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Abstract— Broadcast applications of liquid herbicides are 

used to manage weeds such as hair fescue (Festuca filiformis 
Pourr.) and sheep sorrel (Rumex acetosella L.) in wild blueberry 
(Vaccinium angustifolium Ait.) fields. Weeds typically grow in 
patches of the fields, consequently, herbicide is wasted on areas 
of the field without weed cover. Application efficiency can be 
optimized by employing a smart sprayer which uses machine 
vision to identify areas of the field containing the target weeds 
in real-time. The YOLOv3-Tiny convolutional neural network 
(CNN) was trained to detect hair fescue and sheep sorrel using 
1280x720 resolution images captured in 58 wild blueberry fields 
throughout Nova Scotia, Canada. The trained CNN detected at 
least one target weed per validation image with F1-scores of 0.97 
for hair fescue and 0.90 for sheep sorrel at a network resolution 
of 1280x736. An evaluation was performed at a commercial 
wild blueberry field in Debert, Nova Scotia, to examine the 
effects of camera selection and target distance on detection 
accuracy. A Logitech c920 webcam, an LG G6 smartphone, and 
a Canon T6 DSLR camera were used to capture colour images 
at distances of 0.57 m, 0.98 m, and 1.29 m from target weeds.  
Test plots were selected at randomly spaced intervals along an 
inverted “W” pattern in the field. Mean F1-scores for each 
combination of camera and image height were analyzed in a 3x3 
factorial arrangement for hair fescue and a 3x2 factorial 
arrangement for sheep sorrel. The peak F1-score for detection of 
at least one hair fescue plant, 0.97, was achieved with images 
captured with the LG G6 smartphone at a height of 0.98 m. 
Images captured with the LG G6 smartphone and Canon T6 
DSLR camera at 0.98 m each achieved an F1-score of 0.82 for 
detection of at least one sheep sorrel plant per image. Sheep 
sorrel was only detected by the CNN in images from the 
Logitech c920 camera using 3 of 9 parameter combinations in 
the analysis. Future work will examine images from two 
additional fields tested under similar conditions. Additionally, 
the CNN will be used to control herbicide applications after 
integration with a real-time smart sprayer. A web-based 

application will be developed to detect target weeds using the 
CNN and provide wild blueberry growers with site-specific 
information to aid management decisions. Using a CNN to 
detect weeds will improve traditional management techniques 
and create cost-savings and greater sustainability for wild 
blueberry growers. 
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I.  INTRODUCTION 

Wild blueberries (Vaccinium angustifolium Ait.) are a 

perennial, economically important crop native to northeastern 

North America. Commercial management typically occurs in a 

two-year cycle with the fruit buds beginning to grow from 

August to October in the non-bearing (sprout) year, then lie 

dormant through the winter [1]. The wild blueberry plants 

continue growing into the bearing (crop) year, and the fruit is 

harvested in August when 90% of the berries are ripe [2]. The 

growth cycle is restarted after the harvest, as the bare branches 

are pruned by flail mowing or burning [1]. 

Broadcast applications of liquid herbicides are typically 

used to manage more than 100 unique species of weeds, a major 

yield-limiting factor in wild blueberry production [3], [4]. In the 

most recent weed survey, sheep sorrel (Rumex acetosella L.) 

and hair fescue (Festuca filiformis Pourr.) ranked as the first 

and fourth most common weeds in Nova Scotia wild blueberry 

fields [5]. Hair fescue grows as a tufted grass and is 

recognizable by its thin green- and tan-coloured blades (Figure 

1) [6]. Sheep sorrel is characterized by its green or red leaves 

which are small, round, and arrow-shaped (Figure 2). The 

survey found that hair fescue and sheep sorrel had field 

uniformities of 25% and 63%, respectively [5]. The intermittent 

nature of these weeds presents an opportunity for increased 

herbicide application efficiency using a smart variable-rate 

sprayer. Smart sprayers utilize sensors and high-speed 

computer inferencing to select which areas of a field to apply 
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agrochemicals, limiting the total volume needed for 

management [7]–[13]. 

Recent smart sprayers for wild blueberry management have 

relied on red-green-blue (RGB) image data from cameras to 

detect foliage [7]–[11]. A smart sprayer relying on green colour 

segmentation could successfully isolate green foliage from 

blueberry branches and bare ground [7]–[9]. This resulted in 

herbicide savings of up to 78.5% [9], but the algorithm could 

not discriminate between different weed species containing 

green. Another imaging system relying on colour co-occurrence 

matrices was created to detect goldenrod (Solidago spp.) in wild 

blueberry fields, but could not be easily adapted to other weeds 

[10], [11]. These smart sprayers have typically attached 

cameras 1.1 m [7], [8] to 1.2 m [9]–[11] from the ground on the 

applicator boom ahead of the spray nozzles. This boom height 

is higher than smart sprayers in other cropping systems [12]–

[15], but is necessary due to the highly variable topography of 

wild blueberry fields (Figure 3). 

