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Abstract—This paper is concerned with modeling 

methodologies using a combined physics-based and data-driven 

approach. The purpose of such models is to assist machinery 

fault diagnosis, root cause analysis, and system failure 

prediction. Particularly, we focus on capturing a class of faults, 

which, when developed in a physical system, would manifest 

themselves as “new dynamics”.  In other words, they are not 

present in healthy conditions. Examples include joints and 

connectors in multi-body systems.  Under healthy conditions, 

they are typically represented by ideal boundary 

conditions.  However, when faults have developed, they 

become entities with dynamic responses to input excitations. 

We propose a Bayesian inference-based methodology to detect 

the development of these new dynamics through model 

parameter uncertainty quantification. We demonstrate the 

effectiveness of this method through numerical experiments on 

a rotating mechanical system. 

Keywords-physics-based modeling; Bayesian inference; fault 

diagnosis; parameter calibration, new dynamics 

I.  INTRODUCTION 

Accurate and timely diagnosis of faults is an important goal 
of machine condition monitoring. Inability to diagnose a fault in 
machinery can result in increased maintenance costs, unplanned 
shutdowns, and even catastrophic component or system failure. 
To address this challenge, several types of diagnosis techniques 
have been developed based on advances in electromechanical 
modeling, system identification, signal processing, artificial 
intelligence, and data science [1-6].  

Fault diagnosis methods can be grouped into signal-based 
and model-based methods. Signal-based methods are data-
driven and attempt to diagnose faults by recognizing trends and 
patterns in the collected system data. Model-based methods use 
a physics-based or other type of model to generate predicted 
outputs that can be compared with measured data to assess the 
condition of the system. Physics-based models allow for 
prediction of the system’s behaviour at operating conditions 
where limited or no measurement data exists. This is especially 
useful when studying fault or failure cases which are costly or 
impractical to run in practice, or for which limited data is 
available. In addition, incorporating faults into physics-based 

models allows for prediction of the progressing severity of the 
fault, as well as simulation of how the presence of the fault will 
affect the performance of other components in the system.  

The way in which a fault is represented in a model provides 
insights into how they can be identified. Faults such as cracks 
and wear can be represented by changes in existing system 
parameters. Several methods exist to address the problem of 
calibrating or updating model parameters [7-10]. However, there 
are types of faults that involve changes in the configuration of 
the system, causing behaviours that cannot be captured by 
changing existing parameters in the original model. An example 
would be a joint that is assumed to be rigid in the original model, 
but then becomes loose and develops a new dynamic behaviour 
between the two parts of the joint. We will refer to these types 
of behaviours as “new dynamics”. Development of these new 
dynamics in a real system is significant because these faults 
cannot be diagnosed by calibrating parameters in the original 
model. Diagnosis of faults associated with the development of 
new dynamics will be the focus of this work.  

Fields such as adaptive control [7] and model-based fault 
diagnostics [8] address the problem of detecting changes in the 
system by monitoring or updating system parameters, while also 
accounting for other unmodeled dynamic effects. In adaptive 
control, these effects are referred to as unmodeled dynamics, and 
in model-based fault diagnostics, they are called model 
uncertainties. However, in each of these fields, these 
uncertainties or unmodeled effects are treated as disturbances, 
rather than quantities to be analyzed to gain information from. 
In the field of uncertainty quantification (UQ), these effects are 
referred to model discrepancy, and, following the pioneering 
work by Kennedy and O’Hagan in [9], are quantified in parallel 
along with parameter uncertainty. The most widely used 
approach in UQ is within a Bayesian framework [10-12] where 
the total error between the measured and simulated output is 
partitioned into system parameter uncertainty, model 
discrepancy due to missing dynamic effects, and random 
measurement noise.  

