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Abstract—A pair of approximations are presented which are 

useful for the solving of cyclic single-phase sub-sonic 

compressible thermodynamics machines with particular 

relevance to Stirling engines. The first approximation models 

compressible, acoustics neglected flows in a constant pressure 

volume. This approximation has similar performance to 

implicit incompressible techniques and when applied to the 

modelling of a laboratory low-temperature Stirling engines 

can model a variety of running conditions with an average 

error on thermodynamic power of 23%, ranging between 5% 

and 42%. The second approximation is designed to accelerate 

the convergence of the wall temperatures towards steady-state 

conditions. This technique was shown to converge 2-3 orders 

of magnitude faster than the baseline physics when applied to 

a large low-temperature engine. 

Keywords – thermodynamic, numerical, dynamic, 

approximation 

I.  INTRODUCTION 

Low-temperature engines are a poorly understood 
classification of Stirling engines (SEs), which in itself is much 
less understood than other forms of heat engines. Interest in 
Stirling engines has emerged as a result of the recent push 
towards renewable resources. Some renewables, such as low-
temperature geothermal sources feature hot temperatures on the 
order of the boiling point of water, a cold temperature in the 
realm of developed power generation technologies. However, 
such thermal sources are so common that the province of 
Alberta, Canada, has enough of this low temperature 
geothermal to reasonably produce 600MW [1]. Yet, the entire 
country of Canada has yet to produce a single geothermal 
power plant. At large enough scales technologies which use 
turbines such as organic Rankine cycle (ORC) are superior to 
reciprocating devices like SEs, but turbines become less 
economical to produce at smaller scales [2]. At these scales 
Stirling engines may have higher efficiencies [3] than ORCs in 
addition to reduced corrosion or toxicity by nature of inert 
working fluids such as nitrogen, helium or hydrogen. With 
enough development, engines forgo the mechanism altogether, 
becoming free-piston engines which require no lubrication or 
maintenance for decades even when running at full power [4]. 

With regards to the numerical modelling of SEs, 
approximations of the pressures and therefore power within an 
engine can be easily obtained via the Schmidt model, as created 
by Gustav Schmidt [5]. The Schmidt model was described and 
expanded by Urieli and Berchowitz [6] who created the 
equation set for adiabatic analysis in their SIMPLE model. 
Their formulation served as the basis for a series of models up 
until the CPMS model [7], or Comprehensive Polytropic Model 
of Stirling engines. The trend in model improvements is 
notably in the direction of greater detail with regards to the 
influences of the wall temperatures into the solution. Farther 
into the design process it is beneficial to include even greater 
detail than the analytical models can handle. The logical step to 
accomplish this simply is to discretize the engine into finite 
elements.  

When solving a system of elements, the physics involved 
can be approached in one of two ways. The entire cycle can be 
calculated at once, acknowledging that the start and end points 
at steady-state must be the same. This is often very efficient to 
accomplish by multivariable non-linear solving algorithms [8]. 
Alternatively, the cycle can be iterated through time, ultimately 
approaching a steady-state value in a similar manner to which 
the true system does so [9]. The nature by which this is 
accomplished can be quite revealing to the operation of the 
process. The later will be of discussion here, selected due to its 
ability to predict transient behavior and facilitate the addition of 
new features with relative simplicity. The first of 
approximations presented in this paper will discuss the 
formulation of an iterative scheme for solving for the gas flow 
rates within a SE. This and the acceleration method following it 
were created for implementation into MSPM a modular single-
phase model for Stirling engines and other reciprocating 
devices [10]. 

II. STIRLING ENGINE PROCESSES 

A SE undergoes a cycle of heating, expansion, cooling and 
compression once per rotation. This process, with regards to a 
gamma type engine, is shown below in Figure 1.  
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Figure 1.  Ideal Stirling enigne cycle, from left to right: (1→2) bulk heating 

creating rise in pressure, (2→3) engine expands extracting work from 
increased pressure, (3→4) bulk cooling creating drop in pressure, (4→1) 

engine compresses extracting work from decreased pressure. 

As a heat engine, SEs are subject to the Carnot limit of 
efficiency equal to 1 – TC/TH whereas TC is the gas temperature 
during compression and TH is the gas temperature during 
expansion. The ideal cycle is physically impossible, subject to 
the constraints of heat transfer, flow losses and the 
practicalities of mechanism design. Controlling the divergence 
from the ideal cycle of a SE is fundamentally about the control 
of two things: pressure and heat transfer. 

