description change are to better reflect the existing course content. The prerequisite change is due to Engineering 2620 becoming a required course in the Bachelor of Science in Sustainable Design Engineering program.

Effective Date: September 2019 Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 14, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #30

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 3710 (Project-Based Professional Practice I).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions	
	indicated clearly	
3710 PROJECT-BASED PROFESSIONAL	3710 PROJECT-BASED PROFESSIONAL PRACTICE	
PRACTICE I	I	
This course is the first of a four-course project-based	Building on the work in previous design courses, tThis	
stream that simulates the practice of a professional	course is the first of a four course project based stream that	
engineer. Students working closely with faculty	series of upper-year courses which simulates the practice of	
supervisors and industry partners will experience an	a professional engineer. Following a design-build-test	
actual research and development project where they are	approach, sStudents working in a team-based environment	
expected to research the problem and develop a highly	to deliver design solutions to real-world industrial clients.	
technical solution that is not patented or commercially	closely with faculty supervisors and industry partners will	
available. Following best practices in project	experience an actual research and development project	
management, students will develop detailed project	where they are expected to research the problem and	
proposals, conceptual designs, and proof of concepts	develop a highly technical solution that is not patented or	
within the ethical and safety considerations that are	commercially available. Following best practices in project	
fundamental to the profession. Concepts are further	management and sustainability, students will develop	
developed into operational prototypes during the	detailed project proposals, conceptual designs, and proofs	
second semester.	of concepts within the ethical and safety considerations	
PREREQUISITE: Engineering 2220 with a grade of at	that are fundamental to the profession. Concepts are	
least 60%, Engineering 2310, Engineering 2340,	further developed into operational prototypes during the	
Engineering 2610, and Engineering 2810	second semester in Engineering 3720.	
Six lecture hours and six lab hours per week	PREREQUISITE: Engineering 2220 with a grade of at	
	least 60%, Engineering 2310 2360, Engineering 2340,	
	1340, Engineering 2610 2620, and Engineering 2810 2830. Six lecture hours and six lab hours of design studio per	
	week	
	WCCK	

Rationale for Change: To more accurately reflect the existing course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours. Prerequisite changes reflect changes to other course numbers and course sequencing.

Impact on Students Currently Enrolled: None

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #31

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Sustainable Design Engineering

MOTION: To approve the proposed changes for ENGN 3720 (Project-Based Professional Practice II).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
3720 PROJECT-BASED PROFESSIONAL	3720 PROJECT-BASED PROFESSIONAL
PRACTICE II	PRACTICE II
A continuation of Engineering 3710, students will	Continuing the work in A continuation of Engineering
complete detailed designs of their concepts, build full-	3710 and working closely with their external clients,
scale operational prototypes (where possible) and test	students will complete detailed designs of their concepts,
them in a controlled laboratory and industrial	build full-scale operational prototypes (where possible);
environment (where possible). Working closely with	and carry out testing and validation of solutions test
faculty and industry partners, students will prepare	them in a controlled laboratory and <u>/ or</u> industrial
patent applications and develop commercialization	environments (where possible), and present their final
plans for the products or processes developed.	design solutions to their clients. Working closely with
Demonstration of concept during an end of year	faculty and industry partners, students will prepare
industry expo is required.	patent applications and develop commercialization
PREREQUISITE: Engineering 3710 with a grade of at	plans for the products or processes developed.
least 60%	Demonstration of concept during an end of year
Six lecture hours and six lab hours per week	industry expo is required.
	PREREQUISITE: Engineering 3710 with a grade of at
	least 60%
	Six lecture hours and six lab hours design studio per
	week

<u>Rationale for Change</u>: To more accurately reflect the existing course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #32

Revision is for a: Pre-requisite Addition/Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To approve the prerequisite change for ENGN 4310 (Advanced Fabrication

Techniques and Computer-Integrated Manufacturing).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined
	and deletions indicated clearly
ENGN 4310 Advanced Fabrication	ENGN 4310 Advanced Fabrication
Techniques and Computer-Integrated	Techniques and Computer-Integrated
Manufacturing	Manufacturing
PREREQUISITES: Engineering 3340, 3440,	PREREQUISITES: Engineering 3340, 3440, or
or 3540; and Engineering 3260	3540; and Engineering 3260 2360

Rationale for Change: The change in prerequisites is a result of Engineering 3260 being

renumbered to Engineering 2360

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #33

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To have the change in the course title and course description of ENGN 4550 (Chemical and Biological Processes) be approved as proposed.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
4550 (formerly 3590) CHEMICAL AND	4550 (formerly 3590) BIOTECHNOLOGICAL
BIOLOGICAL PROCESSES	CHEMICAL AND BIOLOGICAL PROCESSES
Processes used in the chemical and biological	Processes used in the chemical and biological industries,
industries, which emphasize underlying physical,	which emphasize underlying physical, chemical, and
chemical, and biological principles, will be introduced.	biological principles, will be introduced. By carrying out
By carrying out the mass and energy balances, student	the mass and energy balances, student will conduct design
will conduct design and economic assessment of major	and economic assessment of major chemical and
chemical and biological engineering processes.	biological engineering processes. Introduction to
Introduction to modelling of chemical processes will be	modelling of chemical processes will be covered in this
covered in this course.	course.
PREREQUISITES: Engineering 3340, 3440, or 3540	The basic topics covered in this course may include
Three hours of lecture and three hours of lab per week	<u>fermentation</u> , <u>engineering of reactor</u> , <u>natural products</u>
	purification and their applications in biotechnology sector.
	The students will learn basic concepts of chemical and
	biochemical techniques required for the development and
	purification of materials in biotechnological, biochemical
	and pharmaceutical industries. The design of fermenters
	and biological reactors and their modification to improve
	the industrial applications will be discussed. The design of
	reactors in context of mass and energy balances will be
	evaluated and downstream unit processes involved in
	product recovery will be presented.
	PREREQUISITES: Engineering 3340, 3440, or 3540
	Three hours of lecture and three hours of lab per week

Rationale for Change: The course name and description are being updated to more accurately reflect the existing course content.

Impact on Students Currently Enrolled: None

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #34

Revision is for a: Course Description Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: **Bachelor of Science Sustainable Design Engineering MOTION:** To approve the proposed changes for ENGN 4710 (Project-Based Professional Practice III).

ı	Reproduction of Current Calendar Entry	
ı	· · · · · · · · · · · · · · · · · · ·	
ı		
п		

<u>Proposed revision with changes underlined and deletions indicated clearly</u>

4710 PROJECT-BASED PROFESSIONAL PRACTICE III

This course builds on concepts and knowledge learned throughout the third year of the program. Fourth-year students will assume a leadership role in dual cohort (third and fourth year) project teams. Working closely with industry partners and faculty supervisors, students must develop innovative and technology-based solutions with a high level of technical sophistication. Lessons learned from previous project experiences must be applied and students will rely heavily on knowledge content and skills acquired through their engineering science courses. Lab hours will include professional development exercises in isolation of, and preparation for industry projects. Design concepts are further developed into operational prototypes during the second semester. As with all project-based courses, professional responsibility/accountability and an appreciation for best practices and ethical behaviour must be demonstrated.

PREREQUISITE: Engineering 3720 with a grade of at least 60%, Engineering 3270, Engineering 3630, Engineering 3820. Engineering 3260 must be completed or taken concurrently. Engineering 4210 must be taken concurrently.

Six lecture hours and six lab hours per week

4710 PROJECT-BASED PROFESSIONAL PRACTICE III

This course builds on concepts and knowledge learned throughout the third year of the program. Fourth-year students will assume a leadership role in dual cohort (third and fourth year) project teams. Working closely with industry partners and faculty supervisors, students must develop innovative and technology-based solutions with a high level of technical sophistication. Lessons learned from previous project experiences must be applied and students will rely heavily on knowledge content and skills acquired through their engineering science courses. Lab hours will include professional development exercises in isolation of, and preparation for industry projects. Design concepts are further developed into operational prototypes during the second semester. As with all project-based courses, professional responsibility/accountability and an appreciation for best practices and ethical behaviour must be demonstrated.

This course engages students in implementing the engineering design process and using product management and development tools. Student design teams work closely with industry partners to develop innovative and sustainable solutions to meet global challenges. Additionally, this course emphasizes the role of analysis, simulation and modeling in engineering design. Students further develop their professional and technical skills through activity-, project- and problembased learning. Through the application of appropriate frameworks to their projects, students gain an appreciation for best practices and ethical behavior as well as an awareness of the role of engineers in society, in particular the concepts of engineering leadership and sustainable design.

PREREQUISITE: Engineering 3720 with a grade of at least 60%, Engineering 3270, Engineering 3630, Engineering 3820, and Engineering 3230. Engineering 3260 must be completed or taken concurrently. Engineering 4210 must be taken concurrently. Six lecture hours and six lab design studio hours per week

CALENDAR & CURRICULUM CHANGE

Motion #34

<u>Rationale for Change</u>: To more accurately reflect the existing course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours. Prerequisite changes reflect changes to other course numbers and course sequencing.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #35

Revision is for a: Course Description Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design

Engineering

MOTION: To approve the proposed changes for ENGN 4720 (Project-Based Professional Practice IV).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
4720 PROJECT-BASED PROFESSIONAL	4720 PROJECT-BASED PROFESSIONAL
PRACTICE IV	PRACTICE IV
A continuation of Engineering 4710, this course is the	A continuation of Engineering 4710, this course is the
capstone and culmination of all that has been learned	capstone and culmination of all that has been learned in
in the program. Students will complete detailed designs	the program. Students will complete detailed designs of
of their concepts, build full-scale operational prototypes	their concepts, build full scale operational prototypes
(where possible) and test them in a fully operational	(where possible) and test them in a fully operational
industrial involvement. Working closely with industry	industrial involvement. Working closely with industry
clients, students will prepare patents and attempt	clients, students will prepare patents and attempt
commercialization of products or processes developed.	commercialization of products or processes developed.
Students are exposed to all aspects of project	Students are exposed to all aspects of project
management, engineering economics, law, ethics, and	management, engineering economics, law, ethics, and
safety; and capability outcomes are closely monitored	safety; and capability outcomes are closely monitored in
in this class. Demonstration of concept during an end	this class. Demonstration of concept during an end of
of year industry expo is required.	year industry expo is required.
PREREQUISITE: Engineering 4710 with a grade of at	This course engages students in implementing the
least 60%	engineering design process and using product
Six hours of lecture and six hours of lab per week	management and development tools. Student design
	teams work closely with industry partners to develop
	innovative and sustainable solutions to meet global
	challenges. Additionally, this course emphasizes the role
	of prototyping and manufacturing, testing and
	verification, design of experiments, optimization and
	<u>feasibility</u> . Students further develop their professional
	and technical skills through activity-, project- and
	problem-based learning. Through the application of
	appropriate frameworks to their projects, students gain
	an appreciation for best practices and ethical behavior as
	well as an awareness the of role of engineers in society, in particular the concepts of engineering leadership and
	sustainable design.
	PREREQUISITE: Engineering 4710 with a grade of at
	least 60%
	Six hours of lecture and six hours of lab design studio
	per week
	per week

<u>Rationale for Change</u>: To more accurately reflect the course content. The change in wording from "lab" to "design studio" reflects the actual purpose of the scheduled hours.

Effective Date: September 2019

CALENDAR & CURRICULUM CHANGE

Motion #35

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Authorization	Date:
---------------	-------

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #36

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: **Bachelor of Science in Sustainable Design Engineering**

MOTION: To revise the calendar entry for admission criteria for high school applicants to the Bachelor of Science in Sustainable Design Engineering degree program.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
Bachelor of Science in Engineering (Sustainable	To appear under Professional Degree Programs section:
Design Engineering)	Bachelor of Science in Engineering (Sustainable
	Design Engineering)
High School Applicants:	High School Applicants:
High school applicants wishing to pursue engineering	High school applicants wishing to pursue engineering at
at UPEI apply to the Faculty of Science and indicate a	UPEI apply to the Faculty of Science and indicate a
preference for engineering. Minimum academic	preference for engineering. Minimum academic
requirements for admission to the Engineering Degree	requirements for admission to the Engineering Degree
include an overall average of 70% in Grade 12	include an overall average of 70% in Grade 12 Academic
Academic English, Mathematics, Chemistry, Physics	English, Mathematics, Chemistry, Physics and one other
and one other Grade 12 academic subject with no	Grade 12 academic subject with no grade lower than
grade lower than 65%. Note: High school applicants should apply by March 1 to be considered for entrance	65%. Note: High school applicants should apply by March 1 to be considered for entrance scholarships.
scholarships.	water 1 to be considered for entrance scholarships.
senouromps.	Successful completion of Grade 12 examinations in a
	University Preparatory Program with an overall average
	of at least 70% in the following courses, with no grade
	less than 65% and with at least 70% in Grade 12
	academic Mathematics:
	• Grade 12 academic English
	• Grade 12 academic Mathematics
	• Two additional Grade 12 academic Science subjects, chosen from Biology, Chemistry or Physics
	One additional Grade 12 academic course
	One additional Grade 12 academic course
	The prerequisite for Chemistry 1110 (a required course
	in the engineering program) is Grade 12 academic
	Chemistry or UPEI Chemistry 0001.
	Note: High school applicants should apply by March 1
	to be considered for entrance scholarships.
	to be considered for entrance sentialiships.

Rationale for Change: The Faculty of Sustainable Design Engineering wants to ensure that its admission policy is free of as many entry barriers as possible while, at the same time, ensuring that an appropriate entry standard is being met by all students and as such request an immediate effective date. Further, the Faculty believes that Grade 12 academic Mathematics is one of the key predictors of student success in the program. To this end, then, Grade 12 academic Chemistry and Grade 12 academic Physics are being

December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #36

removed as entry requirements for the program and the grade requirement for Grade 12 academic Mathematics is being increased from 65% to 70%.