Bayesian methods allows for the incorporation of existing 
knowledge about the system parameters by selecting appropriate 
prior distributions. They also provide a full probability 
distribution with associated statistical properties as the result of 
the methodology. This offers a more complete understanding of 
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the uncertainty in the parameter compared to a single maximum 
likelihood value. In addition, unmodeled dynamic effects are 
collected into a model discrepancy function which can be 
analyzed to recover potential new dynamics in the system. 
However, a major ongoing challenge in this field is the 
identifiability problem, which makes it difficult in many cases 
to determine how much of the error between the measured and 
simulated outputs is due to parameter change, and how much is 
due to model discrepancy caused by effects such as new 
dynamics [10]. Since there may be multiple solutions that satisfy 
the formulation, additional information about the system is 
needed to specify a unique solution [13,14].  

In this work, we will focus on the problem of identifying the 
presence of new dynamics faults in a system, based on applying 
the Bayesian approach first presented in [9]. We propose use of 
a physics-based model to identify new dynamics in a system by 
predicting the expected probability distribution of chosen 
calibration parameters. Characteristics of these distributions will 
be used to differentiate between cases where only the system 
parameters have changed, and cases where there is additional 
discrepancy due to new dynamics. We first present an example 
of a mechanical system, along with the model of a fault which 
involves new dynamics. The existing Bayesian inference 
formulation will then be introduced, followed by our proposed 
method for identifying the development of new dynamics, and 
preliminary results from the example system and fault. Finally, 
we will discuss the implications of these findings as well as 
future directions of this work.  

II. MECHANICAL SYSTEM & FAULT MODELING 

A rotating machinery system with coupled torsional-lateral 
vibrations will be used to demonstrate the proposed approach. 
We will present the equations of motion for the system under 
normal operating conditions, as well as an example of a fault that 
introduces new dynamics in the system.  

A. Mechanical System and Equations  

The mechanical system consists of a motor driving a load, 
joined by a coupling, as shown in Fig. 1. The motor, load and 
coupling are modeled as masses and rotary inertias, connected 
by springs with torsional and lateral stiffness. Bearings are 
located on either side of the motor and load components and are 
modeled as horizontal and vertical linear springs. Fig.1a shows 
the torsional system’s components and degrees of freedom, and 
Fig.1b shows the lateral system. 

 

Figure 1.  Schematic of rotating machinery system. 

The torsional system is modeled as a 4-DOF lumped-
parameter system comprised of rotary inertias, Ji, and torsional 
springs, kTi, with external driving torque TM provided by the 
motor and a torque demand TL at the load. The angular 
displacements at each inertia are given by θi. No damping is 
considered in the system. The equations of motion for the 
torsional system alone are:  

 𝐽1𝜃̈1 = −𝑘𝑇1(𝜃1 − 𝜃2) + 𝑇𝑚 (1a) 

 𝐽2𝜃̈2 = −𝑘𝑇1(𝜃2 − 𝜃1) − 𝑘𝑇2(𝜃2 − 𝜃3) (1b) 

 𝐽3𝜃̈3 = −𝑘𝑇2(𝜃3 − 𝜃2) − 𝑘𝑇3(𝜃3 − 𝜃4) (1c) 

 𝐽4𝜃̈4 = −𝑘𝑇3(𝜃4 − 𝜃3) − 𝑇𝑙  (1d) 

The lateral system is modeled as horizontal and vertical 
DOFs at the four drivetrain component masses and at the four 
bearings, for a total of 16 lateral displacement DOFs. Mass 
imbalances in the motor and load shaft excite vibrations in the 
lateral system, which in turn excite the torsional system, 
resulting in coupled torsional-lateral vibrations [17]. The 
equations of motion for the torsional-lateral system can be 
derived using Lagrange’s equations. In the interest of space, 
these equations will not be repeated here, as the focus of this 
work is on the development of new dynamics in the torsional 
system.  