A. Pressure 

The correlation of high pressures during expansion and low 
pressures during compression is what drives a SE. These 
pressure changes are induced via changes in the volume and 
average temperature of the engine contents. This temperature 
change is significant and does not happen uniformly across the 
engine resulting in substantial variances in density within the 
engine. Pressure losses are significant through the heat 
exchangers and regenerator structures, owing to the balance 
between high temperature change against incurred pressure 
losses. Pressure losses, though dependent on temperature 
through its weak relationship to viscosity are strongly related to 
engine speed and pressurization. 

B. Heat Transfer 

Thermally, a SE has two optimum operating conditions: 
one where there is no heat transfer outside of the heat 
exchangers and one where heat exchange is perfect. These are 
formally known as the adiabatic and isothermal idealizations 
[6]. A real engine will operate somewhere in-between these 
points. In reality, most engines exhibit adiabatic behavior [6], 
thus any tendency for heat transfer outside the heat exchangers 
will result in a divergence from the adiabatic ideal, lowering 
the power. The quantity of energy exchanged with the walls is 
dependent on the wall temperatures, this value is minimum 
when the walls have reached steady-state conditions. Thus, if 
an engine has been preheated beneficially it will run very well 
for a period of time as the walls act as additional heat exchange 
surface. If an engine is started from cold, then the walls will 
reduce the temperature difference, reducing the engines power 
until the walls are at steady-state. Changes in load will induce 

similar transients in SEs as the engine reaches a new operating 
point. 

III. APPROXIMATING COMPRESSIBLE GAS INTERACTIONS 

AT LOW SPEEDS 

The following is a derivation of a flow rate solving 
algorithm for low speed gas interactions. A summary and 
explanation of the assumptions within this approximation are 
as follows: 

(a) Uniform pressures everywhere – Stirling engines in 
particular are characterized by the absence of venting 
and normally do not include valves into their operation. 
At low speeds, such as the case with large low-
temperature SEs the pressure-drop and kinetic energy 
is ideally very low. The flow is still compressible 
however but not at speeds where acoustic effects effect 
the engine operation. If a gas volume is at rest then it 
will have equal pressures everywhere (in the absence 
of gravity effects). It can be assumed that for low 
enough speeds this tendency also applies. 

(b) Ideal gas equation of state – Stirling engines typically 
avoid phase change and operate on inert gases well 
removed from their condensation or critical 
temperatures and pressures. 

(c) One dimensional flow – The majority of important 
processes occur within the fine structures of heat 
exchangers and regenerative structures with relatively 
high ratios of length to hydraulic diameter. Making this 
assumption prevents the accurate modelling of 
recirculation, bends, entrance effects, jet impinging and 
preferential flows. However, by modelling as a pipe 
network it significantly reduces the computational 
burden. 

(d) Low mechanical acceleration – Stirling engines, if 
designed for a power generating purpose, must yield 
relatively steady rotational rates over the cycle. Thus, 
when modelling such engines, even under transient 
scenarios it is assumed that the acceleration is small 
relative to the speed. 

(e) Kinetic and potential energy of the gas is ignored, due 
to the low density, speed and vertical distance change 
of low temperature Stirling engines. 

The flow rates may be solved by solving for the flow rates 
such that a future point (t+δ) is also at uniform pressures as 
below: 

 Pi,t+δ = Pj,t+δ = mi,t+δRTi,t+δ/Vi,t+δ = mj,t+δRTj,t+δ/Vj,t+δ (1) 

The pressure P is defined at two elements (i & j) which are 
connected to each other. The pressure, assuming an ideal gas 
can be calculated from the mass (m), specific gas constant (R), 
temperature (T) and volume (V). By making the assumption 
that the specific gas constant is constant throughout it can be 
removed from the equation. These variables are expanded in 
the following subsections. 



   

A. Volume (Vi,t+δ) 

If the engines dynamics are known, the value of Vi,t+δ is 
known. The dynamics can be known by assuming that the 
engine is kinematic and of constant velocity, or by allowing the 
acceleration of the engine to lag behind by a small increment. 
This lag can be as small as one timestep or span several 
timesteps. For example in the MSPM model [10], the cycle is 
divided into precalculated points at set angular positions. The 
gas interactions are simulated while engine speed evolves 
between two predefined points. The initial speed is the speed at 
the end of the previous timestep, the final speed is a result of 
accelerating the initial speed using the forces applied in the 
previous increment. 