Effective Date: Immediately

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

AuthorizationDate:Departmental Approval: N/AN/AFaculty/School Approval: N/AN/AFaculty Dean's Approval: Dr. Nicholas KrouglicofOctober 24, 2018Graduate Studies Dean's Approval: N/AN/ARegistrar's Office Approval: Pam McGuiganNovember 15, 2018

APCC Meeting Date Approval

CALENDAR & CURRICULUM CHANGE

Motion #37

Revision is for a: Calendar Entry Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Bachelor of Science in Sustainable Design **Engineering**

MOTION: To revise the calendar entry for the Bachelor of Science in Sustainable Design

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions indicated clearly
Faculty of Sustainable Design Engineering http://upei.ca/engineering	Faculty of Sustainable Design Engineering http://upei.ca/engineering
Overview The Faculty of Sustainable Design Engineering at UPEI offers a progressive and innovative four-year Bachelor of Science in Engineering (Sustainable Design Engineering) degree which recognizes the need for a broad and balanced engineering education. The program follows current trends in engineering education and focuses on student outcomes. Small class sizes within an activity-based learning environment allow faculty and staff to be student- centric and to provide specific and timely input to individual students.	Overview The Faculty of Sustainable Design Engineering at UPEI offers a progressive and innovative four-year Bachelor of Science in Engineering (Sustainable Design Engineering) degree which recognizes the need for a broad and balanced engineering education. The program follows current trends in engineering education and focuses on student outcomes. Small class sizes within an activity-based learning environment allow faculty and staff to be student-centric and to provide specific and timely input to individual students.
Students are exposed to a broad base of knowledge and skills in engineering science, natural science, mathematics, and complementary studies in concert with an applied project-based design stream simulating the engineering profession. Students entering the degree program will be actively engaged in the profession of engineering from day one, providing creative and sustainable solutions to society's problems. The degree program is designed to provide a highly flexible learning environment that is responsive to the dynamic needs of students and the industries that employ them.	Students are exposed to a broad base of knowledge and skills in engineering science, natural science, mathematics, and complementary studies in concert with an applied project-based design stream simulating the engineering profession. Students entering the degree program will be actively engaged in the profession of engineering from day one, providing creative and sustainable solutions to society's problems. The degree program is designed to provide a highly flexible learning environment that is responsive to the dynamic needs of students and the industries that employ them. In addition to fundamental science, engineering science

In addition to fundamental science, engineering science and mathematics courses, students are required to develop skills in engineering design, communication, analysis, project management, professional ethics and more. With a solid grounding in these fundamentals, students in Program Years 3 and 4 can enhance their technical knowledge by choosing courses from among three engineering focus areas: Mechatronics (MT), Sustainable Energy (SE), or Bioresources (BR).

Engineered by Design

and mathematics courses, students are required to develop skills in engineering design, communication, analysis, project management, professional ethics and more. With a solid grounding in these fundamentals, students in Program Years 3 and 4 can enhance their technical knowledge by choosing courses from among three engineering focus areas: Mechatronics (MT), Sustainable Energy (SE), or Bioresources (BR).

Engineered by Design

It is increasingly recognized that understanding basic

CALENDAR & CURRICULUM CHANGE

Motion #37

Reproduction of Current Calendar Entry

student's ability to think. This fundamental

to ever-changing and complex situations is

It is increasingly recognized that understanding basic science and mathematics are only two of the many areas that are essential to professional engineering practice. Engineering students in this program must make responsible decisions based on good judgment and an ability to justify decisions within a structured analytical framework. Based on this generalist philosophy, this program is designed to develop a requirement of engineers to think critically in response accomplished through a design stream core which relies heavily on inquiry-based learning supported by traditional lecture-based knowledge. The progression in complex thinking skills occurs over the duration of the

An integrated, project-based professional practice (PBPP) stream provides an applied foundation where students work on real community and industry-based projects in every semester of their program. Traditional content courses are delivered via an integrated and timely approach with the PBPP courses so that professional practice skills are developed in a simulated workplace environment. This program emphasizes design as an essential element of engineering as reflected in the Community Design Program (Year 1), and the Junior Design (Year 2) and Senior Design (Years 3 and 4) Clinics.

four-year program and beyond through appreciation of lifelong learning and professional development.

The following core design courses must be taken in succession to support the students' developing skills.

Community Design Program (Program Year 1) 1. Engineering 1210—Engineering Communication

2. Engineering 1220—Engineering Analysis

Junior Design Clinic (Program Year 2)

- 3. Engineering 2210—Engineering Projects I
- 4. Engineering 2220—Engineering Projects II

Senior Design Clinic (Program Years 3 and 4)

Proposed revision with changes underlined and deletions indicated clearly

science and mathematics are only two of the many areas that are essential to professional engineering practice. Engineering students in this program must make responsible decisions based on good judgment and an ability to justify decisions within a structured analytical framework. Based on this generalist philosophy, this program is designed to develop a student's ability to think. This fundamental requirement of engineers to think critically in response to ever-changing and complex situations is accomplished through a design stream core which relies heavily on inquiry-based learning supported by traditional lecture-based knowledge. The progression in complex thinking skills occurs over the duration of the four-year program and beyond through appreciation of lifelong learning and professional development.

An integrated, stream of project-based design clinic courses through all four-years of the program provides students with the opportunity to develop knowledge and skills through working project-based professional practice (PBPP) stream provides an applied foundation where students work on real community and industrybased projects. in every semester of their program. Traditional content courses are delivered via an integrated and timely approach with the PBPP courses so that professional practice skills are developed in a simulated workplace environment. This program emphasizes design as an essential element of engineering as reflected in the Community Design Program (Year 1), and the Junior Design (Year 2) and Senior Design (Years 3 and 4) Clinics.

The following core design courses must be taken in succession to support the students' developing skills.

Community Design Program (Program Year 1)

- 1. Engineering 1210—Engineering Communications
- 2. Engineering 1220—Engineering Analysis

Junior Design Clinic (Program Year 2)

- 3. Engineering 2210—Engineering Projects I
- 4. Engineering 2220—Engineering Projects II

Senior Design Clinics (Program Years 3 and 4)

5. Engineering 3710—Project-Based Professional

CALENDAR & CURRICULUM CHANGE

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
reproduction of Current Calcindar Entry	indicated clearly
	indicated clearly
5. Engineering 3710—Project-Based Professional	Practice I
Practice I	6. Engineering 3720—Project-Based Professional
6. Engineering 3720—Project-Based Professional	Practice II
Practice II	7. Engineering 4710—Project-Based Professional
7. Engineering 4710—Project-Based Professional	Practice III
Practice III	8. Engineering 4720—Project-Based Professional
	Practice IV
8. Engineering 4720—Project-Based Professional Practice IV	Practice IV
Practice IV	Sustainable Design Engineering Degree
Sustainable Design Engineering Degree	Sustamable Design Engineering Degree
Sustamable Design Engineering Degree	Students are strongly encouraged to most with a faculty
Ct. 1 t	Students are strongly encouraged to meet with a faculty
Students are strongly encouraged to meet with a faculty	advisor early in the program to review course selection.
advisor early in the program to review course selection.	The following is the course sequence for the four-year
The following is the course sequence for the four-year	degree: A five-year degree sequence is also available.
degree: Please note that a 60% minimum grade is	Please note that a 60% minimum grade is required in
required in each of the following courses to proceed to	each of the following courses to proceed to the next
the next course: Engineering 1210, 1220, 2210, 2220,	course: Engineering 1210, 1220, 2210, 2220, 3710, 3720
3710, 3720 and 4710.	and 4710.
Dragram Var 1 Torm 1	Drogram Vaar 1 Torm 1
Program Year 1—Term 1	Program Year 1—Term 1
Engineering 1210—Engineering Communications	Engineering 1210—Engineering Communications
Engineering 1310—Computer Programming with	Engineering 1230 – Engineering Mechanics I: Statics
Engineering Applications	Engineering 1310—Computer Programming with
Physics 1110—General Physics I	Engineering Applications
Chemistry 1110—General Chemistry I	Engineering 1410 – Sustainability in Engineering Design
Mathematics 1910—Single Variable Calculus I	Physics 1110—General Physics I
UPEI 1010—Writing Studies (or UPEI 1020, or UPEI	Chemistry 1110—General Chemistry I
1030)	Mathematics 1910—Single Variable Calculus I
1030)	UPEI 1010—Writing Studies (or UPEI 1020, or UPEI
Program Year 1—Term 2	1030)
1 logram 1 car 1—1 cm 2	1030)
Engineering 1220—Engineering Analysis	Program Year 1—Term 2
Engineering 1520—Engineering and the Biosphere	-
Physics 1120—General Physics II	Engineering 1220—Engineering Analysis
Chemistry 1120—General Chemistry II	Engineering 1250 – Materials Science
Mathematics 1920—Single Variable Calculus II	Engineering 1310 – Computer Programming with
Statistics 1210 (formerly 2210)—Introductory Statistics	Engineering Applications
- ()	Engineering 1340 – Engineering Mechanics II:
Program Year 2—Term 3	Dynamics
Engineering 2210—Engineering Projects I	Engineering 1520 Engineering and the Biosphere
Engineering 2310—Strength of Materials	Physics 1120 General Physics II
Engineering 2610—Thermo Fluids I	Chemistry 1120—General Chemistry II
Engineering 2810—Electric Circuits I	Mathematics 1920—Single Variable Calculus II
Mathematics 2610—Linear Algebra	Statistics 1210 (formerly 2210) Introductory Statistics
Mathematics 2910—Efficial Algebra Mathematics 2910—Multivariable and Vector Calculus	One (1) humanities elective (courses typically offered by
indicated 2/10 indication and rector calculus	the Faculty of Arts, except language acquisition or
Program Year 2—Term 4	economics courses)
110grain 1 cai 2 1 cini 4	cconomics courses)

CALENDAR & CURRICULUM CHANGE

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
F	D 77 0 T
Engineering 2220—Engineering Projects II	Program Year 2—Term 3
Engineering 2340—Engineering Dynamics	Engineering 2110 Statistics for Engineering
Mathematics 3010—Differential Equations Two (2) technical electives*	Engineering 2110 – Statistics for Engineering Applications
One (1) humanities electives (courses typically offered	Engineering 2210—Engineering Projects I
by the Faculty of Arts, except basic languages	Engineering 2310—Strength of Materials
and economics)	Engineering 2610—Thermo Fluids I: Thermodynamics
and economics)	Engineering 2810—Electric Circuits I
Program Year 3—Term 5	Mathematics 2610 Linear Algebra
0	Mathematics 2910—Multivariable and Vector Calculus
Engineering 3710—Project-Based Professional Practice	
I	Program Year 2—Term 4
Engineering 3220—Engineering Measurements	
Engineering 3260—Materials, Mechanics, and	Engineering 2220—Engineering Projects II
Manufacturing	Engineering 2340 Engineering Dynamics
Engineering 3810—Systems Engineering	Engineering 2360—Materials, Mechanics, and
One (1) introductory engineering focus area elective**	Manufacturing
Dragues Vaca 2 Torres 6	Engineering 2620 – Thermo Fluids II: Fluid Mechanics Engineering 2830 – Digital Logic Design
Program Year 3—Term 6	Mathematics 2610 – Linear Algebra
Engineering 3720—Project-Based Professional Practice	Mathematics 3010—Differential Equations
II	Two (2) technical electives*
Engineering 3270—Machines & Automatic Controls	One (1) humanities elective (courses typically offered by
Engineering 3630—Thermofluids III with Heat	the Faculty of Arts, except basic languages
Transfer	and economics)
Engineering 3820—System Dynamics with Simulation	
One (1) engineering focus area elective**	Program Year 3—Term 5
D W 4 W 5	F
Program Year 4—Term 7	Engineering 3220 – Engineering Measurements
Empire against 4710 Project Deced Professional Prostice	Engineering 3630 – Thermo Fluids III: Heat Transfer and Thermodynamic Cycles
Engineering 4710—Project-Based Professional Practice	Engineering 3260 Materials, Mechanics, and
Engineering 4210—Facilitated Study & Experimental	Manufacturing Manufacturing
Practice	Engineering 3710—Project-Based Professional Practice I
Engineering 4230—Technology Management &	Engineering 3810—Systems Engineering
Entrepreneurship	One (1) introductory engineering focus area elective**
One (1) engineering focus area elective**	One (1) introductory engineering focus area elective*
Program Year 4—Term 8	Program Year 3—Term 6
Engineering 4720 Project Posed Professional Prostice	Engineering 2020 Technology Management and
Engineering 4720—Project-Based Professional Practice IV	Engineering 3230 – Technology Management and Entrepreneurship
One (1) engineering focus area elective**	Engineering 3270—Machines & Automatic Controls
One (1) science or business elective	Engineering 3630 Thermofluids III with Heat Transfer
One (1) humanities elective (courses typically offered	Engineering 3720—Project-Based Professional Practice
by the Faculty of Arts, except basic languages and	II
economics)	Engineering 3820—System Dynamics with Simulation

