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Abstract—The present study compares the results of compli-
ance and mass minimization problems for 3D printed polymers
produced using the fused filament fabrication method. Optimiza-
tion is performed for both the topology and the fiber angle
orientation. The compliance minimization optimum is used as
the compliance threshold of the mass minimization problem.

Index Terms—Topology optimization, additive manufacturing,
compliance minimization, mass minimization

I. INTRODUCTION

Combining topology and print direction optimization leads
to unprecedented improvements in the mechanical properties
of 3D printed thermoplastic polymers when their optimal
parameters are properly selected. Topology optimization (TO)
helps to increase the mass savings of a 3D printed part [1],
thereby lowering production costs and other costs associated
with fabricating a lightweight part. Furthermore, optimizing
the print orientation of a printed part offers a unique op-
portunity to increase the stiffness of the printed geometry,
which can help TO save additional mass so that it becomes
a closed-loop design process [2, 3]. A massive amount of
research has been conducted in the fields of both TO and print
direction optimization. However, few studies have performed
both optimization techniques simultaneously [4–7]. Even pop-
ular simulation commercial software such as Ansys, Abaqus,
Nastran, HyperMesh, and Fusion 360 have yet to develop a
tool that couples the optimization of both topology and print
orientation.

In the present study, we build on previous work done in
this field by developing an in-house code that we refer to
as “TPO”, or topology and print (direction) optimization, to
tackle mass and compliance minimization problems while
using the method of moving asymptotes (MMA) [8]. This
method is proven to have good robustness of the optimization
process because of its guaranteed convergence and ease of
defining new design variables [9], which we demonstrate in
this work. Moreover, the capability of MMA to handle a large
number of constraints is essential for future modifications
whenever needed.

Adding to that, we focus on the methodology of solving
mass and compliance minimization problems for the 3D
printed polymers and showing the differences between the
results. The modified solid isotropic material with penalization

(SIMP), a density-based approach, is used. The results of
the proposed TPO method showed a significant increase in
the stiffness of the optimized problems, more than solving
either topology optimization or print direction optimization.
Acrylonitrile butadiene styrene (ABS), a polymer that is
widely used in fused filament fabrication, was selected when
setting up the optimization problem. It is worth noting that
since fiber orientation is determined by the print direction in
fused filament fabrication, we alternately used of these two
terms to describe the angle.

II. MATHEMATICAL FORMULATION

A. Problem statement

The basic compliance minimization problem presented here
uses a linear volume fraction constraint and bound constraints
on the density variables and the angles, which are the main
design variables. The problem statement is as follows:

min
ρ,θ

C(ρ,θ) = UTK(ρ,θ)U.

s. t.
N∑
i=1

Vi/V0 ≤ Vf ,

K(ρ,θ)U = F,

0 ≤ ρ ≤ 1,

− π ≤ θ ≤ π.

(1)

while the mass minimization problem is stated as follows:

min
ρ,θ

M(ρ,θ) =

N∑
e=1

ρe.

s. t. C(ρ,θ) ≤ Cmax,

K(ρ,θ)U = F,

0 ≤ ρ ≤ 1,

− π ≤ θ ≤ π.

(2)

where ρ is a vector representing the density of each finite
element, θ is a vector representing the angle of print direction
in each finite element, C is the compliance of the structure,
U is the global displacement vector, K is the global stiffness
matrix, N is the number of finite elements, Vi is the volume of
an element i, V0 is the volume of the original design domain,



Vf is the prescribed volume fraction, F is the global force
vector, M is the mass of the structure, ρe is the density of
element e, and Cmax is an upper bound on the compliance
obtained from the compliance minimization problem.

The solution steps are divided into the following four steps:
(1) material model, (2) sensitivity analysis, (3) optimization
method, and (4) filtering technique. For details about steps 1,
2, and 4, refer to the work by Andreassen et al. [10]. Only the
penalization step is discussed in detail here in order to show
how fiber angle orientation is implemented in the problem.

B. Penalization

The SIMP approach assumes isotropic material properties,
and hence it is safe to extract the density variable outside the
constitutive matrix and use it as a scaling parameter. The main
hurdle with performing topology optimization on a composite
material is the recalculation of the constitutive matrix (and
its sensitivity) for different density values. This is mainly
because the constitutive matrix of composite material does not
contain the density variable as an explicit parameter that can
be extracted outside the matrix. Hence, historically speaking,
homogenization methods have been implemented to correctly
overcome this obstacle [11]. However, recently, a number of
research works have modified the SIMP approach by applying
it directly to the constitutive matrix of composite materials.
This is the approach we implemented here.

