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Abstract—Additive manufacturing is a crucial new trend that
is steadily taking over traditional methods. Despite its many
advantages, the anisotropic nature of the produced parts of most
additive manufacturing methods is a significant disadvantage.
Of the methods that suffers from this anisotropy drawback is
the fused filament fabrication (also known as fused deposition
modeling). As a result of this anisotropy in the mechanical
properties, a need arises to define the optimum direction of
printing to be used for a certain loading condition.

Topology optimization is a great numerical design tool for
weight and material savings. It’s basically used to determine
where to put material to optimize a certain objective function
under specific constraints. The design variables in a topology
optimization are typically chosen as the densities of the finite
elements. Adding the printing direction as an additional design
variable complicates the problem further. This eventually gives
rise to a huge selection of local minima and further increases in
the computational costs.

In this work, we attempt to utilize artificial neural networks
to tackle this problem. Selected results of mass minimization
problems run in ANSYS are used as input data for the neural
network model, which is used to predict the fiber angle that has
the minimum mass under specific stress constraints. Results so far
are promising with small errors considering the computational
savings achieved.

Index Terms—Topology Optimization, Artificial Neural Net-
work, Additive Manufacturing, Anisotropy, Composites

I. INTRODUCTION

Additive Manufacturing (AM) has started to be used ex-
tensively in many different industries due to the cost of
AM reaching acceptable levels. It enables the production of
complex shapes that are not produced by traditional manu-
facturing methods [1]. Since AM also does not require any
mold or machining tools, the part is printed in the desired
final shape with minimal waste [2]. In addition, AM is capable
of printing in a wide range of different materials, including
polymers, ceramic, composites, metallic or hybrid composites

[3, 4]. Although AM has valuable advantages, it also has
some disadvantages such as energy consumption, long printing
time, and non-isotropic properties of the printed parts. Fused
filament fabrication (FFF) - also known as fused deposition
modeling, a material extrusion AM technique - is one of the
most popular AM methods in the market for both hobbyists
and professionals. Due to its material extrusion nature, it’s
highly anisotropic, where the mechanical properties along the
fiber orientation are much better than in the other directions.
This property puts additional limitations on the design of parts
to be manufactured using this method [5]. One of the solutions
to address such a problem is using numerical design tools such
as topology optimization.

Topology optimization (TO) is a freeform design approach
that does not require a priori assumption of the final lay-
out. It is frequently used as a design-for AM because it
can produce novel, effective design solutions [6–8]. TO has
different methods; the modified solid isotropic material with
penalization (SIMP) is the most popular approach due to
its ease of implementation and robustness [9]. Most, if not
all, commercial simulation packages that include a topology
optimization module typically utilize the SIMP method.

Recently, the research focus shifted from optimizing only
the topology of additively-manufactured parts to optimizing
the printing angle (i.e. fiber angle) as well. Adding the printing
angle as a factor in the optimization problem formulation
enhances the optimized output significantly [8–11]. So far,
this is performed using gradient-based optimization methods,
which have proven to be robust and effective. However, the
computational overhead increases dramatically with the size of
the problem (i.e. the design domain). From this perspective,
artificial neural networks (ANN) - one of the most widely
used prediction models in AM - can be a viable alternative
[12]. ANN presents practical and cost-effective solutions for
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complicated engineering problems. It is capable of capturing
obscure input/output nonlinear correlations from numerical
and/or experimental results, where a clear mathematical model
is missing or too complex [13].

In this work, we demonstrate - as a proof of concept - how
artificial neural networks can be combined with topology op-
timization methods to minimize the mass of a composite part
under stress constraints. The presented numerical example is
solved using standard available tools; the engineering analysis
software ANSYS for performing topology optimization and
the programming environment MATLAB for running the ANN
mode [14, 15]. It is worth noting that this work doesn’t include
any significant in-house proprietary code.

II. MATERIALS AND METHODS

A. Material

The material of choice in this study is a glass/epoxy com-
posite. Although such material is not typical for FFF methods,
its high anisotropy makes it a great candidate for this study
as we emphasize the significance of the fiber direction in the
produced part. The 2D properties of this material, where the
fibers are aligned with the x-axis, are as follows [16]:

Ex = 38.6 GPa,
Ey = 8.27 GPa,
νxy = 0.26,

Gxy = 4.14 GPa,

ρ = 1, 800 kg/m3.

(1)

The maximum stress constraint is set to σmax = 9 MPa.
This arbitrary value represents the maximum global von Mises
stress to be experienced in the optimized structure.

B. Topology Optimization

TO is performed on ANSYS using its topology optimization
module [14]. The problem of choice is a 2D cantilever beam
- a standard benchmark problem - with dimensions of 64×40
mm (cf. Fig. 1). A depth of 1 m is assumed, so the problem
is considered plane strain. It is fully fixed at the left edge,
and a load of 8 kN is applied to the lower right corner. Note
that in this work, the whole structure is assumed to have the
same printing angle (i.e. fiber orientation) symbolized by θ.
The mass minimization problem can be stated as follows:

min
ρ

M(ρ, θ) =

N∑
e=1

ρe.

s. t. σvM ≤ σmax,

K(ρ, θ)U = F,

0 ≤ ρ ≤ 1.

(2)

where M is the mass of the structure, ρ is a vector representing
the density of each finite element, θ is the fiber orientation
(i.e. printing angle) of the whole structure, N is the number
of finite elements, ρe is the density of element e, K is the
global stiffness matrix, U is the global displacement vector,

64

40

8 kN

Fig. 1. A cantilever beam of dimensions 40 × 64 mm is fixed from the left
side with a load of 8 kN applied to the bottom right corner.

and F is the global force vector. We opted to consider the mass
minimization problem instead of the more popular compliance
minimization problem due to the fact that the former is less
well-behaved and takes more iterations to converge than the
later and hence a more suitable candidate for ANN.