CALENDAR & CURRICULUM CHANGE

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	One (1) engineering focus area elective**
Students should consult with a faculty advisor before	One (1) engineering focus area elective*
choosing electives.	
	Program Year 4—Term 7
*Any two of the following technical electives may be	
taken in Program Year 2 – Term 4:	Engineering 4210—Facilitated Study & Experimental
_	Practice
• Engineering 2120—Geology for Engineers	Engineering 4230 Technology Management &
• Engineering 2240—Introduction to Structural	Entrepreneurship
Engineering	Engineering 4710—Project-Based Professional Practice
• Engineering 2250—Materials Science	III
• Engineering 2350—Kinematics and Dynamics of	Engineering 4850 – Computational Methods for
Machines	Engineering Design
• Engineering 2420—Fundamentals of Environmental	One (1) engineering focus area elective**
Engineering	One (1) engineering focus area elective*
• Engineering 2430—Engineering Economics	
• Engineering 2520—Fundamentals of Process	Program Year 4—Term 8
Engineering	
• Engineering 2620—Thermo Fluids II	Engineering 4720—Project-Based Professional Practice
• Engineering 2820—Electric Circuits II	IV
Computer Science 1610—Digital Systems	One (1) engineering focus area elective**
	One (1) engineering focus area elective*
** The first engineering focus area elective (Program	One (1) science or business elective
Year 3, Term 5) must be the introductory elective	One (1) humanities elective (courses typically offered by
course in either mechatronics, sustainable energy, or	the Faculty of Arts, except basic languages acquisition
bio-resources. The remaining engineering focus area	and
electives in Terms 6, 7 and 8 can be selected from any	or economics courses)
of the following courses in any of the three focus areas.	
At least one of the engineering focus area electives	Students should consult with a faculty advisor before
must be at the 4000 level.	choosing electives.
• Engineering 3370 - Mechatronic System Integration	
and Interface Design	*Any two of the following technical electives may be
• Engineering 3380 - Real-time Embedded Systems	taken in Program Year 2 Term 4:
• Engineering 3390 - Introduction to Mechatronic	* Engineering 2120 Geology for Engineers
Computer-Aided Product Development, Modelling	• Engineering 2240—Introduction to Structural
and Simulation	Engineering • Engineering 2250 Materials Science
• Engineering 3450 - Wind and Water Power	Engineering 2250 Materials Science Engineering 2350 Kinematics and Dynamics of
• Engineering 3460 - Solar Energy and Electricity	Machines Machines
Storage Figure 2400 Chemical Energy Conversion	<u>*Engineering 2420 Fundamentals of Environmental</u>
• Engineering 3490 - Chemical Energy Conversion	
Engineering 3570 - Engineering Applications of Biological Materials	Engineering 2430 Engineering Economics
Biological Materials • Engineering 3580 - Soil Mechanics	Engineering 2430 Engineering Economics Engineering 2520 Fundamentals of Process
	Computer ocience roro Digital dystems
 Engineering 3850 - Engineering Applications of Numerical Methods Engineering 4310 - Advanced Fabrication Techniques and Computer-Integrated Manufacturing Engineering 4320 - Control System Design 	Engineering Engineering 2620 Thermo Fluids II Engineering 2820 Electric Circuits II Computer Science 1610 Digital Systems

CALENDAR & CURRICULUM CHANGE

	·
Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	•
• Engineering 4330 - Innovations in Biomedical	*Four engineering focus area electives are required. The
Engineering	first of these engineering focus area elective (Program
• Engineering 4350 - Advanced Robotic Dynamics and	Year 3, Term 5) must be the introductory elective course
Control	in either mechatronics, sustainable energy, or bio-
• Engineering 4370 - Fluid Power Control	resources.:
• Engineering 4410 - Macro Energy Systems	1000 0100011
• Engineering 4440 - Advanced Energy Storage	• Engineering 3340 – Introduction to Mechatronics
• Engineering 4450 - Fluid Loads on Energy Structures	Engineering Engineering
• Engineering 4470 - Micro Grids	• Engineering 3440 – Introduction to Sustainable Energy
• Engineering 4510 - Geoinformatics in Bioresources	Engineering S440 Introduction to Sustainable Energy
• Engineering 4530 - Fundamentals of Agricultural	• Engineering 3540 – Introduction to Bioresources
Machinery	Engineering 5540 Introduction to Bioresources Engineering
• Engineering 4550 - Chemical and Biological	Liighteinig
Processes	The remaining three engineering focus area electives, in
Tiocesses	Terms 6, 7 and 8, can be selected from any of the
* Technical Electives (Program Year 2, Term 4)	following courses in any of the three focus areas. At
Any two of the following technical electives may be	lease least one of the engineering focus area electives
taken in Program Year 2, Term 4:	must be at the 4000 level.
Engineering 2120—Geology for Engineers	must be at the 4000 level.
Engineering 2240—Introduction to Structural	• Engineering 3370 - Mechatronic System Integration
Engineering 2240—Introduction to Structural Engineering	and Interface Design
Engineering 2250—Materials Science	Engineering 3380 - Real-time Embedded Systems
Engineering 2350—Kinematics and Dynamics of	• Engineering 3390 - Introduction to Mechatronic
Machines	Computer-Aided Product Development, Modelling
Engineering 2420—Fundamentals of Environmental	and Simulation
Engineering 2420—Fundamentals of Environmental	• Engineering 3450 - Wind and Water Power
Engineering 2430—Engineering Economics	• Engineering 3460 - Solar Energy and Electricity
Engineering 2520—Fundamentals of Process	Storage
Engineering 2320—Fundamentals of Frocess Engineering	• Engineering 3490 - Chemical Energy Conversion
Engineering 2620—Thermo Fluids II	• Engineering 3570 - Engineering Applications of
Engineering 2820—Electric Circuits II	Biological Materials
Computer Science 1610—Digital Systems	• Engineering 3580 - Soil Mechanics
**Engineering Focus Area Electives (Program Years 3	• Engineering 3850 - Engineering Applications of
and 4)	Numerical Methods
and 4)	• Engineering 4310 - Advanced Fabrication Techniques
Mechatronics focus area	and Computer-Integrated Manufacturing
Fall Semester	• Engineering 4320 - Control System Design
Tan Schiester	• Engineering 4320 - Control System Design
Engineering 3340—Introduction to Mechatronics	Engineering 4550 - Innovations in Biomedical
Engineering 5540—Introduction to Mechatronics Engineering	• Engineering 4350 - Advanced Robotic Dynamics and
Engineering 4310—Advanced Fabrication Techniques	Control
and Computer-Integrated Manufacturing	• Engineering 4370 - Fluid Power Control
Engineering 4330— Innovations in Biomedical	• Engineering 4470 - Fluid Fower Control • Engineering 4410 - Macro Energy Systems
Engineering 4550— Innovations in Biomedical	• Engineering 4440 - Advanced Energy Systems
Engineering	• Engineering 4440 - Advanced Energy Storage • Engineering 4450 - Fluid Loads on Energy Structures
Winter Semester	• Engineering 4450 - Fluid Loads on Energy Structures • Engineering 4470 - Micro Grids
WHITE SCHIESIEI	• Engineering 4470 - Micro Grids • Engineering 4510 - Geoinformatics in Bioresources
Engineering 2270 Maghatrania System Internation	
Engineering 3370—Mechatronic System Integration	Engineering 4530 - Fundamentals of Agricultural

CALENDAR & CURRICULUM CHANGE

Motion #37

Description (Outside Feb.	D
Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
and Interface Design Engineering 3390—Introduction to Mechatronic Computer-Aided Product Development, Modelling and Simulation Engineering 3850—Engineering Applications of Numerical Methods Engineering 4350—Advanced Robotic Dynamics and Control Sustainable Energy focus area Fall Semester Engineering 3440—Introduction to Sustainable Energy Engineering Engineering Engineering Winter Semester Engineering 3490—Chemical Energy Conversion Engineering 3490—Chemical Energy Conversion	Machinery • Engineering 4550 - Chemical and Biological Biotechnological Processes • Engineering 4830 – Biomedical Signal Processing * Technical Electives (Program Year 2, Term 4) Any two of the following technical electives may be taken in Program Year 2, Term 4: Engineering 2120 — Geology for Engineers Engineering 2240 — Introduction to Structural Engineering Engineering 2350 — Materials Science Engineering 2350 — Kinematics and Dynamics of Machines Engineering 2420 — Fundamentals of Environmental Engineering Engineering 2430 — Engineering Economics Engineering 2520 — Fundamentals of Process Engineering 2520 — Fundamentals of Process Engineering
Engineering 3850—Engineering Applications of Numerical Methods Bioresources focus area	Engineering 2620 — Thermo Fluids II Engineering 2820 — Electric Circuits II Computer Science 1610 — Digital Systems **Engineering Focus Area Electives (Program Years 3
Fall Semester	and 4)
Engineering 3540—Introduction to Bioresources Engineering Engineering 4330— Innovations in Biomedical	Mechatronics focus area Fall Semester
Engineering Winter Semester	Engineering 3340 Introduction to Mechatronics Engineering Engineering 4310—Advanced Fabrication Techniques
Engineering 3570—Engineering Applications of Biological Materials Engineering 4550 (formerly 3590)—Chemical and	and Computer Integrated Manufacturing Engineering 4330 Innovations in Biomedical Engineering
Biological Processes Engineering 3850—Engineering Applications of Numerical Methods	Winter Semester Engineering 3370 Mechatronic System Integration and
	Interface Design Engineering 3390 Introduction to Mechatronic
	Computer-Aided Product Development, Modelling and Simulation
	Engineering 3850—Engineering Applications of Numerical Methods
	Engineering 4350 Advanced Robotic Dynamics and Control
	Sustainable Energy focus area

CALENDAR & CURRICULUM CHANGE

Motion #37

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	Fall Semester
	Tan semester
	Engineering 3440—Introduction to Sustainable Energy
	Engineering
	Engineering 4330 Innovations in Biomedical
	Engineering
	Winter Semester
	Engineering 3490 Chemical Energy Conversion
	Engineering 3850 Engineering Applications of
	Numerical Methods
	Bioresources focus area
	Fall Semester
	Engineering 3540—Introduction to Bioresources
	Engineering
	Engineering 4330 Innovations in Biomedical
	Engineering
	Winter Semester
	Engineering 3570 Engineering Applications of
	Biological Materials
	Engineering 4550 (formerly 3590)—Chemical and
	Biological Processes Engineering 3950 Engineering Applications of
	Engineering 3850 Engineering Applications of Numerical Methods
	ivalifetical ivictious

<u>Rationale for Change</u>: To update the information as a result of the creation and deletion of courses, changes to course titles, the resequencing of courses, and changes to non-engineering course requirements.

Effective Date: September 2019

<u>Implications for Other Programs:</u> In order to add additional engineering-focused course content and to facilitate the re-sequencing of existing courses, it was necessary to create additional room in the program through the removal of PHYS 1110/1120, CHEM 1120 and STAT 1210. The relevant engineering content in these courses will be covered in the following newly created or revised courses: ENGN 1230; ENGN 1250; ENGN 2130; and ENGN 2810.

Impact on Students Currently Enrolled: None

CALENDAR & CURRICULUM CHANGE

Motion #37

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 15, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #38

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: **Master of Science in Sustainable Design Engineering MOTION:** To approve a new cross-listing for ENGN 4310 (Advanced Fabrication Techniques and

Computer-Integrated Manufacturing).

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4310 ADVANCED FABRICATION	SDE 8310 ADVANCED FABRICATION
TECHNIQUES AND COMPUTER-INTEGRATED	TECHNIQUES AND COMPUTER-INTEGRATED
MANUFACTURING	MANUFACTURING
This course concentrates on manufacturing knowledge	This course concentrates on manufacturing knowledge
with a focus on advanced fabrication techniques (AFT)	with a focus on advanced fabrication techniques (AFT)
and Computer Integrated Manufacturing (CIM).	and Computer Integrated Manufacturing (CIM). Students
Students will expand their knowledge of traditional	will expand their knowledge of traditional processes
processes including CAD/CAM, forming, welding,	including CAD/CAM, forming, welding, milling, etc.
milling, etc. leading into innovative advanced	leading into innovative advanced fabrication techniques in
fabrication techniques in additive and precision	additive and precision manufacturing, next generation
manufacturing, next generation electronics, robotics	electronics, robotics and smart automation (CIM), and
and smart automation (CIM), and sustainable and	sustainable and green manufacturing modeling and
green manufacturing modeling and simulation in the	simulation in the manufacturing process developed
manufacturing process developed through lectures and	through lectures and labs. Integration of CIM into supply
labs. Integration of CIM into supply chain design and	chain design and management is emphasized based on
management is emphasized based on synergistic	synergistic application of mechatronics approach and
application of mechatronics approach and philosophy.	philosophy.
Three hours of lecture and three hours of lab per week	Cross-listed with ENGN 4310; credit cannot be received
	for both courses.
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
	consultation with the instructor.

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

CALENDAR & CURRICULUM CHANGE

Motion #38

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #39

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design

Engineering

MOTION: To approve a new cross-listing for ENGN 4320 Control System Design.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions indicated clearly
ENGN 4320 CONTROL SYSTEM DESIGN This course will provide students with an overview of system modelling and control methodologies of Single/multiple input/output systems, e.g., energy transport control, reactor control, heat exchanger control, power production, and mechatronic systems. Students will learn classical control methods e.g., feedforward, feedbacks, cascade, decoupling to modern control methods, LQR, predictive control, optimal and robust control. Students will be equipped with knowledge and skills for analyzing stability, controllability and observability of state-space representation modelled systems. Three hours of lecture and three hours of lab per week.	SDE 8320 CONTROL SYSTEM DESIGN This course will provide students with an overview of system modelling and control methodologies of single/multiple input/output systems, e.g., energy transport control, reactor control, heat exchanger control, power production, and mechatronic systems. Students will learn classical control methods e.g., feedforward, feedbacks, cascade, decoupling to modern control methods, LQR, predictive control, optimal and robust control. Students will be equipped with knowledge and skills for analyzing stability, controllability and observability of state-space representation modelled systems. Cross-listed with ENGN 4320; credit cannot be received for both courses. Three hours of lecture and three hours of lab per week. Graduate-level project will be required as defined in consultation with the instructor.

Rationale for Change: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019 Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

,	
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #40

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design

Engineering

MOTION: To approve a new cross-listing for ENGN 4350 Advanced Robotic Dynamics and Control.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions indicated clearly
ENGN 4350 ADVANCED ROBOTIC DYNAMICS AND CONTROL This course advances the fundamentals of robotics through exposure to in-depth knowledge and understanding of kinematics, dynamics, control and trajectory with applications to autonomous vehicles, automated manufacturing and processing and mobile robotics. Areas of interest include: position transformation and control, rigid body motion, kinematic control, compliance and force control. Three hours of lecture and three hours of lab per week	SDE 8350 ADVANCED ROBOTIC DYNAMICS AND CONTROL This course advances the fundamentals of robotics through exposure to in-depth knowledge and understanding of kinematics, dynamics, control and trajectory with applications to autonomous vehicles, automated manufacturing and processing and mobile robotics. Areas of interest include: position transformation and control, rigid body motion, kinematic control, compliance and force control. Cross-listed with ENGN 4350; credit cannot be received for both courses. Three hours of lecture and three hours of lab per week. Graduate-level project will be required as defined in consultation with the instructor.

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include

graduate students.

