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Abstract— This paper presents a design synthesis approach for 

the development of autonomous steering control schemes for 

articulated vehicles. To design the autonomous steering 

controller, a 3 degrees of freedom (DOF) yaw-plane model is 

generated to represent a car-trailer combination, and a model 

predictive control (MPC) algorithm is used for lateral position 

and yaw motion control of the articulated vehicle. For 

enhancing the performance of the self-steering articulated 

vehicle, the design synthesis of the autonomous driving control 

schemes is formulated as a design optimization problem. Two 

optimization algorithms, namely Particle Swarm Optimization 

(PSO) and Differential Evolution (DE), are introduced and 

tested for the design optimization. In the design synthesis, the 

design variables may include passive vehicle design variables, 

e.g., geometric. To demonstrate the effectiveness of the 

proposed design synthesis approach, selected simulation results 

are presented and analyzed. The insightful findings attained 

from the study may be used as guidelines for developing 

autonomous driving control systems of articulated vehicles.                                                         
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I.  INTRODUCTION 

An articulated vehicle consists of a towing unit, e.g., car or 
tractor, and a towed unit, namely trailer. Compared with single-
unit vehicles, such as cars and trucks, articulated vehicles 
exhibit unique dynamic behaviors, e.g., 'Jack-knife' and 
'Fishtailing', which may cause fatal traffic accidents [1-3]. To 
increase the safety of articulated vehicles, such as car-trailer 
combinations, attempts have been made to propose, design, and 
evaluate various active safety systems, including active trailer 
steering [4-5], trailer differential braking [6-9], active roll 
control or the coordination of the three systems [10]. These 
active safety technologies are categorized as ‘reactive safety 
systems’ (RSSs), designed to react to the current vehicles state. 
These systems are effective, but do not consider the effect of 
driver error [11]. The main cause of traffic accidents is linked 
to human driver errors. Approximately 93% of severe crashes 
are due to human driver mistakes [12].  

A resolution to the problem is autonomous driving, which 
removes human from the driving control loop. Since the late 
1990s, advanced driver assistance systems, e.g., lane departure 
prevention, have been developed. These systems are classified 
as ‘predictive safety system’ (PSSs) [13]. The last two decades 
have witnessed extensive research of semi-autonomous 
vehicles, which are human driven vehicles with autonomous 
driving capabilities [14]. These vehicles are level 2/3 automated 
vehicles [15]. To date, the research activities in autonomous 
driving have mainly been dedicated to passenger cars [11]. 
Articulated vehicles represent much higher risk than passenger 
cars in highway operations. However, much less attention has 
been paid to exploring these PSSs for articulated vehicles [16]. 

Recently, few studies tackled autonomous driving for 
articulated construction vehicles [17], and articulated vehicles 
with automated reverse parking [18]. These autonomous 
systems were designed only considering low-speed trajectory 
planning and tracking based on kinematic control, neglecting 
the high-speed dynamic behaviors of articulated vehicles, e.g., 
trailer sway, jackknifing, and rollover.  

This study proposes a design synthesis approach to the 
development of automated steering control schemes for 
articulated vehicles. To design the automated steering 
controller, a 3-DOF yaw-plane model is generated to represent 
a car-trailer combination, and a MPC algorithm is used for 
lateral position and yaw motion control of the car-trailer. The 
design synthesis of the automated steering control schemes is 
formulated as a bi-level optimization problem. In the lower 
level, given a set of design variables, the MPC algorithm 
determines the desired steering decision to make the vehicle 
track the target path identified by the navigation system; in the 
upper level, an optimizer (a search algorithm, such as Particle 
Swarm Optimization or Differential Evolution) will search the 
best design variable set in the design space to satisfy the design 
objective and constraints. Numerical simulation demonstrates 
the effectiveness of the proposed approach. 

The rest of the paper is organized as follows. Section II 
proposes the bi-level design synthesis method. Section III 
presents the car-trailer modelling. Section IV introduces the 
MPC controller. Selected simulation results are analyzed and 
discussed in Section V. Finally, conclusions are drawn in 
Section VI.   