B. Modeling of Fault with New Dynamics  

We will consider the development of new dynamics in the 
form of a stick-slip fault that occurs between the motor shaft and 
motor-side coupling hub. The sticking case, where the motor 
shaft and coupling hub move together rigidly, is given by Eq. 
(1b), and represents fault-free operation of the coupling 
connection. In the slipping case, the component J2 would behave 
as separate inertias, denoted J2a and J2b, which move relative to 
each other with angular displacements θ2a and θ2b, and a friction 
torque Tf acting between them:  

 𝐽2𝑎𝜃̈2𝑎 = −𝑘𝑇1(𝜃2𝑎 − 𝜃1) − 𝑇𝑓 (2a) 

 𝐽2𝑏𝜃̈2𝑏 = −𝑘𝑇2(𝜃2𝑏 − 𝜃3) + 𝑇𝑓 (2b) 

Whether the connection is in a sticking or slipping condition 
can be predicted by comparing the interface torque, Tf, between 
the shaft and coupling hub to a maximum friction torque value. 
The friction torque between the two inertias can be calculated by 
equating the angular accelerations in Eq. (2a) and (2b), assuming 
the connection begins in a “sticking” condition. 

 1

𝐽2𝑎
[−𝑘𝑇1(𝜃2𝑎 − 𝜃1) − 𝑇𝑓] =

1

𝐽2𝑏
[−𝑘𝑇2(𝜃2𝑏 − 𝜃3) + 𝑇𝑓] (3a) 

 𝑇𝑓 = [−
𝑘𝑇1

𝐽2𝑎
(𝜃2𝑎 − 𝜃1) +

𝑘𝑇2

𝐽2𝑏
(𝜃2𝑏 − 𝜃3)] (

𝐽2𝑎𝐽2𝑏

𝐽2𝑎+𝐽2𝑏
) (3b) 

This friction torque can be used in a logical condition to 
determine whether there is sticking or slipping in the coupling 
[16]. If the friction torque exceeds the maximum friction torque 
Tmax, that the connection can tolerate, the two components will 
slip relative to each other. If not, they will stay connected and 
move together. The stick-slip phenomenon occurs when the 
system quickly alternates between the sticking and slipping 
conditions. This may occur under a variable torque demand from 



   

the load, which is a typical situation for many types of rotating 
machinery.  

During slipping, the torsional system behaves as a 5-DOF 
system, with additional dynamics that are not present in the 
original system model. It is clear that these dynamics cannot be 
accounted for by calibrating parameters in the original system.  

In the next sections, we will present the fundamentals of the 
existing Bayesian inference approach for parameter calibration 
and present our proposed methodology for applying it to 
recognizing the emergence of new dynamics.  

III. BAYESIAN INFERENCE FOR PARAMETER CALIBRATION 

The Bayesian approach to parameter calibration and 
uncertainty quantification is based on Bayes’ Theorem [15]. We 
briefly note that in most literature in the area of Bayesian 
inference, the set of calibration parameters is denoted as θ. 
However, as we have used θ and its derivates in earlier sections 
to represent the rotational degrees of freedom of the mechanical 
system, we will use the symbol φ instead for the calibration 
parameter set.  

In the context of parameter calibration, the Bayesian 
approach is used to calculate the probability distribution of the 
value one or more parameters φ, given some known, measured 
data, y. This distribution, known as the posterior p(φ|y), is, by 
Bayes’ Theorem, proportional to the product of a chosen prior 
distribution, p(φ), and a calculated likelihood function, p(y|φ): 

 𝑝(𝜑|𝑦) ∝ 𝑝(𝜑)𝑝(𝑦|𝜑) (4) 

The prior distribution reflects our existing knowledge about 
the probability distribution of a parameter, and the likelihood 
represents how likely it is that the collected data is true, given a 
certain value of the parameter φ. The likelihood is based on the 
difference between the measured output, denoted as ye, and the 
simulated output at a given parameter value, denoted as ym(φ). 
The smaller this difference, the higher the likelihood value. The 
Gaussian likelihood function is a common choice. The posterior 
distribution represents how likely each value of φ is to be true, 
given the collected data y. It is often analytically intractable, and 
is instead calculated numerically through sampling methods 
such as Markov-chain Monte Carlo (MCMC) methods [15].  