Authorization	Date:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #41

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design Engineering

MOTION: To approve a new cross-listing for ENGN 4370 Fluid Power Control.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4370 FLUID POWER CONTROL This course covers the analysis and design of basic hydraulic and pneumatic circuits and systems. Topics include a review of the fundamentals of fluid mechanics including flow through valves, fittings, and pipe; classification of hydrostatic pumps and motors; control valves; hydraulic accumulators; sizing of practical hydraulic circuits; thermal and energy considerations; electrohydraulic control and modeling of hydraulic control systems. The latter part of the course focuses on pneumatic systems including pneumatic cylinders and motors, control valves, and compressor technology. The application of Programmable Logic Controls (PLCs) to industrial automation and the sequential control of pneumatic actuators is also addressed. Three hours of lecture and three hours of lab per week.	SDE 8370 FLUID POWER CONTROL This course covers the analysis and design of basic hydraulic and pneumatic circuits and systems. Topics include a review of the fundamentals of fluid mechanics including flow through valves, fittings, and pipe; classification of hydrostatic pumps and motors; control valves; hydraulic accumulators; sizing of practical hydraulic circuits; thermal and energy considerations; electrohydraulic control and modeling of hydraulic control systems. The latter part of the course focuses on pneumatic systems including pneumatic cylinders and motors, control valves, and compressor technology. The application of Programmable Logic Controls (PLCs) to industrial automation and the sequential control of pneumatic actuators is also addressed. Cross-listed with ENGN 4370; credit cannot be received for both courses. Three hours of lecture and three hours of lab per week. Graduate-level project will be required as defined in consultation with the instructor.

Rationale for Change: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019 Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #42

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design Engineering

MOTION: To approve a new cross-listing for ENGN 4410 Macro Energy Systems.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4410 MACRO ENERGY SYSTEMS	SDE 8410 MACRO ENERGY SYSTEMS
This course covers methods for analyzing energy	This course covers methods for analyzing energy supply,
supply, conversion processes, and end-use at the	conversion processes, and end-use at the system level.
system level. Aspects considered include the dynamics	Aspects considered include the dynamics of energy
of energy supply and demand, efficiencies of energy	supply and demand, efficiencies of energy conversion,
conversion, characteristics of energy currencies, and	characteristics of energy currencies, and energy needs
energy needs across different sectors. Students will	across different sectors. Students will characterize
characterize methods of delivering energy services such	methods of delivering energy services such as heat, light,
as heat, light, industrial power and transportation.	industrial power and transportation. Exergy analysis will
Exergy analysis will be introduced and used to build a	be introduced and used to build a quantitative
quantitative framework for integrating techno-	framework for integrating techno-economic analysis of
economic analysis of energy system components, with	energy system components, with emphasis on elements
emphasis on elements such as fossil fuels and nuclear	such as fossil fuels and nuclear power. Students will gain
power. Students will gain an enhanced, quantitative	an enhanced, quantitative appreciation for the
appreciation for the sustainability, emissions, cost and	sustainability, emissions, cost and energy intensity
energy intensity aspects of energy services delivery.	aspects of energy services delivery.
Three hours of lecture and three hours of lab per week.	Cross-listed with ENGN 4410; credit cannot be received
	<u>for both courses.</u>
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
	consultation with the instructor.

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019 Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #43

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design

Engineering

MOTION: To approve a new cross-listing for ENGN 4440 Advanced Energy Storage.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4440 ADVANCED ENERGY STORAGE This course considers advanced technical analysis of energy storage systems. A comprehensive overview of all industrially relevant energy storage systems is reviewed and emphasis is placed on promising energy storage technologies of the future. Chemical, thermal and kinetic	indicated clearly SDE 8440 ADVANCED ENERGY STORAGE This course considers advanced technical analysis of energy storage systems. A comprehensive overview of all industrially relevant energy storage systems is reviewed and emphasis is placed on promising energy storage technologies of the future. Chemical, thermal and kinetic storage technologies will be discussed in detail.
storage technologies will be discussed in detail. Three hours of lecture and three hours of lab per week	Cross-listed with ENGN 4440; credit cannot be received for both courses. Three hours of lecture and three hours of lab per week. Graduate-level project will be required as defined in consultation with the instructor.

Rationale for Change: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include

graduate students.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #44

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design Engineering

MOTION: To approve a new cross-listing for ENGN 4450 Fluid Loads on Energy Structures.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4450 FLUID LOADS ON ENERGY	SDE 8450 FLUID LOADS ON ENERGY
STRUCTURES	STRUCTURES
This course is an introduction to the loads applied on	This course is an introduction to the loads applied on
structures from wind, waves, and currents, and their	structures from wind, waves, and currents, and their
heightened relevance to structures designed for energy	heightened relevance to structures designed for energy
conversion. Phenomena to be discussed include lift and	conversion. Phenomena to be discussed include lift and
drag, boundary layers, vortex-induced vibrations,	drag, boundary layers, vortex-induced vibrations, wakes,
wakes, hydrostatic loading, and water waves. A	hydrostatic loading, and water waves. A selection of
selection of engineering methods will be introduced	engineering methods will be introduced and brought to
and brought to bear on these topics, such as potential	bear on these topics, such as potential flow theory,
flow theory, blade-element theory, Airy wave theory	blade-element theory, Airy wave theory and Morison's
and Morison's equation. Dimensional analysis will be	equation. Dimensional analysis will be introduced to
introduced to characterize flow problems. Design	characterize flow problems. Design implications will be
implications will be discussed for a selection of relevant	discussed for a selection of relevant energy conversion
energy conversion structures such as aircraft wings,	structures such as aircraft wings, wind turbines,
wind turbines, breakwaters, marine vessels, and	breakwaters, marine vessels, and offshore energy
offshore energy platforms.	platforms.
Three hours of lecture and three hours of lab per week	Cross-listed with ENGN 4450; credit cannot be received
	for both courses.
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
Detianals for Observe Transition of the Man	consultation with the instructor.

Rationale for Change: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019 Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

AuthorizationDate:Departmental Approval: N/AN/AFaculty/School Approval: N/AN/AFaculty Dean's Approval: Dr. Nicholas KrouglicofOctober 24, 2018Graduate Studies Dean's Approval: Dr. Larry HammellNovember 9, 2018Registrar's Office Approval: Pam McGuiganNovember 19, 2018APCC Meeting Date ApprovalDecember 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #45

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design

Engineering

MOTION: To approve a new cross-listing for ENGN 4470 Micro Grids.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	•
ENGN 4470 MICRO GRIDS	SDE 8470 MICRO GRIDS
This course focuses on the concept, operation and	This course focuses on the concept, operation and
optimization of renewable-energy-based micro-grids.	optimization of renewable-energy-based micro-grids.
Concepts introduced and considered include renewable	Concepts introduced and considered include renewable
energy resources, integration technologies, grid-	energy resources, integration technologies, grid-
connected operation, islanded grid operation, energy	connected operation, islanded grid operation, energy
storage integration and the optimal dimensioning and	storage integration and the optimal dimensioning and
mixing of multiple energy sources where some are	mixing of multiple energy sources where some are
stochastic in nature and some are dispatchable.	stochastic in nature and some are dispatchable. Existing
Existing and future energy storage technologies will be	and future energy storage technologies will be also be
also be discussed. This course is based on energy flow	discussed. This course is based on energy flow analysis
analysis and makes extensive use of software	and makes extensive use of software simulation tools.
simulation tools. Students will develop a framework for	Students will develop a framework for performing
performing techno-economic assessments of micro-grid	techno-economic assessments of micro-grid architectures
architectures and designs. A strong background in	and designs. A strong background in electrical power
electrical power systems is not necessarily required.	systems is not necessarily required.
Three hours of lecture and three hours of lab per week	Cross-listed with ENGN 4470; credit cannot be received
	for both courses.
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
	<u>consultation with the instructor.</u>

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019 Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

71411011241011	Buto:
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #46

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design Engineering

MOTION: To approve a new cross-listing for ENGN 4510 Geoinformatics in Bioresources.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
	•
ENGN 4510 GEOINFORMATICS IN	SDE 8510 GEOINFORMATICS IN BIORESOURCES
BIORESOURCES	This course covers the theory and practice of
This course covers the theory and practice of	geoinformatics and their applications to problems in
geoinformatics and their applications to problems in	bioresources using digital mapping and spatial analysis.
bioresources using digital mapping and spatial analysis.	Hands on laboratories will provide students with an
Hands on laboratories will provide students with an	experience to collect georeferenced data using
experience to collect georeferenced data using	differential global positioning system, followed by
differential global positioning system, followed by	mapping and analysis in geographical information
mapping and analysis in geographical information	system. Topics include datums, map projections and
system. Topics include datums, map projections and	transformations, vector and raster data, geo-spatial
transformations, vector and raster data, geo-spatial	analysis, geo-statistics and interpolation techniques. This
analysis, geo-statistics and interpolation techniques.	course will also cover the fundamentals of remote
This course will also cover the fundamentals of remote	sensing, data collection with sensors, and spatial and
sensing, data collection with sensors, and spatial and	temporal aspects of the bio-resources attributes.
temporal aspects of the bio-resources attributes.	Cross-listed with ENGN 4510; credit cannot be received
Three hours of lecture and three hours of lab per week.	<u>for both courses.</u>
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
Deti-male (as Oleman Transition of Ma	consultation with the instructor.

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include

graduate students.

- 10 10 10 10 10 10 10 10 10 10 10 10 10	
Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #47

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: **Master of Science in Sustainable Design Engineering MOTION:** To approve a new cross-listing for ENGN 4530 Fundamentals of Agriculture Machinery.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4530 FUNDAMENTALS OF	SDE 8530 FUNDAMENTALS OF AGRICULTURE
AGRICULTURE MACHINERY	MACHINERY
This course highlights the fundamentals of mechanized	This course highlights the fundamentals of mechanized
agriculture machinery from soil preparation, planting,	agriculture machinery from soil preparation, planting,
and crop management to mechanical harvesting. The	and crop management to mechanical harvesting. The
machines and their unit operation are analyzed with	machines and their unit operation are analyzed with
respect functions, work rates, material flow and power	respect functions, work rates, material flow and power
usage. The machine performance relating to work	usage. The machine performance relating to work
quality and environmental effects will also be	quality and environmental effects will also be evaluated.
evaluated. The labs will emphasize on safety, basic	The labs will emphasize on safety, basic maintenance,
maintenance, adjustment, calibrations of equipment	adjustment, calibrations of equipment and performance
and performance testing. This course also covers the	testing. This course also covers the variable rate
variable rate applicators for site-specific application of	applicators for site-specific application of inputs, auto
inputs, auto guidance system, data acquisition and	guidance system, data acquisition and management for
management for intelligent decision making for	intelligent decision making for machines, and precision
machines, and precision agriculture technologies.	agriculture technologies.
Three hours of lecture and three hours of lab per week	Cross-listed with ENGN 4530; credit cannot be received
	<u>for both courses</u> .
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
	<u>consultation</u> with the instructor.

Rationale for Change: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #48

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design

Engineering

MOTION: To approve a new cross-listing for ENGN 4550 Chemical and Biological Processes.

Reproduction of Current Calendar Entry	Proposed revision with changes underlined and deletions
	indicated clearly
ENGN 4550 CHEMICAL AND BIOLOGICAL	SDE 8550 CHEMICAL AND BIOLOGICAL
PROCESSES	PROCESSES
Processes used in the chemical and biological	Processes used in the chemical and biological industries,
industries, which emphasize underlying physical,	which emphasize underlying physical, chemical, and
chemical, and biological principles, will be introduced.	biological principles, will be introduced. By carrying out
By carrying out the mass and energy balances, student	the mass and energy balances, students will conduct
will conduct design and economic assessment of major	design and economic assessment of major chemical and
chemical and biological engineering processes.	biological engineering processes. Introduction to
Introduction to modelling of chemical processes will be	modelling of chemical processes will be covered in this
covered in this course. (Formerly ENGN-3590) Three	course. (Formerly ENGN-3590)
hours of lecture and three hours of lab per week	Cross-listed with ENGN 4550; credit cannot be received
	for both courses.
	Three hours of lecture and three hours of lab per week.
	Graduate-level project will be required as defined in
	consultation with the instructor.

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019 Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

AuthorizationDate:Departmental Approval: N/AN/AFaculty/School Approval: N/AN/AFaculty Dean's Approval: Dr. Nicholas KrouglicofOctober 24, 2018Graduate Studies Dean's Approval: Dr. Larry HammellNovember 9, 2018Registrar's Office Approval: Pam McGuiganNovember 19, 2018APCC Meeting Date ApprovalDecember 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #49

Revision is for a: Cross-listing Change

Faculty/School/Department: Sustainable Design Engineering

Department/Program(s)/Academic Regulations: Master of Science in Sustainable Design

Engineering

MOTION: To approve a new cross-listing for ENGN 4830 Biomedical Signal Processing.

•	Proposed revision with changes underlined and deletions indicated clearly
PROCESSING This course is an introduction to the basics of viewing, processing, and analyzing of biosignals, or signals originating from living beings. Biosignals may be characterized as bioelectrical signals which can be composed of both electrical and non-electrical parts. Topics include both linear and nonlinear systems, signal conditioning or filtering, improving signal quality (signal-to-noise ratio) through averaging techniques, and signal representations in both the time and frequency domains. PREREQUISITE: Engineering 3220 Three lecture hours and three lab hours per week	SDE 8830 BIOMEDICAL SIGNAL PROCESSING This course is an introduction to the basics of viewing, processing, and analyzing of biosignals, or signals originating from living beings. Biosignals may be characterized as bioelectrical signals which can be composed of both electrical and non-electrical parts. Topics include both linear and nonlinear systems, signal conditioning or filtering, improving signal quality (signal-to-noise ratio) through averaging techniques, and signal representations in both the time and frequency domains. Cross-listed with ENGN 4830; credit cannot be received for both courses. Three lecture hours and three lab hours per week Graduate-level project will be required as defined in consultation with the instructor.

<u>Rationale for Change</u>: To provide an option for Master of Science in Sustainable Design Engineering students to take an existing upper-level, undergraduate course to fulfill their course requirements in the graduate program.

Effective Date: September 2019

Implications for Other Programs: None

<u>Impact on Students Currently Enrolled</u>: The learning experience in lab and lectures will include graduate students.