We begin with the stiffness matrix of a 2D finite element
with unity thickness as follows [12]:

k = BTCB. (3)

where B is the strain–displacement matrix, and C is the
constitutive matrix defined as follows for composite material
with a density variable:

C =


ρp E1

1−ν12
ρp E2 ν12
1−ν2

12
0

ρp E2 ν12
1−ν2

12

ρp E2

1−ν12 0

0 0 ρpG12

 . (4)

The print direction angle is added as a design variable as
follows [13]:

σ = C′ε, (5)

C′(θe) = T1(θe)
−1CT2(θe), (6)

T1 =

 c2 s2 2cs
s2 c2 −2cs
−cs cs c2 − s2

 , (7)

T2 =

 c2 s2 cs
s2 c2 −cs

−2cs 2cs c2 − s2

 . (8)

where c and s represent cos(θ) and sin(θ), respectively. Ac-
cording to the classical laminate theory:σxxσyy

σxy

 = T1
−1C′T2

εxxεyy
εxy

 , (9)

k(ρe, θe) = BTC′(ρe, θe)B. (10)

C. Optimization method

Since compliance minimization is considered a non-linear
programming problem, it can be solved using any of the
famous optimization methods, such as Newton or quasi-
Newton. However, owing to the large number of design
variables being considered here, MMA has already proven to
be well suited for solving such problems [8]. The main idea
of this method is instead solving (1), which is non-convex.
It is replaced by a certain convex function f̃i(x) that can be
easily optimized. This convex function is chosen based on the
lower and upper asymptotes Li and Ui, respectively, and the
gradient information. Moreover, it is globally convergent and
guarantees convergence as long as a feasible solution exists.
For details on how the convex functions are derived, refer to
[8], the inventor of this code.

III. APPLICATIONS

Our TPO was developed to help improve the 3D printing
of polymers. Thus, the application here focuses on optimizing
a 3D-printed ABS layer with a thickness of 0.317 mm. The
mechanical properties of the layer were retrieved from the
work of Somireddy et al. [14]. The application design space
is shown in Fig. 1. A force of 1000 N was applied in both the
mass and compliance minimization problems. A compliance
minimization problem with a volume fraction of 0.3 is solved
first; the minimum compliance calculated was used as the
compliance threshold of the subsequent mass minimization
problem. For the compliance problem, because of the low
volume fraction, the structural members are considered to be
carrying only tensile or compressive loads (i.e., a truss-like
structure). As a result, all the fibers are oriented in a direction
aligned with the load carried by each element. The compliance
of the optimized structure is 0.1082.

Figure 3 shows that the compliance nearly reached the
minimum after 30 iterations; however, the code had to con-
tinue in the optimization process because there were fine
changes happening in the densities and angles of each element;
these changes can further enhance the compliance value. The
changes continued decreasing until a predefined tolerance was
reached. The changes in density and angle can be seen in Figs.
4 and 5.

As for the mass minimization problem, the compliance limit
was set to 0.1082, which is the minimum reached in the first
problem. At the end of the optimization process, the mass
reached was 31% of the original mass. The final topology
and fiber orientation are shown in Fig. 6. As shown in Fig.
7, the objective function zigzags and reaches the optimum
after close to 1200 iterations. This convergence scheme is
similar to the steepest descent method convergence, which is
linear and incredibly time consuming. Unlike the compliance
minimization, changes in angles and densities reached low
values, as shown in Figs. 8 and 9, while the mass continued
decreasing until it reached 31 % at convergence. As shown,
both problems reached nearly the same final topology with
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Figure 1. Cantilever beam half fixed from the left and showing the design
space dimensions and load.

only minor differences. The advantage of the compliance
minimization problem was that the minimum was reached
much faster than it was in the mass minimization problem,
with no intermediate elements. However, looking at the final
topology of both methods, the elements in the compliance
minimization problem resulted in a structure with sharper
corners, meaning that the corners were not as smooth as
those produced in the mass minimization problem. This result
favours the mass minimization method over the compliance
minimization method, as sharp corners lead to the initiation
of stress concentrations in the structure.

Table I
MECHANICAL PROPERTIES OF ABS MATERIAL.

Property Value
E1 1775 MPa
E2 1600 MPa
G12 625 MPa
v12 0.37

Figure 2. Final topology and fiber orientation after solving the compliance
minimization problem.

Figure 3. Convergence curve for the compliance minimization problem.

Figure 4. Change in ρ for the compliance minimization problem.

Figure 5. Change in θ for the compliance minimization problem.
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Figure 6. Final topology and fiber orientation after solving the mass
minimization problem.

Figure 7. Convergence curve for the mass minimization problem.

Figure 8. Change in ρ for the mass minimization problem.

Figure 9. Change in θ for the mass minimization problem.

IV. CONCLUSION

The main contribution of this paper is that it demonstrates
the difference between using mass and compliance as the
objective function in the optimization of composites. Our
findings were similar whether the aim was mass minimization
(with a compliance constraint) or compliance minimization
(with a volume constraint). The end result of the compliance
problem was the constraint of the mass problem. The MMA
method was efficient at handling all the problems without
diverging. Adding the fiber angle as a factor in the problem
resulted in lower compliance and mass structures, which
helped to increase mass savings and hence cost savings. The
mass minimization problem resulted in smoother topology
elements, while compliance minimization converged far more
quickly.
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