Deep learning convolutional neural networks (CNNs) are an 

image processing technique which has been gaining popularity 

for agricultural applications in recent years [16]. Datasets with 

thousands of images labelled or sorted according to their 

classification are used to train a CNN to classify new, unlabeled 

images through backpropagation [17]. CNNs provide an 

opportunity for high-speed, automatic inferencing of field 

conditions using images from RGB cameras [18], [19]. In the 

wild blueberry cropping system, Schumann et al. [20] trained 

four CNNs to detect and classify fruit ripeness stages and 

provide yield prediction. CNNs have been used to detect weeds 

in other cropping systems such as potatoes [21], strawberries 

[22], and various Florida vegetables [23]. Hennessy et al. [24] 

trained six CNNs for detecting hair fescue and sheep sorrel 

using images from 58 wild blueberry fields in Nova Scotia, 

Canada. Training images were captured at three heights (0.52 ± 

0.04 m, 0.99 ± 0.09 m, and 1.35 ± 0.07 m), corresponding with 

the possible range of image capture heights on a smart sprayer. 

The CNNs achieved F1-scores [25] of up to 0.97 and 0.90 for 

detecting at least one instance of hair fescue and sheep sorrel in 

an image, respectively. The study concluded that the YOLOv3-

Tiny CNN [26] had an appropriate balance between 

identification accuracy and processing speed and should be 

investigated further for controlling herbicide applications from 

a smart sprayer. 

This study examined the use of YOLOv3-Tiny, with the 

trained weights from [24], to detect instances of hair fescue and 

sheep sorrel in images captured from a wild blueberry field in 

Debert, Nova Scotia. Images were captured using varying 

combinations of three cameras and three image heights at 

randomly spaced intervals along an inverted “W” path [4], [27], 

[28] through the field. The mean F1-scores for hair fescue 

detection were analyzed in a 3x3 factorial arrangement. The 

mean F1-scores for sheep sorrel used results from two of three 

cameras and were analyzed in a 3x2 arrangement. This paper 

contributes information regarding optimal image capture 

distances and recommendations towards effective camera 

selection for accurate weed detection. 

 

Figure 2.  Sheep sorrel leaves growing in a sprout-year wild blueberry 

field in spring 2019 [6]. The wild blueberry branches intermingled with 

the leaves have been pruned through flail mowing. 

 

Figure 1.  A hair fescue tuft growing in a sprout-year wild blueberry 
field in spring 2019 [6]. The wild blueberry branches behind the tuft have 

been pruned through flail mowing. 

TABLE I.  NUMBER OF TARGET AND NON-TARGET 

PLOTS USED TO COLLECT IMAGES FOR TESTING THE WEED-

DETECTION CNNS.  

Target 
Height (m) 

Total 
0.57 0.98 1.29 

Hair Fescue 5 5 5 15 

Not Hair Fescue 4 4 6 14 

Sheep Sorrel 3 3 3 9 

Not Sheep Sorrel 6 6 8 20 

 



   

II. MATERIALS AND METHODS 

A. Field Image Collection 

Images were collected in a sprout-year field in Debert, Nova 

Scotia (45.4265°N, 63.4826°W) on three dates corresponding 

to typical herbicide application timing: May 6, May 14, and 

May 25, 2020. Test plots were selected by walking an inverted 

“W” pattern through the field [4], [27], [28]. The starting point 

of the path was selected by walking 10 paces along the edge of 

the field, then 10 paces into the field. Test plots were selected 

at random intervals from 5 to 10 paces along the “W” and 

randomly assigned an imaging height of 0.57 m, 0.98 m, or 1.29 

m. This process continued until at least three target and non-

target test plots were selected for each weed at each imaging 

height. A resulting count of 29 test plots were used for image 

collection (Table I). 
A Canon EOS Rebel T6 DSLR camera (“Canon T6”), an LG 

G6-H873 smartphone (“LG G6”), and a Logitech c920 HD Pro 
USB 2.0 webcam (“Logitech c920”) were used to capture 
images at each test plot. The Logitech c920 was selected for its 
low cost and successful deployment in smart variable-rate 
sprayers developed by [12] and [13]. The Logitech c920 was 
mounted to a tripod and connected to a USB 3.1 port on an MSI 
workstation laptop (WS65 9TM-1410CA, Micro-Star 
International Co., Ltd) with an Nvidia Quadro RTX 5000 
graphics processing unit (GPU) via a 2 m USB 3.0 extension 
cable. Images were captured at 1920x1080 resolution in 
Logitech Capture software. The image sharpness was reduced 
from the default 128 to 95 to prevent image tearing and artifacts 
(Figure 4). The autofocus function did not properly focus on the 