Departmental Approval: N/A	N/A
Faculty/School Approval: N/A	N/A
Faculty Dean's Approval: Dr. Nicholas Krouglicof	October 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 9, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

Summary of Faculty of Science Motion #'s 50-64

Cummary of additional budget allocation required:

LIBRARY RESOURCE REQUIREMENTS - SDE 8310, ENGN 8320, ENGN 8350, ENGN 8370, ENGN 8410, ENGN 8440, ENGN 8450, ENGN 8470, ENGN 8510, ENGN 8530, ENGN 8550, ENGN 8830

This requirement applies to the cross-listing of 12 undergraduate courses as graduate courses for the Master of Science in Sustainable Design Engineering. Courses are SDE 8310, ENGN 8320, ENGN 8350, ENGN 8370, ENGN 8410, ENGN 8440, ENGN 8450, ENGN 8470, ENGN 8510, ENGN 8530, ENGN 8550, ENGN 8830.

Library Resource Requirements (to be completed by the liaison and/or collections librarian)

It is anticipated that many of the graduate-level assignments for these courses will require additional monographs support, such as handbooks and standards. These types of resources typically need to be refreshed as new editions are published every few years. Site-licenses for standards, which are the appropriate licenses for a library collection, are significantly more expensive than private copies and increase in cost yearly. Likewise, these graduate courses are dependent on the subscriptions purchased for the undergraduate program and there is no built-in annual percentage increase in that budget.

Given the expectations of graduate level work and the need for sustainability the Library is requesting \$5,000 annually, along with an 4% annual increase to cover anticipated increases for these courses.

Summary of additional budy	get allocation required.	
 One-time: 	For each of	consecutive years
 Annual: \$5000.00 		
 Per-year percent 	centage increase in annu	al: <u>4%</u>
Does the budget allocation	for library resources in th	nis proposal meet the requirement? Ye

Date Received by Liaison/Collections Librarian	December 13, 2018
Name of Librarian to be Contacted for Questions	Rosie Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	December 17, 2018

Form Version: September/2018

Summary of Faculty of Science Motion #'s 50-64

Summary of Calendar & Curriculum Changes for the Faculty of Science

As of November 16, 2018

Applied Human Sciences

- Course title change and revisions to FN 1010
- Course revisions to FN 3820
- Revisions to the calendar entries for the Foods and Nutrition Minor, Major, Dietetic Option, and the Honours program as a result of changes to FN 1010

Biology

- BIO 4050 and STAT 1910 as options for fourth-year core courses for the Paramedicine Program
- Revisions to the course sequence listing for the Paramedicine Program.

Chemistry

- New courses MMS 8140 and CHEM 4140 cross-listed with each other.
- CHEM 4690 (existing) cross-listed with MMS 8690 (new).
- MMS 8090 (existing) revised and cross-listed with CHEM 4090 (new)
- MMS 8050 (existing) revised and cross-listed with CHEM 4050 (new).

Environmental Studies

• Cross-list ESC 8020 with ENV 4330.

Physics

• Revisions to the course descriptions for PHYS 1110 and PHYS 1120.

CALENDAR & CURRICULUM CHANGE

MOTION #50

Revision is for a: Course Description Change

Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Applied Human Sciences

MOTION: That the course title and description for FN 1010 Nutrition for Living be approved as proposed.

Reproduction

FN-1010 Nutrition for Living

This course is an introduction to the study of nutrition as it relates to health and health promotion. Topics include factors influencing food use; personal dietary assessment and selection of a healthy diet; nutrition labels; nutrition and physical activity; nutrition throughout the life cycle; and prevention of chronic disease. Three lecture hours NOTE: This course is designed primarily for non-Foods and Nutrition or Family Science majors who will not be taking advanced courses in Nutrition. Credit will NOT be allowed for F-N 1010 if completed after F-N 2110 and credit will NOT be allowed for F-N 1010 if a student has already received credit for F-N 1020.

Revised

FN-1010 Nutrition for Living. Concepts and Controversies in Nutrition

This course is an introduction-introduces students to the study science of nutrition through an exploration of contemporary issues relevant to nutrition and health. Emphasis will be placed on health promotion and disease prevention using an evidence-based approach to understand and evaluate current nutrition controversies. as it relates to health the promotion of health promotion and prevention of chronic disease. Topics include factors influencing food use; personal dietary assessment and selection of a healthy diet, nutrition labels, nutrition and physical activity, disordered eating, and Global and Indigenous food security and nutrition throughout the life cycle; and prevention of chronic disease_ Three lecture hours NOTE: This course is designed both for those majoring in Foods and Nutrition as well as for non-Foods and Nutrition or Family Science majors who will not be taking advanced courses in Nutrition. Credit will NOT be allowed for F-N 1010 if completed after F-N 2110 and credit will NOT be allowed for F-N 1010 if a student has already received credit for F-N 1020. 3 hours credit

Rationale for Change: FN 1010 has traditionally been offered to non-Foods & Nutrition majors and Foods & Nutrition majors provided that the latter take it prior to FN 2110. Given that there is a lack of nutrition courses in first year, this will now be required for Foods & Nutrition majors but will remain open to non-majors. The content has evolved to a more issue based focus, including nutrition controversies, so the title and description better reflect current practice.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Dany MacDonald	October 25, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #51

Revision is for a: Pre-requisite Addition/Change

Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Applied Human Sciences

MOTION: That the pre-requisite change for FN 3820 be approved as proposed.

Reproduction

FN-3820 Program Planning and Evaluation

In this course, students develop competency in planning, implementing, and evaluating programs for health promotion and family education. Topics include theories and models commonly used for program planning and behaviour change, assessing needs, selecting appropriate intervention strategies, identification and allocation of resources, the marketing process, and evaluation models and design. (Cross-listed with Family Science/Kinesiology 3820) Three lecture hours and the development, implementation and evaluation of a program. PREREQUISITE: Completion of required second year Foods and Nutrition courses or permission of the instructor.

3 hours credit

Revised

FN-3820 Program Planning and Evaluation

In this course, students develop competency in planning, implementing, and evaluating programs for health promotion and family education. Topics include theories and models commonly used for program planning and behaviour change, assessing needs, selecting appropriate intervention strategies, identification and allocation of resources, the marketing process, and evaluation models and design. (Cross-listed with Family

Science/Kinesiology 3820) Three lecture hours and the development, implementation and evaluation of a program.

PREREQUISITE: Completion of required second year Foods and Nutrition courses FN 2120 or permission of the instructor.

3 hours credit

Rationale for Change: This will create consistency in the pre-requisite across sections of the course.

Effective Date: May 2019

Authorization

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Date:

,	2410.
Departmental Approval: Dany MacDonald	September 25, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #52

Revision is for a: Calendar Entry Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: **Applied Human Sciences**

MOTION: To approve the proposed changes to the Foods and Nutrition Minor.

Reproduction

Students in the Minors Program in Foods and Nutrition must complete a total of 21 semester hours of credit in Foods and Nutrition.

These consist of 9 semester hours of required core courses as follows:

- Foods and Nutrition 1110 Introductory Foods
- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II

Twelve additional hours of electives must be chosen at the 2000, 3000, or 4000 level.

Students intending to do a Minor in Foods and Nutrition are advised to consult with the Chair of the Department of Applied Human Sciences to ensure that they have the required course prerequisites. A student majoring in Family Science is eligible to pursue the Foods and Nutrition Minor.

Revised

Students in the Minors Program in Foods and Nutrition must complete a total of 21 semester hours of credit in Foods and Nutrition.

These consist of 9 12 semester hours of required core courses as follows:

- Foods and Nutrition 1010 Concepts and Controversies in Nutrition
- Foods and Nutrition 1110 Introductory Foods
- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II

Twelve-Nine additional hours of electives must be chosen at the 2000, 3000, or 4000 level. Students intending to do a Minor in Foods and Nutrition are advised to consult with the Chair of the Department of Applied Human Sciences to ensure that they have the required course prerequisites. A student majoring in Family Science is eligible to pursue the Foods and Nutrition Minor.

Rationale for Change: This change will align with the changes proposed to the FN Major which now

includes FN 1010 as a required course for FN Majors

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Dany MacDonald	October 25, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #53

Revision is for a: Calendar Entry Change

Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Applied Human Sciences

MOTION: To approve the proposed changes to the Foods and Nutrition Major.

Reproduction

REQUIREMENTS FOR A MAJOR IN FOODS & NUTRITION

Students following this degree program must complete 42 semester hours of required courses in Foods and Nutrition.

REQUIRED COURSES FOR FOODS AND NUTRITION MAJOR

Foods and Nutrition

1110 Introductory Foods

2110 Introductory Nutrition I

2120 Introductory Nutrition II

2230 Determinants of Dietary Behaviour

2610 Communications

3020 Advanced Foods

3310 Introduction to Research Methods

3510 Nutritional Assessment

3520 Clinical Nutrition I

3820 Program Planning & Evaluation

4120 Human Metabolism

4340 Community Nutrition

Two Foods and Nutrition electives at the 3000 or 4000 level

REQUIRED COURSES FROM OTHER DEPARTMENTS

Mathematics

1110 Finite Mathematics or 1120 Calculus for the Managerial, Social and Life Sciences

Statistics

1210 (formerly STAT 2210) Introductory Statistics

Chemistry

1110 General Chemistry I

1120 General Chemistry II

2430 Organic Chemistry for the Life Sciences 3530 Biochemistry

Biology

Revised

REQUIREMENTS FOR A MAJOR IN FOODS & NUTRITION

Students following this degree program must complete 42 semester hours of required courses in Foods and Nutrition.

REQUIRED COURSES FOR FOODS AND NUTRITION MAJOR

Foods and Nutrition

1010 Concepts and Controversies in Nutrition

1110 Introductory Foods

2110 Introductory Nutrition I

2120 Introductory Nutrition II

2230 Determinants of Dietary Behaviour

2610 Communications

3020 Advanced Foods

3310 Introduction to Research Methods

3510 Nutritional Assessment

3520 Clinical Nutrition I

3820 Program Planning & Evaluation

4120 Human Metabolism

4340 Community Nutrition

One Two Foods and Nutrition electives at the 3000 or 4000 level

REQUIRED COURSES FROM OTHER DEPARTMENTS

Mathematics

1110 Finite Mathematics or 1120 Calculus for the Managerial, Social and Life Sciences

Statistics

1210 (formerly STAT 2210) Introductory Statistics

Chemistry

1110 General Chemistry I

1120 General Chemistry II

2430 Organic Chemistry for the Life Sciences 3530 Biochemistry

Biology

CALENDAR & CURRICULUM CHANGE

MOTION #53

1220 Human Physiology 1310 Introduction to Cell and Molecular Biology 2060 Microbial Diversity

Business

1710 Organizational Behaviour

Social Sciences

Two 3 semester hour courses

UPEI courses and Writing Intensive Course

One of:

UPEI 1010 – Writing Studies – Engaging Writing, Rhetoric, and Communication,

UPEI 1020 – Inquiry Studies – Engaging Ideas and Cultural Contexts, OR

UPEI 1030 – University Studies - Engaging University Contexts and Experience AND One writing intensive course

COURSE SEQUENCE

Following is the usual sequence for completion of courses:

First Year

- Foods and Nutrition 1110 Introductory Foods
- Biology 1220 Human Physiology
- Biology 1310 Introduction to Cell and Molecular Biology
- Chemistry 1110 General Chemistry I
- Chemistry 1120 General Chemistry II
- One of UPEI 1010, 1020 or 1030
- Math 1110 Finite Mathematics OR Math 1120 Calculus for the Managerial, Social and Life Sciences
- Two 3 semester hours Social Science
- One free elective

Second Year

- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II
- Foods and Nutrition 2230 Determinants of Dietary Behaviour
- Foods and Nutrition 2610 Communications
- Biology 2060 Microbial Diversity

1220 Human Physiology

1310 Introduction to Cell and Molecular Biology 2060 Microbiology bial Diversity

Business

1710 Organizational Behaviour

Social Sciences

Two 3 semester hour courses

UPEI courses and Writing Intensive CourseOne of:

UPEI 1010 – Writing Studies – Engaging Writing, Rhetoric, and Communication,

UPEI 1020 – Inquiry Studies – Engaging Ideas and Cultural Contexts, OR

UPEI 1030 – University Studies - Engaging University Contexts and Experience AND One writing intensive course

COURSE SEQUENCE

Following is the usual sequence for completion of courses:

First Year

- Foods and Nutrition 1010 Concepts and controversies in Nutrition
- Foods and Nutrition 1110 Introductory Foods
- Biology 1220 Human Physiology
- Biology 1310 Introduction to Cell and Molecular Biology
- Chemistry 1110 General Chemistry I
- Chemistry 1120 General Chemistry II
- One of UPEI 1010, 1020 or 1030
- Math 1110 Finite Mathematics OR Math 1120 Calculus for the Managerial, Social and Life Sciences
- Two 3 semester hours Social Science
- One free elective

Second Year

- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II
- Foods and Nutrition 2230 Determinants of Dietary Behaviour
- Foods and Nutrition 2610 Communications
- Biology 2060 Microbiology al Diversity
- Chemistry 2430 Organic Chemistry for the

CALENDAR & CURRICULUM CHANGE

MOTION #53

- Chemistry 2430 Organic Chemistry for the Life Sciences
- Statistics 1210 (formerly STAT 2210) Introductory Statistics
- Business 1710 Organizational Behaviour
- Two free electives

Third Year

- Foods and Nutrition 3020 Advanced Foods
- Foods and Nutrition 3310 Introduction to Research Methods
- Foods and Nutrition 3510 Nutritional Assessment
- Foods and Nutrition 3520 Clinical Nutrition I
- Foods and Nutrition 3820 Program Planning & Evaluation
- Chemistry 3530 Biochemistry
- Four free electives

Fourth Year

- Foods and Nutrition 4120 Human Metabolism
- Foods and Nutrition 4340 Community Nutrition
- Two Foods and Nutrition electives at the 3000 or 4000 level
- Six free electives

Life Sciences

- Statistics 1210 (formerly STAT 2210) Introductory Statistics
- Business 1710 Organizational Behaviour
- Two free electives

Third Year

- Foods and Nutrition 3020 Advanced Foods
- Foods and Nutrition 3310 Introduction to Research Methods
- Foods and Nutrition 3510 Nutritional Assessment
- Foods and Nutrition 3520 Clinical Nutrition I
- Foods and Nutrition 3820 Program Planning & Evaluation
- Chemistry 3530 Biochemistry
- Four free electives

Fourth Year

- Foods and Nutrition 4120 Human Metabolism
- Foods and Nutrition 4340 Community Nutrition
- Two One Foods and Nutrition electives at the 3000 or 4000 level
- Seven free electives

Rationale for Change: FN 1010 has traditionally been offered to non-Foods & Nutrition majors and Foods & nutrition majors provided that they take it prior to FN 2110. This will now be required for Foods & Nutrition majors but will remain open to non-majors. The content has evolved to a more issue based focus, including nutrition controversies, so the title and description better reflect current practice.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

APCC Meeting Date Approval	December 20, 2018
Registrar's Office Approval: Pam McGuigan	November 19, 2018
Graduate Studies Dean's Approval: N/A	N/A
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Faculty/School Approval: Science Council	November 5, 2018
Departmental Approval: Dany MacDonald	September 25, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #54

Revision is for a: Calendar Entry Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Applied Human Sciences

MOTION: To approve the proposed changes to the Foods and Nutrition Dietetic Option.