An extended version of this Bayesian approach for parameter 
calibration was first introduced in [9], and expanded in works 
such as [10,11]. The extended formulation includes a term for 
model discrepancy or model bias, which accounts for errors and 
uncertainty due to modeling simplifications, nonlinearities, and 
other unmodeled effects. It is expressed as:  

 𝑦𝑒(𝑥) = 𝑦𝑚(𝑥, 𝜑) + 𝛿(𝑥) + 𝜀, (5) 

where ye(x) is the measured output data, ym(x,φ) is the simulated 
output from the model, δ(x) is the model discrepancy function, 
and ε is the random measurement noise. Here, x represents the 
system’s control inputs or operating parameters. The procedure 
for calculating the posterior distribution of φ is computationally 
complex, so in the interest of space, we will not present the 
details here. We refer the reader to works in [9-11] for a more 
thorough discussion of existing methods.  

A major limitation of the current Bayesian approach is the 
lack of identifiability [10,13] between the effects of changes in 
the parameters, or the development of new dynamics, which 
would be captured by the model discrepancy function δ(x). In 
the context of fault diagnosis, discerning whether a fault in the 
system is due to a parameter change or the development of new 
dynamics is often difficult.  

IV. METHODOLOGY & RESULTS  

In this section, we will present our proposed methodology 
and apply it to the example mechanical system and fault 
introduced in section II. The goal is to recognize a change in the 
system output as being due to a fault that involves new dynamics 
rather than a change in an existing parameter.  

A. Proposed Methodology 

Our proposed method involves applying the Bayesian 
inference approach to obtain the posterior distribution of a 
parameter in a situation where new dynamics is known to exist. 
The central idea of this method is that parameter calibration 
alone will not be able to accurately account for the new dynamic 
behaviour, and should result in an inconsistent posterior 
distribution. Use of a physics-based model will allow us to 
simulate the behaviour of this fault in the system, as well as the 
expected posterior distribution for certain calibration 
parameters.  

 

Figure 2.  Flowchart of proposed methodology.  

Fig. 2 shows a flowchart outlining the steps for our proposed 
methodology. In Step 1, we choose a type of new dynamics fault 
that we wish to be able to diagnose, should it occur in the real 
system. Using the original model of the healthy system, and the 
model with the new dynamics fault, we perform parameter 
calibration to obtain predicted posterior distributions. In other 



   

words, we simulate the fault, and compute the expected results 
if we were to calibrate different parameters to account for the 
change in the system due to this fault.  

In Step 2, once we determine that the real system contains a 
fault, we perform a similar set of parameter calibrations as in 
Step 1. We obtain the posterior distributions from parameter 
calibration based on the real data from the system with an 
unknown fault. In Step 3, we compare the posterior distributions 
from Steps 1 and 2 using some similarity metric, and decide 
whether or not the unknown fault in the system is likely to be 
due to the chosen new dynamics fault.  

B. Results  

In this section, we will present and compare the results for 
two representative cases in order to demonstrate our proposed 
methodology.  

In the first case, we will modify the value of a parameter in 
the original system, and use the Bayesian inference approach to 
calculate the posterior distribution of the parameter. This case 
will be used as a baseline for what the posterior should look like 
if calibrating the chosen parameter can accurately account for 
the change in the system. In the second case, we will simulate 
the system’s behaviour with the addition of new dynamics from 
the stick-slip fault. We will then perform the same Bayesian 
analysis to try and account for the change in the system 
behaviour by calibrating different parameters. As mentioned 
earlier, we expect that this second case will yield inconsistent 
results. 