 

Figure 3. An example of the topography seen in many wild blueberry fields [6]. This picture was captured in Murray Siding, NS (45.3654°N, 63.2118°W) 

on October 9, 2020, prior to pruning. The leaves on the wild blueberry plants have turned from green to red with the change in season. 

 

Figure 4. Tearing and artifacts present in images from the Logitech c920 camera when the default sharpeness setting was used [6]. 



   

targets, so manual focus was used. Eight Logitech c920 cameras 
were tested and all exhibited the same behaviour when used in 
the field but functioned normally when used indoors. The Canon 
T6 and LG G6 cameras were used to capture images in the same 
orientation with their respective lenses placed directly next to the 
lens of the Logitech camera. Images were captured with the 
Canon T6 and LG G6 using autofocus and without zoom, at 
resolutions of 5184x3456 and 4160x3120, respectively. These 
two cameras were selected for their subjectively clearer images 
and greater colour depth. 

B. Image Processing 

The field images were organized by date, camera, height, 

and target weeds on the MSI laptop for analysis. The YOLOv3-

Tiny CNN running on the Darknet framework [29] with an 

internal resolution of 1280x736, detection threshold of 0.15, 

and the trained weights from [24] was used to detect hair fescue 

and sheep sorrel in the field images. The results of each 

combination of camera, lens height, and date were evaluated on 

their effectiveness of detecting at least one target weed per 

image using the precision, recall, and F1-score metrics [25]. 

These scores are calculated based on the number of true positive 

(tp), false positive (fp), and false negative (fn) detection of 

targets. Precision is ratio of true positives to all detections: 

 
  

Recall is the ratio of true positives to all actual targets: 

 
  

F1-score is the harmonic mean of precision and recall: 

 
  

C. Experimental Design 

The F1-score for detection of at least one target weed per 

image was calculated for each combination of date, camera, and 

lens height. An analysis of variance was performed in Minitab 

19 to determine the significant main and interaction effects. For 

hair fescue, the main effects of camera selection (p = 0.011) and 

lens height (p = 0.018), and the interaction between the two (p 

= 0.033) were significant. For sheep sorrel, the only significant 

effect was lens height (p = 0.006). The camera selection and 

lens height are important considerations for development of a 

smart sprayer, so they were chosen for further analysis. The 

mean F1-score for hair fescue detection with each combination 

of camera and lens height was analyzed using a randomized 

complete block design in a 3x3 factorial arrangement. The CNN 

did not detect any instances of sheep sorrel in images from the 

Logitech c920 in 6 of 9 combinations of date and lens height, 

making the F1-score incalculable. For sheep sorrel detection, the 

results from the Logitech c920 camera were omitted and the 

design was modified to a 3x2 factorial arrangement. Means 

comparisons were generated using Tukey’s pairwise method. 

III. RESULTS AND DISCUSSION 

A. Target Weed Detecion Results with Each Camera and 

Image Height 

For hair fescue detection, the camera producing the highest 

F1-score was different at each image capture height (Table II). 

At 0.57 m, the Canon T6 produced the greatest F1-score (0.74); 

however, this was not significantly different than the F1-scores 

from images captured with the LG G6 (0.67) and Logitech c920 

(0.59). At 0.98 m, the LG G6 produced the highest-scoring 

images of the entire test, with a mean F1-score of 0.97. Images 

from the Canon T6 at this height were the second highest 

scoring (0.82), while images from the Logitech produced a 

significantly lower F1-score (0.60). At 1.29 m, the Logitech 

c920 images had the highest F1-score (0.82), but the F1-scores 

from the Canon T6 images (0.80) and LG G6 images (0.81) 

were not significantly different. For sheep sorrel detection, 

images from the Canon T6 and LG G6 both produced an 

average F1-score of 0.43 at the 0.57 m height. Images captured 

at 0.98 m produced the highest F1-scores for both cameras. The 

Canon T6 images (0.82) produced greater F1-scores than the LG 

G6 (0.77), but the difference between the two was not 

significant. At 1.29 m, images from the LG G6 produced and 

F1-score of 0.40, while images from the Canon T6 produced an 

F1-score of 0.35. 