Reproduction

DIETETIC OPTION

In addition to the courses required for the Foods and Nutrition major, students interested in applying for dietetic internship must take Foods and Nutrition 3210 (Foodservice Systems Management), Foods and Nutrition 3830 (Professional Practice in Dietetics), Foods and Nutrition 4220 (Quantity Food Production), Foods and Nutrition 4310 (Evidence-Based Practice in the Health Sciences), and Foods and Nutrition 4610 (Clinical Nutrition II).

COURSE SEQUENCE

Following is the usual sequence for completion of courses:

First Year

- Foods and Nutrition 1110 Introductory Foods
- Biology 1220 Human Physiology
- Biology 1310 Introduction to Cell and Molecular Biology
- Chemistry 1110 General Chemistry I
- Chemistry 1120 General Chemistry II
- One of UPEI 1010, 1020 or 1030
- Math 1110 Finite Mathematics OR
- Math 1120 Calculus for the Managerial, Social and Life Sciences
- Two 3 semester hours Social Science
- One free elective

Second Year

- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II
- Foods and Nutrition 2230 Determinants of Dietary Behaviour
- Foods and Nutrition 2610 Communications
- Biology 2060 Microbial Diversity
- Chemistry 2430 Organic Chemistry for the Life Sciences
- Statistics 2210 Introductory Statistics I
- Business 1710 Organizational Behaviour
- Two free electives

Revised

DIETETIC OPTION

In addition to the courses required for the Foods and Nutrition major, students interested in applying for dietetic internship must take Foods and Nutrition 3210 (Foodservice Systems Management), Foods and Nutrition 3710 (Lifespan Nutrition), Foods and Nutrition 3830 (Professional Practice in Dietetics), Foods and Nutrition 4220 (Quantity Food Production), Foods and Nutrition 4310 (Evidence-Based Practice in the Health Sciences), and Foods and Nutrition 4610 (Clinical Nutrition II).

COURSE SEQUENCE

Following is the usual sequence for completion of courses:

First Year

- Foods and Nutrition 1010 Concepts and Controversies in Nutrition
- Foods and Nutrition 1110 Introductory Foods
- Biology 1220 Human Physiology
- Biology 1310 Introduction to Cell and Molecular Biology
- Chemistry 1110 General Chemistry I
- Chemistry 1120 General Chemistry II
- One of UPEI 1010, 1020 or 1030
- Math 1110 Finite Mathematics OR Math 1120 Calculus for the Managerial, Social and Life Sciences
- Two 3 semester hours Social Science
- One free elective

Second Year

- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II
- Foods and Nutrition 2230 Determinants of Dietary Behaviour
- Foods and Nutrition 2610 Communications
- Biology 2060 Microbiology al Diversity
- Chemistry 2430 Organic Chemistry for the Life Sciences
- Statistics <u>2210</u> <u>1210</u> Introductory Statistics <u>I</u>
- Business 1710 Organizational Behaviour

CALENDAR & CURRICULUM CHANGE

MOTION #54

Third Year

- Foods and Nutrition 3020 Advanced Foods
- Foods and Nutrition 3210 Foodservice Systems Management
- Foods and Nutrition 3310 Introduction to Research Methods
- Foods and Nutrition 3510 Nutritional Assessment
- Foods and Nutrition 3520 Clinical Nutrition I
- Foods and Nutrition 3820 Program Planning & Evaluation
- Foods and Nutrition 3830 Professional Practice in Dietetics
- Chemistry 3530 Biochemistry
- Two free electives

Fourth Year

- Foods and Nutrition 4120 Human Metabolism
- Foods and Nutrition 4220 Quantity Food Production
- Foods and Nutrition 4310 Evidence-Based Practice in the Health Sciences
- Foods and Nutrition 4340 Community Nutrition
- Foods and Nutrition 4610 Clinical Nutrition

 II
- Five free electives

• Two free electives

Third Year

- Foods and Nutrition 3020 Advanced Foods
- Foods and Nutrition 3210 Foodservice Systems Management
- Foods and Nutrition 3310 Introduction to Research Methods
- Foods and Nutrition 3510 Nutritional Assessment
- Foods and Nutrition 3520 Clinical Nutrition I
- Foods and Nutrition 3710 Lifespan Nutrition
- Foods and Nutrition 3820 Program Planning & Evaluation
- Foods and Nutrition 3830 Professional Practice in Dietetics
- Chemistry 3530 Biochemistry
- One Two free electives

Fourth Year

- Foods and Nutrition 4120 Human Metabolism
- Foods and Nutrition 4220 Quantity Food Production
- Foods and Nutrition 4310 Evidence-Based Practice in the Health Sciences
- Foods and Nutrition 4340 Community Nutrition
- Foods and Nutrition 4610 Clinical Nutrition II
- Five free electives

Rationale for Change: Although it has been an elective in the Foods and Nutrition program, FN 3710 includes content essential for dietetic internship placements and therefore should be required for dietetic interns. This change is based on feedback from our graduates.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Dany MacDonald	September 25, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 19, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #55

Revision is for a: Calendar Entry Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Applied Human Sciences

MOTION: To approve the proposed changes to the Foods and Nutrition Honours.

Reproduction

The Honours program in Foods and Nutrition is designed to provide research experience at the undergraduate level within the BSc Program. It is available to students with a strong academic background who intend to continue studies at the post graduate level in Foods and Nutrition or related field, or to students who intend to pursue a career where research experience would be an asset.

The Honours program differs from the major in requiring a two-semester research course with thesis report for a total of 126 semester hours for the degree. The research component is to be completed within the BSc program and may require one summer (four months) preceding the graduating year. Evaluation of the research data and writing of the thesis would normally be done during the fall and/or spring session in Foods and Nutrition 490: Advanced Research and Thesis. The following are the course requirements for the Honours program in Foods and Nutrition.

First Year

- Foods and Nutrition 1110 Introductory Foods
- Chemistry 1110-1120 General Chemistry I and
- Math 1110 OR 1120 Finite Mathematics OR Calculus for the Managerial, Social and Life Sciences
- Biology 1220 Human Physiology
- Biology 1310 Introduction to Cell and Molecular Biology
- One of UPEI 1010, 1020 or 1030
- Two 3 semester hours Social Science
- One free elective

Second Year

- Foods and Nutrition 2110-2120 Introductory Nutrition I and II
- Foods and Nutrition 2230 Determinants of Dietary Behaviour
- Foods and Nutrition 2610 Communications
- Chemistry 2430 Organic Chemistry for the Life Sciences

Revised

The Honours program in Foods and Nutrition is designed to provide research experience at the undergraduate level within the BSc Program. It is available to students with a strong academic background who intend to continue studies at the post graduate level in Foods and Nutrition or related field, or to students who intend to pursue a career where research experience would be an asset.

The Honours program differs from the major in requiring a two-semester research course with thesis report for a total of 126 semester hours for the degree. The research component is to be completed within the BSc program and may require one summer (four months) preceding the graduating year. Evaluation of the research data and writing of the thesis would normally be done during the fall and/or spring session in Foods and Nutrition 490: Advanced Research and Thesis. The following are the course requirements for the Honours program in Foods and Nutrition.

First Year

- Foods and Nutrition 1010 Concepts and Controversies in Nutrition
- Foods and Nutrition 1110 Introductory Foods
- Chemistry 1110-1120 General Chemistry I and II
- Math 1110 OR 1120 Finite Mathematics OR Calculus for the Managerial, Social and Life Sciences
- Biology 1220 Human Physiology
- Biology 1310 Introduction to Cell and Molecular Biology
- One of UPEI 1010, 1020 or 1030
- Two 3 semester hours Social Science
- One free elective

Second Year

- Foods and Nutrition 2110-2120 Introductory Nutrition I and II
- Foods and Nutrition 2230 Determinants of Dietary Behaviour
- Foods and Nutrition 2610 Communications
- Chemistry 2430 Organic Chemistry for the Life

CALENDAR & CURRICULUM CHANGE

MOTION #55

- Biology 2060 Microbial Diversity
- Statistics 1210 (formerly STAT 2210) Introductory Statistics
- Business 1710 Organizational Behaviour
- Two free electives

Third Year

- Foods and Nutrition 3020 Advanced Foods
- Foods and Nutrition 3310 Introduction in Research Methods
- Foods and Nutrition 3510 Nutritional Assessment
- Foods and Nutrition 3520 Clinical Nutrition I
- Foods and Nutrition 3820 Program Planning and Evaluation
- Chemistry 3530 Biochemistry
- Four free electives

Fourth Year

- Foods and Nutrition 4120 Human Metabolism
- Foods and Nutrition 4340 Community Nutrition
- Foods and Nutrition 4900 Advanced Research and Thesis
- Two Foods and Nutrition electives at the 3000 or 4000 level
- Four free electives

NOTE: Honours students are advised to take an advanced statistics course and consult with their advisor for assistance in choosing electives that will support their research projects.

Entrance Requirements

For admission to the Honours program, students must have a minimum average of 75% in all Foods and Nutrition courses combined and an overall average of 70% in all previous courses. Permission of the Department is also required and is contingent on the student finding an advisor and on acceptance of the research project by the Department of Applied Human Sciences. Students interested in completing an honours should consult with the Department Chair as early as possible and not later than March 31st of the student's third year.

To graduate with Honours in Foods and Nutrition, students must maintain a minimum average of 75% in all Foods and Nutrition courses combined and an overall average of 70%.

Sciences

- Biology 2060 Microbiology ial Diversity
- Statistics 1210 (formerly STAT 2210) Introductory Statistics
- Business 1710 Organizational Behaviour
- Two free electives

Third Year

- Foods and Nutrition 3020 Advanced Foods
- Foods and Nutrition 3310 Introduction in Research Methods
- Foods and Nutrition 3510 Nutritional Assessment
- Foods and Nutrition 3520 Clinical Nutrition I
- Foods and Nutrition 3820 Program Planning and Evaluation
- Chemistry 3530 Biochemistry
- Four free electives

Fourth Year

- Foods and Nutrition 4120 Human Metabolism
- Foods and Nutrition 4340 Community Nutrition
- Foods and Nutrition 4900 Advanced Research and Thesis
- Two One Foods and Nutrition electives at the 3000 or 4000 level
- Five free electives

NOTE: Honours students are advised to take an advanced statistics course and consult with their advisor for assistance in choosing electives that will support their research projects.

Entrance Requirements

For admission to the Honours program, students must have a minimum GPA of 3.0 average of 75% in all Foods and Nutrition courses combined and a average of 70% CGPA of 2.7 in all previous courses. Permission of the Department is also required and is contingent on the student finding an advisor and on acceptance of the research project by the Department of Applied Human Sciences. Students interested in completing an honours should consult with the Department Chair as early as possible and not later than March 31st of the student's third year.

To graduate with Honours in Foods and Nutrition, students must maintain a minimum average of 75% GPA of 3.0 in all Foods and Nutrition courses combined and a CGPA of 2.7, average of 70%.

CALENDAR & CURRICULUM CHANGE

MOTION #55

Rationale for Change: This change is to make the Honours program consistent with the changes made

to the major.

Effective Date: September 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Dany MacDonald	September 25, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #56

Revision is for a: Calendar Entry Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Biology Department - BSc. in Paramedicine

MOTION: To approved the proposed changes for the Paramedicine program.

While at UPEI, paramedics in the BSc. program will take 20 courses. Of these, 15 are required (core) courses and the rest will be electives. The core courses will primarily be in Biology, with four advanced courses in Paramedicine:

- 3 first year courses: First Year Experience, Introductory Biology I (Introduction to Cell & Molecular Biology), Introductory Chemistry I (General Chemistry I);
- 5 second year courses: Cell Biology, Microbiology, Human Genetics, Human Biochemistry, Introductory Statistics;
- 2 third year courses: Research Methods & Communications, Medical Microbiology; and
- 5 fourth year courses: Basic & Clinical Immunology; Health Promotion, Planning & Evaluation; Disaster Medicine & Crisis Response; Critical Appraisal of Health Care Literature in the Acute Care Environment; and Current Issues in Paramedicine.

Paramedics will take five elective courses to complete this program. Two of these electives must be from Science (Chemistry, Nutrition, Kinesiology or Physics) or Social Science areas (Business, Psychology or Philosophy).

Students with an average of 75% in second year may apply to complete an Honours thesis and enrol in Paramedicine 4900 - Honours Thesis in Paramedicine.

COURSE SEQUENCE:

YEAR I

First semester:

- Biology 1310 (Introduction to Cell and Molecular Biology)
- UPEI 1010/1020/1030 (First Year Experience)
- Biology 2210 (Cell Biology)
- Chemistry 1110 (General Chemistry I)
- Elective (recommend one of two from the list below)

Second semester:

- Biology 2060 (Microbiology)
- Biology 2240 (Human Genetics)
- Biology 2250 (Human Biochemistry)
- Paramedicine 4010 (Health Promotion,

While at UPEI, paramedics in the BSc. program will take 20 courses. Of these, 15 are required (core) courses and the rest will be electives. The core courses will primarily be in Biology, with four advanced courses in Paramedicine:

- 3 first year courses: First Year Experience, Introductory Biology I (Introduction to Cell & Molecular Biology), Introductory Chemistry I (General Chemistry I);
- 5 second year courses: Cell Biology, Microbiology, Human Genetics, Human Biochemistry, Introductory Statistics or Introduction to Probability and Statistics
- 2 third year courses: Research Methods & Communications, Medical Microbiology; and
- 5 fourth year courses: Basic & Clinical Immunology or Medical Biology; Health Promotion, Planning & Evaluation; Disaster Medicine & Crisis Response; Critical Appraisal of Health Care Literature in the Acute Care Environment; and Current Issues in Paramedicine.