B. Mass (mi,t+δ) 

The final mass of an element is a product of the mass flow 
in an out of that element. This is formalized in (2). 

 mi,t+δ = mi,t + δ∑yfc,i,tV̇fcρfc,i,t (2) 

The variable V̇fc is the volumetric flow rate at an interface 
between elements spanning the timestep. The sign convention 
variable yfc,i is positive if a positive value of V̇fc would result in 
a flow into element i, and is negative otherwise. The variable 
ρfc,i,t is the density as measured at the interface at the start time. 

C. Temperature (Ti,t+δ) 

The final temperature must be determined from an energy 
balance. It is assumed that the gas is ideal and by this 
assumption the change in temperature is proportional, by the 
constant volume heat capacity (cv), to the change in specific 
internal energy (u): 

 Ti,t+δ = Ti,t  + dui/cv,i (3) 

The change in internal energy is expanded, here the 
variables are represented in their true form to be approximated 
later as either the value at t or t+δ: 

 dui = (dUi – ui dmi)/mi (4) 

Here, kinetic and potential energy is ignored. Thus, the 
change in total internal energy (dUi) is equal to the sum of heat 
flow (dQi) (heat transfer and transported internal energy) and 
work (δWi) (flow work and boundary work) produced by the 
element. As an unsteady-flow process. 

 dUi = dQi – δWi (5) 

The heat transfer component is easily calculated using the 
interactions the element has with its neighbors. Interactions 
which depend on the flow conditions (for example the Nusselt 
number via convection) can be approximated by the flow 
conditions determined during the previous timestep. The 
energy which is transported is proportional to the flow rates, 
thus the heat transfer can be approximated as: 

 dQi = dQcond,i + δ∑yfc,iV̇fcρfcufc (6) 

The variable dQcond,i represents the heat flow via conduction 
entering the element i during the timestep. The work acting on 
the element is totaled from the flow and boundary work acting 
on the element. 

 δWi = Pi,tdVi – δ∑yfc,iV̇fcPfc,t (7) 

Thus, (5) is approximated as: 

 dUi = dQcond,i + δ∑yfc,iV̇fc(ρfc,tufc,t + Pfc,t) – Pi,tdVi (8) 

Substituting (8) and (4) into (3) and approximating u as ui,t 
and m as mi,t+δ gives: 

 Ti,t+δ = Ti,t  + (Qcond,i + δ∑ yfc,iV̇fcρfc,t(ufc – ui + Pfc,t/ρfc,t) – 
Pi,tdVi)/(mi,t+δcv,i,t)  (9) 

Note the distinction is made between the specific internal 
energy measured at the interface (ufc) and that present in the 
element (ui). 

D. Bringing it all together 

Substituting (2) and (9) in (1) and equating the value of mi 
to mi,t+δ gives the following: 

(Ti,tmi,t + Ti,tδ∑ yfc,iV̇fcρfc,t + (Qcond,i + δ∑ yfc,iV̇fcρfc,t(ufc,t – ui,t 
+ Pfc,t/ρfc,t) – Pi,tdVi)/cv,i,t)/Vi,t+δ = Pj,t+δ/R 

 (10) 

This equation can be solved for a network of connected 
elements via matrix inversion in the form AV̇ = b. Each row 
represents a pair of elements 

 g(i,fc) = yfc,iρfc,t(Ti,t + (ufc,t – ui,t + Pfc,t/ρfc,t)/cv,i,t) (11) 

 f(i,fc) = (Ti,t mi,t + δ(Qcond,i – Pi,t(Vi,t+δ – Vi,t))/cv,I,t)/(δVi,t+δ)   
 (12) 

The entry A(a,b) would contain g(ia,fcb) – g(ja,fcb) whereas 
ia and ja are the two elements included in row “a” with ia is the 
element the flow leaving and ja being the element the flow is 
entering. The function g will be zero if the element and 
interface do not interact. The entry b(a) would contain f(ia,fca)  
– f(ja,fca) and the negatives of any g’s which represent flow 
rates which are a known value. Networks which contain 
constant pressure elements can be simplified by having each 
element maintain a constant pressure. Networks which require 
more equations to solve, due to containing loops solve for flow 
rates by ensuring that approximated pressure drops are equal to 
zero when integrated over a loop. 

IV. PREDICTING STEADY-STATE WALL TEMPERATURES 

The use of an iterative scheme with a nodal approach to 
predict the steady-state behavior of a cycle with a large time-
constant can result in many cycles having to be calculated. Or 
worse the returned result, due to an insufficiently small 
tolerance on convergence, may be far from the true steady-state 
of the device. The following represents an acceleration method 
for predicting the steady-state point of the solid components of 
the engine. 