The constitutive matrix for a composite material with a
density variable is defined as follows :

C =


ρp E1

1−ν2
12

ρp E2 ν12
1−ν2

12
0

ρp E2 ν12
1−ν2

12

ρp E2

1−ν2
12

0

0 0 ρpG12

 . (3)

The print direction (i.e. fiber angle) θ is implemented in the
constitutive matrix as follows [17]:

σ = C′ε, (4)

C′(θ) = T1(θ)
−1CT2(θ), (5)

T1 =

 c2 s2 2cs
s2 c2 −2cs
−cs cs c2 − s2

 , (6)

T2 =

 c2 s2 cs
s2 c2 −cs

−2cs 2cs c2 − s2

 . (7)

where c and s represent cos(θ) and sin(θ), respectively. In
order to calculate the updated engineering constants (i.e.,
E′x, E

′
y, ν
′
xy, and G′xy) after each rotation, the compliance

matrix S′ (i.e., inverse of the constitutive matrix C′) and the
engineering constants are extracted as follows [18]:
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Fig. 2. The artificial neural network model implemented in this study.

S′ = C′
−1

=

S11 S12 S13

S21 S22 S23

S31 S32 S33

 . (8)

E′x =
1

S11
, (9)

E′y =
1

S22
, (10)

ν′xy = −S21

S11
, (11)

G′xy =
1

S33
. (12)

A parametric study is performed in ANSYS where the up-
dated engineering constants are used as input with increments
of 5◦ in θ (i.e., from 0◦ to 180◦). Then a mass minimization
problem is solved under the predefined formulation (cf. Eq.
2). The mass and maximum deformation are collected from
ANSYS to be used as output for training the ANN model.

C. Artificial Neural Network

In this study, a two-layer feed-forward network with 15
hidden neurons is used for the ANN model. The network
was trained with the Levenberg-Marquardt back propagation
algorithm (cf. Fig. 2). Generally, in literature, 70% of the
available data are used for training, 15% for testing, and 15%
for validation [13], hence the same rates are used in this study.
The elastic moduli in the x and y directions, the shear modulus
in the xy plane as well as Poisson’s ratio in the xy plane are
defined as inputs, and optimized mass and displacement at the
load point are defined as outputs.

Fig. 3. Final mass percentage of the initial mass for the optimized designs
at fiber angles 0◦ to 180◦ with 1◦ increments.

Fig. 4. Maximum displacement of the optimized designs at fiber angles 0◦
to 180◦ with 1◦ increments.

III. RESULTS AND DISCUSSION

A. Finite Element Results

In this subsection, FEA results are discussed before running
the ANN model. It’s worth noting that although ANSYS is
used to extract information at fiber angles 0◦ : 180◦ with 1◦

increments, only those at 5◦ increments are used for the ANN
model. The remaining data points are used for verification
purposes after the ANN model is run. It is clear from Fig. 3
that the maximum mass savings occur at fiber angles 35◦ and
75◦ and by symmetry at 105◦ and 145◦ as well. Good mass
savings are also achieved at fiber angles 51◦ and 129◦. Figure
4 shows the maximum displacement vs. fiber angles, where it
can be seen that the behavior of the maximum displacement
is more well-behaved than the final mass.

B. Results of the ANN Model

Considering that the computational cost of running a topol-
ogy optimization case in ANSYS (≈ a few minutes) is much
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Fig. 5. Regression performance of the ANN model.

larger than that of running the ANN model in MATLAB (≈
a few seconds), we only consider the former while discussing
the computational costs. The regression performance of the
ANN model is given in Fig. 5, which shows high correlation
between simulation data and prediction data. A comparison
of the final mass and total deformation for fiber angles at
1◦ increments is shown in Fig. 6. The percentage error in
the final mass doesn’t exceed 15%, which seems reasonable
when considering that the ANN model results only utilized
20% of the computational cost (i.e., running ANSYS at 1◦

vs. 5◦ increments). As for the total deformation, due to its
well-behavior in the original problem (cf. Fig. 4), the ANN
model shows a much better prediction with the maximum error
not exceeding 1% (cf. Fig. 7). The minimum predicted mass
from the ANN model occurred at 34◦ and 74◦ (and through
symmetry at 106◦ and 146◦ as well) with final mass errors of
1.8% and 6.4% respectively. The local minimum at 51◦ was
not captured by the ANN model.

IV. CONCLUSIONS

In this study, a neural network model is utilized to predict
of the final mass and maximum displacement in a topology
optimization problem of composites with the fiber angle as
an additional design variable. The input data are topology
optimization cases run in ANSYS with a fiber angle of 0◦ to
180◦ with a 5◦ increment. The 1◦ increment data is utilized
after the ANN model is run to verify the results manually.
ANN predictions showed maximum mass savings at 34◦

and 74◦ with small errors. Overall, we consider the results

Fig. 6. Regression performance of the ANN model.

Fig. 7. Regression performance of the ANN model.

promising given that the savings in computational costs are
80%.

Future work includes modifying the increment in the fiber
angle design variable from a constant value (5◦ in this study)
to a varying value that could be defined from initial output data
from the ANN model. We also plan to extend the complexity
of the model by including the direction of the load as an
additional design variable.

A note-worthy remark on this particular example is in order.
It’s a valid suggestion to tackle this problem as a topology
optimization case with both the finite elements’ densities as
well as the fiber orientation as design variables. However, from
our experience and the literature’s, this problem is not well-
behaved and tends to produce local minima depending on the
initial guess and the optimizer settings. Also, including any
additional design variables or constraints tends to complicate
the problem ever further.
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