Paramedics will take five elective courses to complete this program. Two of these electives must be from Science (Chemistry, Nutrition, Kinesiology or Physics) or Social Science areas (Business, Psychology or Philosophy).

Students with a CGPA of 3.0 in second year may apply to complete an Honours thesis and enrol in Paramedicine 4900 - Honours Thesis in Paramedicine.

COURSE SEQUENCE:

YEAR I

First semester:

- Biology 1310 (Introduction to Cell and Molecular Biology)
- UPEI 1010/1020/1030 (First Year Experience)
- Biology 2060 (Microbiology)
- Biology 2210 (Cell Biology)
- Chemistry 1110 (General Chemistry I)
- Elective (recommend one of two from the list below)

Second semester:

CALENDAR & CURRICULUM CHANGE

MOTION #56

Planning and Evaluation)

• Elective (recommend one of two from the list below)

YEAR 2

First semester:

- Biology 3750 (Medical Microbiology)
- Statistics 1210 (Introductory Statistics)
- Paramedicine 4020 (Disaster Medicine and Crisis Response)
- Biology 3310 (Research Methods and Communications in Biology)
- Elective or Paramedicine 4900 (Honours Research and Thesis)

Second semester:

- Biology 4750 (Basic and Clinical Immunology)
- Paramedicine 4030 (Critical Appraisal of Health Care Literature in the Acute Care Environment)
- Paramedicine 4040 (Current Issues in Paramedicine)
- Elective or Paramedicince 4900 (Honours Research and Thesis)
- Elective

ELECTIVES:

Students complete the degree requirements by choosing five electives. Two electives must be from one of the Sciences or Social Sciences/Humanities listed below. Students are encouraged to take two electives from the same discipline (e.g., Psych 1010 and 1020) as these are set up to be taught in the first and second semesters, and sometimes summer. It will also make it easier to get into electives in the same discipline the following year. NOTE: Students may also register for Paramedicine 4900 (Honours Thesis in Paramedicine) in which case they would need two fewer electives in their second year and then they may graduate with an Honours degree.

Students must take a minimum of two of these courses:

- Business 1010 Introduction to Business;
 Business 1710 Organizational Behaviour
- Biology 1320 Introduction to Organisms
- Chemistry 1120 General Chemistry II; Chemistry 2430 - Organic Chemistry
- Foods and Nutrition 1010 Nutrition for Living; Foods and Nutrition 2110 and 2120 -Introductory Nutrition I and II
- Kinesiology 1010 Introduction to Kinesiology
- Philosophy 1050 Technology, Values, and Science; Philosophy 1110 - Critical Thinking

- Biology 2060 (Microbiology)
- Biology 2240 (Human Genetics)
- Biology 2250 (Human Biochemistry)
- Chemistry 1110 (General Chemistry I)
- Paramedicine 4010 (Health Promotion, Planning and Evaluation)
- <u>UPEI 1010/1020/1030 (First Year Experience)</u>
- <u>2</u> Electives (recommended one of two from the list below)

YEAR 2

First semester:

- Biology 3310 (Research Methods and Communications in Biology)
- Biology 3750 (Medical Microbiology)
- Statistics 1210 (Introductory Statistics)
- Paramedicine 4020 (Disaster Medicine and Crisis Response)
- Biology 3310 (Research Methods and Communications in Biology)
- Elective or Paramedicine 4900 (Honours Research and Thesis)

Second semester:

- Biology <u>4050 (Medical Biology) OR</u> 4750 (Basic and Clinical Immunology)
- Paramedicine 4020 (Disaster Medicine and Crisis Response)
- Paramedicine 4030 (Critical Appraisal of Health Care Literature in the Acute Care Environment)
- Paramedicine 4040 (Current Issues in Paramedicine)
- Statistics 1210 (Introductory Statistics) OR
 1910 (Introduction to Probability and Statistics)
- <u>2</u> Electives or Paramedicinee 4900 (Honours Research and Thesis)
- One final Elective

ELECTIVES:

Students complete the degree requirements by choosing five electives. Two electives must be from one of the Sciences or Social Sciences/Humanities listed below. Students are encouraged to take two electives from the same discipline (e.g., Psych 1010 and 1020) as these are set up to be taught in the first and second semesters, and sometimes summer. It will also make it easier to get into electives in the same discipline the following year. NOTE: Students may also register for Paramedicine 4900 (Honours Thesis in Paramedicine) in which case they would need two fewer electives in their second year

CALENDAR & CURRICULUM CHANGE

MOTION #56

- Physics 1210 and 1220 Physics for Life Sciences I and II
- Psychology 1010 and 1020 Introduction to Psychology I and II

and then they may graduate with an Honours degree. Students must take a minimum of two of these courses. NOTE: Some courses have pre-requisites.

- Business 1010 Introduction to Business
- Business 1710 Organizational Behaviour
- Biology 1320 Introduction to Organisms
- Chemistry 1120 General Chemistry II
- Chemistry 2430 Organic Chemistry
- Foods and Nutrition 1010 Nutrition for Living; Concepts and Controversies in Nutrition
- Foods and Nutrition 2110 Introductory Nutrition I
- Foods and Nutrition 2120 Introductory Nutrition II
- Kinesiology 1010 Introduction to Kinesiology
- Philosophy 1050 Technology, Values, and Science
- Philosophy 1110 Critical Thinking
- Physics 1210 Physics for Life Sciences I
- Physics 1220 Physics for Life Sciences II
- Psychology 1010 Introduction to Psychology I
- Psychology 1020 Introduction to Psychology II

Rationale for Change: Bio 4050, Medical Biology, is a new course so it was not available when the BSc in Paramedicine was started. The content is very relevant to this group of students and their experience will add value to other students in the course. We have made it a choice for students rather than adding it as an additional core course so that they still can take 5 electives. Similarly with STAT 1910, Introduction to Probability and Statistics. Students only take 20 credits at UPEI, so this gives them more flexibility. The other changes reflected in this document clean up the language for the course sequence, removing the semesters in Year 1 and Year 2 to provide clarity since courses may not always be offered in the same semester each year.

Effective Date: May 2019

Implications for Other Programs: none

Impact on Students Currently Enrolled: none. First year students can make this choice next year

•	140 VOITIBOT 20, 2010
Registrar's Office Approval: Pam McGuigan	November 20, 2018
Graduate Studies Dean's Approval: N/A	N/A
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Faculty/School Approval: Science Council	November 5, 2018
Departmental Approval: Marva Sweeney-Nixon	October 25, 2018

NEW COURSE PROPOSAL

Motion #57

Faculty/School: Science

Department/Program(s): Chemistry

MOTION: To approve the new course MMS 8140 Marine Natural Products Chemistry.

Course Number and Title	MMS 8140 Marine Natural Products Chemistry
Description	The overall goal of the course is to provide a description of the structures and biosynthetic origins of natural products of marine origin. The main classes of natural products will be reviewed with an emphasis on their biological origin as a tool to understanding structures. The biomedical relevance of marine natural products will be discussed along with special topics lectures on such themes as "From lead compound to FDA approval" and "Development of a natural product drug lead". Additional lectures on biological screening and metabolomics as modern tools in drug discovery, and chromatographic purification of natural products will round out the discussions. Students will be expected to develop a thorough understanding of the biosynthetic origin of all major categories of natural products through case studies.
Cross-Listing	CHEM 4140. Credit cannot be received for both MMS 8140 and CHEM 4140.
Prerequisite/Co-Requisite	Admission to graduate program in Science
Credit(s)	3
Notation	

<u>This is</u>: An Elective Course <u>Grade Mode</u>: Numeric (Standard)

Anticipated Enrolment: 20 Is there an Enrolment Cap: No

Rationale for New Course: This course has been offered as a Special Topics course and we are now requesting approval for a new course name and number. The course will be of interest to graduate students in Chemistry, Biology and Biomedical Sciences pursuing thesis research involving aspects of natural products.

Effective Date: May 2019

<u>Implications for Other Programs</u>: None <u>Impact on Students Currently Enrolled</u>: None

Resources Required: None

In offering this course will UPEI require facilities or staff at other institutions: No

Departmental Approval: Dr. Rabin Bissessur	September 14, 2018
Faculty/School Approval: Science Council	September 24, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	September 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 16, 2018
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #57

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

MMS 8140 Marine Natural Products Chemistry

Existing resources:

- Collections
 - o Books
 - subject searches
 - biotechnology: 1653 booksbiochemistry: 1171 books
 - Bioactive compounds: 70 books
 - marine biotechnology: 19 books
 natural products: 86 books
 - marine natural products: 17 books
 - marine pharmacology: 17 books
 - pharmacognosy: 30 books
 - keyword searches
 - "natural products": 380 books
 - "product development" biology: 33 books
 - chemistry and marine: 239 books
 - "marine natural products": 36 books
 - bioactive and marine: 81 books
- Holdings, Subscriptions, Other
 - o Journals
 - By Subject
 - Biotechnology: 215 journals
 - Chemistry: 1654 journals
 - Environmental Sciences: 956 journals
 - Individual titles
 - 40 titles with the terms (natural OR organic OR marine) AND product* NOT (oil OR gas)
 - Natural Products: 44 journals
 - Pharmacognosy: 21 journals
- Subscription Dependencies (in interdisciplinary packages)
 - Many journal titles rely on subscriptions including ScienceDirect, ACS, Royal Society of Chemistry, Wiley, Springer, Business Source Complete, etc.
 - Many relevant books are in ScienceDirect, EBSCOhost, and Proquest subscription or "evidence-based acquisition" packages.
- Physical Space in Library (other than holdings, explain): N/A
- Library Administrative/Research Support: Liaison Librarian Rosie Le Faive can provide research and instructional support to the Faculty and Students.

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific)
- Collections:
 - o Monographs **None**
 - Subscriptions None
 - Databases None

NEW COURSE PROPOSAL

Motion #57

	~
\sim	Other
0	

- Physical Space in Library (other than holdings, explain) None
- Library Administrative/Research Support **None**
- Other One-Time or Ongoing Library expenses (e.g. software licenses) **None**

Summ	ary of ad	ditional budget allo	ocation required:			
•	One-tin	ne: n/a	For each of _	n/a	consecutive years	
•	Annual	:n/a				
	0	Per-year percenta	age increase in ann	ual:		

Does the budget allocation for library resources in this proposal meet the requirement?

The materials supporting this program are heavily (nearly exclusively) made available through subscriptions. The prices of journal subscriptions tend to increase 3-6% per year. The proposal is supportable right now, but to be sustainable the annual library budget will need to increase at least enough to account for inflation and fluctuations in exchange rates.

Date Received by Liaison/Collections Librarian	September 14, 2018
Name of Librarian to be Contacted for Questions	Rosie Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	October 30, 2018

NEW COURSE PROPOSAL

Motion #58

Faculty/School: Science

Department/Program(s): Chemistry

MOTION: To approve the new course CHEM 4140 Marine Natural Products Chemistry.

Course Number and Title	CHEM 4140 Marine Natural Products Chemistry
Description	The overall goal of the course is to provide a description of the structures and biosynthetic origins of natural products of marine origin. The main classes of natural products will be reviewed with an emphasis on their biological origin as a tool to understanding structures. The biomedical relevance of marine natural products will be discussed along with special topics lectures on such themes as "From lead compound to FDA approval" and "Development of a natural product drug lead". Additional lectures on biological screening and metabolomics as modern tools in drug discovery, and chromatographic purification of natural products will round out the discussions.
Cross-Listing	
Prerequisite/Co-Requisite	Chemistry 2410 or Chemistry 2430
Credit(s)	3
Notation	

This is: An Elective Course Grade Mode: Numeric (Standard)

Anticipated Enrolment: 20 Is there an Enrolment Cap: No

Rationale for New Course: This course has been offered as a Special Topics course and we are now requesting approval for a new course name and number. Honours and Majors can use it as an elective.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Resources Required: None

In offering this course will UPEI require facilities or staff at other institutions: No

7.44.707.124.7077	2410.
Departmental Approval: Dr. Rabin Bissessur	September 14, 2018
Faculty/School Approval: Science Council	September 24, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	September 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 16, 2018
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

NEW COURSE PROPOSAL

Motion #58

LIBRARY RESOURCE REQUIREMENTS FOR A NEW COURSE PROPOSAL

CHEM 4140 Marine Natural Products Chemistry

Existing resources:

- Collections
 - o Books
 - subject searches
 - biotechnology: 1653 booksbiochemistry: 1171 books
 - Bioactive compounds: 70 books
 - marine biotechnology: 19 books
 - natural products: 86 books
 - marine natural products: 17 books
 - marine pharmacology: 17 books
 - pharmacognosy: 30 books
 - keyword searches
 - "natural products": 380 books
 - "product development" biology: 33 books
 - chemistry and marine: 239 books
 - "marine natural products": 36 books
 - bioactive and marine: 81 books
- Holdings, Subscriptions, Other
 - Journals
 - By Subject
 - Biotechnology: 215 journals
 - Chemistry: 1654 journals
 - Environmental Sciences: 956 journals
 - Individual titles
 - 40 titles with the terms (natural OR organic OR marine) AND product* NOT (oil OR gas)
 - Natural Products: 44 journals
 - Pharmacognosy: 21 journals
- Subscription Dependencies (in interdisciplinary packages)
 - Many journal titles rely on subscriptions including ScienceDirect, ACS, Royal Society of Chemistry, Wiley, Springer, Business Source Complete, etc.
 - Many relevant books are in ScienceDirect, EBSCOhost, and Proquest subscription or "evidence-based acquisition" packages.
- Physical Space in Library (other than holdings, explain): N/A
- Library Administrative/Research Support: Liaison Librarian Rosie Le Faive can provide research and instructional support to the Faculty and Students.