For both weeds, the peak F1-scores were achieved with 

images captured at 0.98 m. This may be a result of bias in the 

training dataset, as 70% of the images were captured at 0.99 ± 

0.09 m [24]. The lowest F1-scores for sheep sorrel were 

produced at 1.29 m. At this distance, there may not have been 

enough pixels at the 1280x736 processing resolution to 

adequately capture the features of the small sheep sorrel leaves. 

Overall, the F1-scores for detecting at least one hair fescue or 

sheep sorrel plant per image in this study were lower than the 

F1-scores produced by [24].  A possible reason for this could be 

from bias in the original dataset. Training images were collected 

by walking throughout the fields without a defined random 

TABLE II. MEAN F1-SCORES FOR DETECTION OF AT 

LEAST ONE HAIR FESCUE OR SHEEP SORREL PLANT PER 

IMAGE USING VARIOUS LENS HEIGHTS AND CAMERAS 

Height 

(m) 
Camera 

F1-score 

Hair Fescue Sheep Sorrel 

0.57 Canon T6 0.74 AB^ 0.43 AB^ 

0.57 LG G6 0.67 B 0.43 AB 

0.57 Logitech c920 0.59 B  

            

0.98 Canon T6 0.82 AB 0.82 A 

0.98 LG G6 0.97 A 0.77 A 

0.98 Logitech c920 0.60 B  

            

1.29 Canon T6 0.80 AB 0.35 B 

1.29 LG G6 0.81 AB 0.40 AB 

1.29 Logitech c920 0.82 AB  
^Means within the same column followed by the same letter(s) for each weed are not 

significantly different based on Tukey’s means comparison at α = 0.05. 



   

sampling method. The personnel capturing the images may 

have been biased towards weed instances that were easier to see, 

unintentionally ignoring hair fescue and sheep sorrel plants that 

were more difficult to see. 

One or more instances of sheep sorrel were detected in some 

images from the Logitech c920 on May 14 and May 25. The 

peak F1-score for these scenarios was 0.33 (Table III).  

B. Image Quality and Errors with the Logitech c920 Camera 

Considering that 6 of 9 parameter combinations of date and 

height did not generate any true positive detections, the 

Logitech c920 was not a viable option for detecting sheep 

sorrel. The inability of the CNN to detect sheep sorrel in images 

from the Logitech c920 may have been due to washed-out, 

lower-quality images compared to the images captured with the 

Canon T6 and LG G6 (Figure 5). Preprocessing images from 

the Logitech c920 to accentuate the green hues may improve 

detection accuracy detection accuracy but would do so at the 

expense of processing speed. The reduced sharpness setting 

used to correct the image errors in Figure 4 may have reduced 

the image clarity, resulting in lower F1-scores. 

IV. CONCLUSIONS 

The F1-scores produced in this experiment were lower than 
the F1-scores produced by [24], which may be the result of bias 

TABLE III. F1-SCORES FOR DETECTION OF AT LEAST 

ONE SHEEP SORREL PLANT PER IMAGE USING THE 

LOGITECH C920 CAMERA 

Date Height (m) F1-score 

May 14 
0.57 0.29 

1.29 0.33 

May 25 0.57 0.33 

 

 

Figure 5. Comparison of images captured with the Canon T6 (top row), LG G6 (middle row) and Logitech c920 (bottom row) cameras on May 6, 2020 [6]. 

Images in the left column contain a hair fescue tuft captured at 0.98 and images in the right column contain sheep sorrel captured at 0.57 m.  



   

in the original training dataset. A lens height of 0.98 m produced 
the best results for hair fescue and sheep sorrel. The Logitech 
c920 camera was not viable for sheep sorrel detection, as 6 of 9 
combinations of date and height resulted in zero true positive 
detections. This may have been due to either lower quality 
images compared to the Canon T6 and LG G6. Preprocessing 
images to accentuate the green colours may cause the sheep 
sorrel to be more visible, potentially improving detection results. 
Future work will involve further verification using images from 
two additional fields. Additionally, a CNN will be used to 
selectively spray herbicide from a smart sprayer. The results of 
the LG G6 images indicate that the quality of smartphone 
pictures is adequate for identifying hair fescue and sheep sorrel 
with a CNN. A web-based application will be developed to 
detect target weeds in smartphone images using a CNN and 
provide growers with site-specific information for management 
decisions. Using a CNN to detect weeds will improve 
management techniques in the wild blueberry industry and 
create cost-savings for growers. 
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