At steady-state the integral of heat flux to and from a solid 
element of the engine will be equal to zero, this rule ensures 
that the value of all elements will be equal at the start and end 
of a cycle. The instantaneous heat transfer to any element 
Qin,i(t) is equal to the following: 

 Qin,i(t) = ∑Cij(t)(Tj(t) – Ti(t)) (13)  



   

where Cij is the thermal conductance of the interface between 
the elements i and j. All properties are subject to varying with 
time (t). Each temperature value can be reduced to steady Ti,avg 
and unsteady dTi(t) terms. This appears as the following: 

 Qin,i(t) = ∑Cij(t)(Tj,avg – Ti,avg + dTj(t) – dTi(t)) (14)  

The integral over a single cycle will result in the following, 
in which the steady-components can be extracted from the 
integral: 

∫Qin,idt = 0 = ∑((Tj,avg – Ti,avg)∫Cij(t)dt) +  

 ∑(∫(Cij(t)(dTj(t) – dTi(t)))dt) (15) 

Making assumptions can help to simplify this. Solid 
temperatures, due to their large thermal mass do not change 
significantly over a cycle. This is due to the difference in 
volumetric heat capacity of steel, a common construction 
material, and high-pressure air, for which at room temperatures 
and 10 bars of pressure still results in a 2 orders of magnitude 
difference in volumetric heat capacity. This error increases 
when less material is involved in the exchange. 

This assumption causes a division between the conductance 
paths between two solid elements and those between a solid 
and gas element: 

0 = ∑solid-solid((Tj,avg – Ti,avg)∫Cij(t)dt) +  

 ∑gas-solid(∫Cij(t)Tj(t)dt – Ti,avg∫Cij(t)dt) (16) 

For the solid-solid case, in the case of kinematic devices, 
constant thermal conductance and low in-cycle speed variation 
the integral ∫Cij(t)dt can be precalculated as a cycle average 
value Cij,eff-solid. For gas-solid interactions the actual value of 
Cij(t) may vary significantly while the temperatures are being 
converged, requiring that the integrals be calculated from the 
results of the previous cycle. Ultimately, this results in the 
following definitions. 

 Cij,eff-solid = ∫Cij(t)dt = 1/2π ∑Cij,θΔθ (17) 

 Cij,eff-mixed = ∫Cij(t)dt = (∑Cijδ(t))/∑δ(t) (18) 

 CTij,eff-mixed = ∫Cij(t)Tj(t)dt = (∑CijTj(t)δ(t))/∑δ(t) (19) 

The complete equation can be assembled in matrix form 
ATi = b with each row corresponding to the interactions with a 
particular element. The main diagonal appears as ∑Cij,eff-solid + 
∑Cij,eff-mixed the sum of non-zero conductance values associated 
with the rows element. The non-diagonal spaces are symmetric 
with element at row i and column j containing the negative of 
the conductance between solid elements i and j. Within the 
vector b, the row i is composed of ∑CTij,eff-mixed for each gas 
element j associated with solid element i. Solving this equation 
via matrix inversion yields approximate average temperatures 
for the solid elements. This matrix inversion yields an average 
value of temperature if the temperatures were completely static, 
they are not however completely static, but rather a 
superposition of the unsteady and steady or slowly evolving 
component. 

The magnitude of the unsteady component is equal to the 
difference between the current value of temperature and the 
mean value. During convergence to steady-state the mean value 
will vary across a cycle. If this mean value is assumed to 

follow a linear trend the unsteady component can be 
approximated as the following: 

 dTi,0 = Ti,0 – (Ti,avg,measured + ½(Ti,0 – Ti,0,prev)) (20) 

The change in the mean value is approximated via the 
change in the starting temperature across the cycle. A few 
additional variables were introduced here: Ti,0 is the 
temperature measured at the current starting point, Ti,0,prev was 
the recorded at the previous starting point last cycle. 
Ti,avg,measured is the average value of temperature over the cycle. 
The new temperature Ti,new is as follows: 

 Ti,new = A-1b + dTi,0 (21) 

This formula activates once per cycle, with the intent of 
bringing the solid temperatures into line with the more quickly 
modified gas temperatures. 

V. RESULTS & DISCUSSION 

The following subsections test the effectiveness and 
accuracy of the approximations outlined in this paper. 