New resources needed to support this proposal:

- Capital Requirements (other than new course-specific)
- Collections:
 - Monographs None
 - Subscriptions None

NEW COURSE PROPOSAL

Motion #58

- o Databases None
- o Other
- Physical Space in Library (other than holdings, explain) None
- Library Administrative/Research Support None
- Other One-Time or Ongoing Library expenses (e.g. software licenses) **None**

Summary of additional budget allocation required:					
•	One-time	e:n/a	For each of _	n/a	consecutive years
•	Annual:	n/a	_		
	o F	Per-year percenta	ge increase in ann	nual:	

Does the budget allocation for library resources in this proposal meet the requirement?

The materials supporting this program are heavily (nearly exclusively) made available through subscriptions. The prices of journal subscriptions tend to increase 3-6% per year. The proposal is supportable right now, but to be sustainable the annual library budget will need to increase at least enough to account for inflation and fluctuations in exchange rates.

Date Received by Liaison/Collections Librarian	September 14, 2018
Name of Librarian to be Contacted for Questions	Rosie Le Faive
Approved by University Librarian or Designate - Name	Donald Moses
Date Approved by UL or Designate	October 30, 2018

CALENDAR & CURRICULUM CHANGE

Motion #59

Revision is for a: Cross-listing Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Chemistry

MOTION: That CHEM 4690 Materials Chemistry be cross-listed with MMS 8690 Materials

Chemistry.

Reproduction

CHEM-4690 Materials Chemistry This course discusses current topics in materials chemistry. Topics include the synthesis and characterization of intercalation compounds, conductive polymers and their applications, semiconductors and their applications, defects in inorganic solids, and transport measurements.

Three lecture hours a week

PREREQUISITE: Chemistry 2410-2420 with a combined minimum average of 60%, 3310, 3740 with a

minimum of 60% in these courses

3 hours credit

MMS 8690 Materials Chemistry

This course discusses current topics in materials chemistry. Topics include the synthesis and characterization of intercalation compounds, conductive polymers and their applications, semiconductors and their applications, defects in inorganic solids, and transport measurements. Students will perform a thorough literature search on a topic in materials science; write a review and a research proposal on the selected topic, followed by in-class presentations. Cross-listed with CHEM 4690. Credit cannot be received for both MMS 8690 and CHEM 4690. PREREQUISITE: Admission to a graduate program in

Science. 3 hours credit

Rationale for Change: This will provide an added course for graduate students.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Rabin Bissessur	September 14, 2018
Faculty/School Approval: Science Council	September 24, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	September 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 16, 2018
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #60

Revision is for a: Cross-listing Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Chemistry

MOTION: To approve the proposed changes for MMS 8090 Biomaterials.

D 1	D : 1
Reproduction	Revised
MMS-8090 Biomaterials	MMS-8090 Biomaterials
This course covers the fundamentals of the synthesis,	This course covers the fundamentals of the synthesis,
properties, and biocompatibility of metallic, ceramic,	properties, and biocompatibility of metallic, ceramic,
polymeric, and biological materials that come in contact	polymeric, and biological materials that come in contact with
with tissue and biological fluids. Emphasis is placed on	tissue and biological fluids. Emphasis is placed on using
using biomaterials for both hard and soft tissue	biomaterials for both hard and soft tissue replacement, organ
replacement, organ replacement, coatings and	replacement, coatings and adhesives, dental implants, and
adhesives, dental implants, and drug delivery systems.	drug delivery systems. New trends in biomaterials, such as
New trends in biomaterials, such as electrically	electrically conductive polymers, piezoelectric biomaterials,
conductive polymers, piezoelectric biomaterials, and	and solgel processing are discussed, and the recent merging of
solgel processing are discussed, and the recent merging	cell biology and biochemistry with materials is examined.
of cell biology and biochemistry with materials is	Cross-listed with CHEM 4090. Credit cannot be received for
examined.	both MMS 8090 and CHEM 4090.)
HOURS OF CREDIT: 3	HOURS OF CREDIT: 3
Restriction: Student must be admitted into a graduate	Restriction: Student must be admitted into a graduate
program in Science	program in Science
	CHEM 4090 Biomaterials
	This course covers the fundamentals of the synthesis,
	properties, and biocompatibility of metallic, ceramic,
	polymeric, and biological materials that come in contact with
	tissue and biological fluids. Emphasis is placed on using
	biomaterials for both hard and soft tissue replacement, organ
	replacement, coatings and adhesives, dental implants, and
	drug delivery systems. New trends in biomaterials and the
	recent merging of cell biology and biochemistry with materials
	is examined.
	PREREQUISITE: CHEM 3420
	HOURS OF CREDIT: 3

Rationale for Change: This will provide an added course for Honours and Majors in Chemistry.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Rabin Bissessur	September 14, 2018
Faculty/School Approval: Science Council	September 24, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	September 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 16, 2018
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #61

Revision is for a: Cross-listing Change

Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Chemistry

MOTION: To approve the proposed changes for MMS 8050 Advanced Studies in NMR Spectroscopy.

Reproduction

MMS-8050 Advanced Studies in NMR Spectroscopy This course covers the use of Nuclear Magnetic Resonance (NMR) spectrometry used in the determination of structures in Organic and Inorganic Chemistry. Major topics include the theory and use of NMR spectroscopy, in particular the use of 2D experiments and multi-nuclear NMR spectroscopy. Particular emphasis is placed on developing the students' ability to interpret spectra and elucidate the structure of a molecule based on this evidence beyond the undergraduate level, as well as the role NMR has played as a structural tool in the pharmaceutical industry and

HOURS OF CREDIT: 3

Restriction: Student must be admitted into a graduate program in Science

MMS-8050 Advanced Studies in NMR Spectroscopy This course covers the use of Nuclear Magnetic Resonance (NMR) spectrometry used in the determination of structures in Organic and Inorganic Chemistry. Major topics include the theory and use of NMR spectroscopy, in particular the use of 2D experiments and multi-nuclear NMR spectroscopy. Particular emphasis is placed on developing the students' ability to interpret spectra and elucidate the structure of a molecule based on this evidence beyond the undergraduate level, as well as the role NMR has played as a structural tool in the pharmaceutical industry and academia. Students will have a practical/hands-on component in this course. Cross-listed with CHEM 4050. Credit cannot be received for both MMS 8050 and CHEM 4050. **HOURS OF CREDIT: 3**

Restriction: Student must be admitted into a graduate program in Science

CHEM 4050 Advanced Studies in NMR Spectroscopy This course covers the use of Nuclear Magnetic Resonance (NMR) spectrometry used in the determination of structures in Organic and Inorganic Chemistry. Major topics include the theory and use of NMR spectroscopy, in particular the use of 2D experiments and multi-nuclear NMR spectroscopy. Particular emphasis is placed on developing the students' ability to interpret spectra and elucidate the structure of a molecule based on this evidence beyond the undergraduate level, as well as the role NMR has played as a structural tool in the pharmaceutical industry and academia. **HOURS OF CREDIT: 3**

PREREQUISITE: CHEM 3610 with a minimum of 60%

Rationale for Change: This will provide an added course for Honours and Majors in Chemistry.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Page 101 of 106

CALENDAR & CURRICULUM CHANGE

Motion #61

Authorization	Date:
Departmental Approval: Rabin Bissessur	September 14, 2018
Faculty/School Approval: Science Council	September 24, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	September 24, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 16, 2018
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #62

Revision is for a: Calendar Entry Change Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Environmental Studies

MOTION: To approve the proposed changes for ESC 8020 Communication Strategies.

Reproduction:

ESC-8020 Communication Strategies This workshop-style course is central to the certification in Environmental Communication Strategies and is built on the training offered through UPEI's Centre for Conflict Resolution. This course promotes the development of communication skills in the context of environmental issues and exposes students to direct interaction with representatives from industry, government, community, and the social sciences. The course will also provide broad theoretical and practical knowledge needed to resolve disputes as well as skills training in techniques of mediation, facilitation, and negotiation. Due to the uniqueness of this course, it is considered a critical component towards the development of experience and involvement on the decision making process. The topics addressed during presentations and discussions will be the starting point for the development of written reports that at a later stage will benefit from the feedback from the coordinating faculty, and the representatives of industry, government and community.

Restriction: Student must be admitted to a graduate program in Science 3 hours credit

Revised:

ESC-8020 Communication Strategies This workshop style course is central to the certification

in Environmental Communication Strategies and is built on the training offered through UPEI's Centre for Conflict Resolution. This course promotes the development of communication skills in the context of environmental issues and exposes students to direct interaction with representatives from industry, government, community, and the social sciences. The course will also provide broad theoretical and practical knowledge needed to resolve disputes as well as skills training in techniques of mediation, facilitation, and negotiation. Due to the uniqueness of this course, it is considered a critical component towards the development of experience and involvement on the decision making process. The topics addressed during presentations and discussions will be the starting point for the development of written reports that at a later stage will benefit from the feedback from the coordinating faculty, and the representatives of industry, government and community. Beyond the activities of ENV-4330, the graduate-level assessment of this course involves weekly assigned readings, an essay on a selected topic that includes an extensive literature review, and a seminar on the researched topic. Restriction: Student must be admitted to a graduate program in Science. Cross-listed with ENV 4330; Credit cannot be received

for both ENV 4330 and ESC 8020. 3 hours credit

Rationale for Change: This change will make the offering of ESC-8020 more consistent over time. This graduate course was originally based on workshops from the UPEI "Centre for Conflict Resolution" and subsequently from the "Office of Skills Development and Learning". However, the timing, content and cost of those workshops was becoming increasingly difficult to manage. The offering of this course cross-listed with ENV-4330 will make it far more regular and consistent with regards to content, and will reduce a current financial burden for the graduate programs in Science.

Effective Date: January 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Page 103 of 106

CALENDAR & CURRICULUM CHANGE

Motion #62

Authorization	Date:
Departmental Approval: Environmental Studies & Science Graduate Studies	November 1, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: Dr. Larry Hammell	November 16, 2018
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

Motion #63

Revision is for a: Course Description Change

Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Physics

MOTION: To approve the proposed changes for PHYSICS 1110 General Physics I.

1110 GENERAL PHYSICS I

This course emphasizes the fundamentals of mechanics and is intended as a first course in physics for students in the physical sciences and engineering, or who are planning to take Physics courses beyond the first-year level. Topics include vectors, kinematics, Newton's laws of motion, gravitation, circular motion, static equilibrium, moment of inertia, torque, rotational motion, and conservation of energy and momentum. PREREQUISITE: Proficiency in High School algebra, trigonometry and graphing is expected. Grade 12 Physics is highly recommended. It is required that Mathematics 191 be taken at least concurrently. Three hours lecture, three hours laboratory or tutorial per week

1110 GENERAL PHYSICS I

This course emphasizes the fundamentals of mechanics and is intended as a first course in physics for, <u>but not restricted to</u>, students <u>considering degrees</u> in physics, <u>chemistry</u>, <u>mathematics and computer science</u>. in the <u>physical sciences and engineering</u>, or who are planning to take Physics courses beyond the first year level. Topics include vectors, kinematics, Newton's laws of motion, gravitation, circular motion, static equilibrium, <u>moment of inertia</u>, torque, <u>rotational motion</u>, and <u>momentum</u>, conservation of energy <u>and an introduction to special relativity</u>. <u>momentum</u>.

PREREQUISITE: Proficiency in High School algebra, trigonometry and graphing is expected. Grade 12 Physics is highly recommended. It is required that Mathematics 1910 be taken at least concurrently. Three hours lecture, three hours laboratory or tutorial per week

Rationale for Change: The Faculty of Sustainable Design Engineering is removing PHYS 1110 from their program, so reference to engineering students needs to be removed. The description is also clarified by removing the reference to 'physical sciences' which is not all that well understood by high school students and replacing with more descriptive language about degree programs for which this course is helpful to students. In addition, with the loss of the engineering cohort, the course content can be refocused on the physical sciences, removing some topics and introducing new ones.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Dr. William Whelan	November 2, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018

CALENDAR & CURRICULUM CHANGE

MOTION #64

Revision is for a: Course Description Change

Faculty/School/Department: Science

Department/Program(s)/Academic Regulations: Physics

MOTION: To approve the proposed changes for PHYSICS 1120 General Physics II.

PHYS-1120 GENERAL PHYSICS II

This course is a continuation of Physics 1110 and is intended for, but not restricted to, those students who wish to pursue further studies in the physical sciences or engineering. Topics include oscillations, wave motion, sound and light, thermodynamics, fluid mechanics, and electricity and magnetism.

NOTE: Students may obtain credit for Physics 1220 or

1120 but not both.

PREREQUISITE: Physics 1110, and Mathematics

1910 or permission of the instructor; COREQUISITE: Math 1920

Three hours lecture, three hours laboratory or tutorial

per week

PHYS-1120 GENERAL PHYSICS II

This course is a continuation of Physics 1110 and is intended for, but not restricted to, those students considering a degree in physics, chemistry, mathematics or computer science. who wish to pursue further studies in the physical sciences or engineering. Topics include fluid mechanics, thermodynamics, oscillations, wave motion, sound and light, thermodynamics, fluid mechanics, and electricity, and magnetism and optics. NOTE: Students may obtain credit for Physics 1220 or

1120 but not both.

PREREQUISITE: Physics 1110, and Mathematics 1910

or permission of the instructor; COREQUISITE: Math 1920

Three hours lecture, three hours laboratory or tutorial

per week

Rationale for Change: The Faculty of Sustainable Design Engineering is removing PHY1120 from their program, so reference to engineering students needs to be removed. The description is also clarified by removing the reference to 'physical sciences' which is not all that well understood by high school students and replacing with more descriptive language about degree programs for which this course is helpful to students. In addition, the order of the topics has been revised to reflect current practice.

Effective Date: May 2019

Implications for Other Programs: None

Impact on Students Currently Enrolled: None

Departmental Approval: Dr. William Whelan	November 2, 2018
Faculty/School Approval: Science Council	November 5, 2018
Faculty Dean's Approval: Kathy Gottschall-Pass	November 5, 2018
Graduate Studies Dean's Approval: N/A	N/A
Registrar's Office Approval: Pam McGuigan	November 20, 2018
APCC Meeting Date Approval	December 20, 2018