In the base case, we change the parameter representing the 
torsional stiffness of the motor shaft (kT1 in Fig. 1) from 3E6 
N/m to 3.25E6 N/m in the system, and then attempt to calibrate 
the value of the parameter using the existing Bayesian approach 
discussed earlier. The prior distribution is assumed to be a 
normal distribution with a mean equal to the original parameter 
value and a standard deviation of 0.5E6 N/m. The likelihood 
function is calculated based on the difference between the 
simulated system output with the new torsional stiffness, and the 
model output at a range of φ values. In each case, the horizonal 
vibration in the non-drive end motor bearing was used as the 
output.  

In Fig. 3, we can see that the likelihood function is highest 
around the new value of kT1 (3.25E6 N/m), with a relatively 
narrow shape, indicating high confidence in the value of the 
parameter. The posterior distribution, obtained by a Monte Carlo 
sampling method, is also highest near the new true value of kT1. 
This base result shows that if the correct parameter is chosen to 
account for a change in the system’s behaviour, the results of the 
likelihood function and posterior distribution should yield 
consistent and accurate results. Note that for these figures, the 
priors and posteriors are probability density functions, while the 
likelihood is not, and has been scaled to fit on the same axis.  

In the second case, we will simulate the original system with 
the addition of a stick-slip fault, and perform the same parameter 
calibration on this new system. We then show the results for this 
case, where parameter calibration alone should not be sufficient 
to account for the discrepancy between the system and model 
output.  

 

Figure 3.  Calibration results for parameter change in system. 

 

 

Figure 4.  Calibration results for (a) kT1 (b) kT3 with new dynamics fault in 

system. 
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For the results in Fig. 4a) and b), a stick-slip fault was 
induced in the system, and the calibration procedure was 
performed with the motor shaft stiffness kT1, and load shaft 
stiffness kT3 (refer to Fig. 1) as the calibration parameters. In 
each case, the likelihood function has multiple distinct peaks, 
some of which do not correspond to either the original or new 
parameter values. The posterior distribution shows similar 
characteristics as the likelihood function, but has very low values 
where the chosen prior distribution is also low. Since the 
posterior distribution is sensitive to the exact choice of the prior, 
the likelihood provides more complete information about 
whether or not the parameter calibration can accurately account 
for the changes in the system’s behaviour.  

This case shows that the results obtained by using parameter 
calibration to account for new dynamics behaviour are not 
consistent with the actual state of the system. Similar posterior 
distributions can be calculated for other parameters in the 
original model.  

Inspection of the likelihood and posterior for inconsistencies 
constitutes a qualitative approach to infer the presence of new 
dynamics. For a more thorough, quantitative analysis, these 
simulated results can be compared to the results obtained from 
applying the Bayesian approach to experimental data in which 
new dynamics are thought to exist. This is shown in Steps 2 and 
3 of the methodology flowchart in Fig. 2. A potential method for 
doing this is using a measure such as the Hellinger distance or 
similar metric to compare the similarity of two probability 
distributions. If the same new dynamics fault as was simulated 
has developed in the real system, the likelihood function and 
posterior distribution should present similar characteristics.  

V. CONCLUSIONS & FUTURE WORK 

The results presented in this work have demonstrated an 
approach which allows for identification of new dynamics in a 
system. We applied parameter calibration to a system where an 
existing system parameter had changed, as well as one where a 
fault with new dynamics was simulated, and calculated the 
predicted posterior distributions for both cases. The features of 
the posterior distributions for each case were compared. The 
results showed that attempting to account for the development 
of new dynamics by performing parameter calibration yielded 
inconsistent results in the likelihood function and posterior 
distribution. Having a physics-based model allowed us to 
simulate and predict the effect of the new dynamics and 
associated fault. In addition, we were able to predict what the 
posterior distribution would look like if calibration of the system 
was performed using a given parameter.  

The next steps in this work would be to extend the 
methodology to cover a range of different systems and classes of 
new dynamics and faults. A further extension of the work would 
involve updating the original model by integrating a submodel 
of the new dynamics. This would require isolation of the fault 
submodel, and identification of the key parameters of the new 
dynamics model.  
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