A. Approximating Compressible Gas Interactions at Low 

Speeds 

The model was compared against 12 tests conducted at 
steady-state on a low-temperature Stirling engine described by 
Stumpf [14]. The engine was designed to operate with a source 
temperature of 95 °C and sink temperature of 5 °C and had a 
normal operating speed of between 1-3 Hz, producing a shaft 
power between 6-8 Watts at peak operating conditions. The 
experimental results are from Nicol-Seto [15] and feature the 
engine operating using a series of drive mechanisms using 
elliptical gears which give the pistons dwelling or more linear 
motion profiles, having benefits as a challenging modelling 
problem. The approximation was implemented into MSPM 
alongside a turbulence handler inspired by the Stirling engine 
modelling software SAGE [8]. Calibration of the model was 
conducted only to correct the compression ratio as the actual 
engine features a compliant rubber bellow as its volume 
changing piston. A selection of 3 representative pressure-
volume diagrams as well as a summary plot are included as  

 

(a) 
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Figure 2.  (a) Pressure-Volume plot of engine at 2.26 Hz with both pistons 
having sinusoidal motions, (b) engine at 1.644 Hz with a dwelling displacer 

and sinusoidal power piston motions, (c) engine at 1.58 Hz with both pistons 
having a dwelling motion, (d) summary of non-dimensional areas for all 

configurations. 

The algorithm performed sufficiently well at the low speeds 
of the EP-1 engine. The model consistently overestimates the 
experimental results, with a trend of decreasing error towards 
medium speeds, which is observed in each set of 4 tests. This 
may be due to multiple factors, including the low performance 
of the friction and heat convection correlations in pulsatile 
situations. The set with the largest error is the set with a 
dwelling displacer piston and sinusoidal power piston with an 
average of 32% error in absolute thermodynamic power. In 
total the average error in cycle power is 23%. In using this 
model to determine trends the test with dual dwelling cycles 
created the largest area in both the experimental and numerical 
results with the other two tests falling onto the same line. 

B. Predicting Steady-State Wall Temperatures 

The presented algorithm was applied to MSPM, a 
numerical model which incorporates the pseudo-compressible 
scheme described in this paper. The convergence of this 
algorithm was compared against an unmodified algorithm. The 
results are shown in Figure 3.  

 
Figure 3.  Comparison of accelerated (solid) vs native (dashed) convergence 

behaviour 

It can be observed in Figure 3. that during the first 2 cycles 
both algorithms followed a similar trend. After which the 
accelerated algorithm continued towards steady-state and the 
unmodified algorithm slowed down. The sharp increase is due 
to the gas temperatures in the engine being established through 
the first passes through the heat exchangers. The remainder of 
the convergence period is the heating of the engine body, 
which takes a small, but noticeable amount of energy away 
from gas each cycle. When comparing total amount of cycles 
simulated the accelerated algorithm reached a tolerance of 2% 
within 9 cycles, while the unmodified algorithm reached this 
point after 2057 cycles, representing a roughly 2 orders of 
magnitude speedup. The computational cost of this algorithm is 
relatively small, with periodic data collections and once per 
cycle matrix inversions. 

It should be noted that both simulations converged to 
exactly the same value within 0.2%, thus the approximation did 
not introduce a noticeable change in the outputted results. 



   

VI. CONCLUSION 

Approximations and optimizations give designers greater 
freedom to explore concepts, or invest in simulations of greater 
detail so long as the approximations are close enough to that 
which they model. This paper has presented a pair of 
approximations. The first mathematical derivation solved for 
the flow rates by assuming the pressure remained constant, this 
approximation allows larger timesteps than a compressible 
simulation would permit through the neglection of acoustics 
and by using an implicit formulation. This assumption 
produced results which matched up well against experimental 
tests resulting in an average error of 23% over a range of exotic 
piston motions and engine speeds. 

An acceleration method was introduced which was 
applicable to iterative schemes. The presented algorithm 
allowed the simulation to converge to within 2% of the final 
value in 9 cycles. A simulation using an incremental heat 
transfer model converged to this same tolerance after 2057 
cycles. This represents a substantial 2-3 orders of magnitude 
speedup while converging to the same final value. 

VII. FURTHER IMPROVEMENTS 

The approximation of fine interactions is a potential area of 
improvement for iterative schemes. In Stirling engines these 
occur frequently as fine metal structures inside of heat 
exchangers and regenerators, with thickness scales consistently 
in the fraction of a millimeter. These can ultimately result in a 
severely limited timestep in particular when used with low-
speed engines. The author is currently developing a method to 
use odes to represent the interactions. 
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