   

II. DESIGN SYNTHESIS APPROACH 

The proposed design synthesis approach to the design 
optimization of autonomous steering control schemes is 
illustrated in Figure 1. Actually, the proposed approach is a by-
level optimization method. At the lower level, based on the data 
from forward-looking sensors and a higher-level motion 
planner of the navigation system, motion and path planning is 
conducted. The predicted path boundaries, which consider 
various road features and hazard analysis, establish constraints 
on projected vehicle location and orientation. Given the 
constraints and the design variable set 𝑿𝑑  (including vehicle 
and controller design variables) from the upper level, the 
vehicle dynamic model and the MPC algorithm are combined, 
and an MPC-based optimization problem is formulated. The 
MPC-based optimization determines a desired sequence of 
steering inputs. Then, the resulting fitness values and 
constraints are output to the upper level. The acquired fitness 
values (i.e., 𝐹𝑖(𝑿𝐷) and constraints (e.g., ℎ𝑖(𝑿𝐷) 𝑎𝑛𝑑 𝑔𝑖(𝑋𝐷) 
are treated as a vector optimization problem. By means of a 
scalarization technique, the vector optimization problem is 
converted to a scalar optimization problem with a utility 
function taking the form of ∑𝑚𝑖𝐹𝑖(𝑋𝐷) . Note that 𝑚𝑖  is a 
weighting factor. A global search algorithm, such as particle 
swarm optimization (PSO) or differential evolution (DE), is 
used as the optimizer to resolve trade-off relations among 
various design criteria at the upper level, and seeks better design 
solutions in terms of a new set of design variables 𝑿𝑑 . The 
above design process will continue until an optimal design 
variable set 𝑿𝑑_𝑜𝑝𝑡  is found. It is expected that given the 

optimal design variable set 𝑿𝑑_𝑜𝑝𝑡 determined offline, with the 

desired steering inputs and tracking the optimal trajectory, the 
vehicle will be exposed with the minimum threat and the least 
safety risk.                 

 

Figure 1. Proposed design synthesis approach to the design optimization of 
autonomous steering control schemes.  

III. ARTICULATED VEHICLE MODELLING 

To design the MPC controller and simulate the lateral 
dynamics of the car-trailer, a 3-DOF yaw-plane model is 
generated. Figure 2 shows the single-track car-trailer model 
considering three motions, including lateral (v) and yaw (r) 
motions of the car and yaw (𝑟′)motion of the trailer. It is 
assumed that vehicle forward speed (u) is constant, steering 
angle (𝛿𝑓) of car front wheel is small, articulation angle (𝛾) 

between the car and trailer is small, the product of variables is 
small and neglected, and tire cornering forces are the linear 
function of tire slip angles [19].  

Given the above assumptions, the linear governing 
equations of motion for the car and trailer can be derived as  

[
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where 𝐼𝑧𝑧 and 𝐼𝑧𝑧

′  denote the yaw inertia of momentum of the 
car, respectively, and m and 𝑚′ the mass of the car and trailer, 
accordingly, and the rest of symbols are defined and shown in 
Figure 2.   

 

Figure 2. Schematic representation of the 3-DOF linear yaw-plane model. 

The tire cornering forces and the respective tire slip angles 
have the following linear relations, 

[
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where the subscript f, r, and t denote car front axle, car rear axle, 
and trailer axle, respectively, 𝛼 represents tire slip angle, and c 
tire cornering stiffness. The car and trailer are connected by the 
hitch, and the following kinetic relation holds,   

                    𝑣′ = 𝑢𝛾 + (𝑣 − 𝑑𝑟) − 𝑒𝑟′                       (4) 

Combining Equations (1), (2) and (3), eliminating the reaction 
forces at the hitch, and considering the kinetic constraint in 
Equation (4), we have three independent linear governing 
equations of motion. Then, the 3-DOF linear yaw-plane model 
can be formulated in the state-space representation as, 

                             
𝒙 = 𝑨𝒙 + 𝑩𝒖
𝒚 = 𝑪𝒙 + 𝑫𝒖

̇
                                  (5) 

where 𝒙, 𝒖, and 𝒚 denote state, control input, and output 
vector, respectively, matrices 𝑨, 𝑩, 𝑪, and 𝑫 are defined 
and offered in Appendix A. The state and input vectors 
are defined as,      



   

𝒙 = [𝛾 𝑣 𝑟 𝑟′ 𝑙 𝑙′ 𝜑 𝜑′]𝑻; 

𝒖 = [𝛿𝑓]                                                               (6) 

where 𝑙 and 𝑙′ represent the lateral position of the car and trailer 
center of gravity (CG) in the global coordinate system, 
respectively, and 𝜑 and 𝜑′ the yaw angle of the car and trailer, 
accordingly.  

The vehicle parameter description and nominal values used 
in the study are given in Table 1.  

Table 1. Vehicle parameter notation and nominal/optimal values 

Notation Nominal 

value 

Lower 

bound 

Upper  

bound 

DE 

Optimal 

PSO 

Optimal 

𝑚 /𝑘𝑔  1,730     

𝑚′ /𝑘𝑔  2,000     

𝐼𝑧𝑧  /𝑘𝑔𝑚2 3,508     

𝐼𝑧𝑧
′  /𝑘𝑔𝑚2 3,000     

𝑐𝑓/𝑁(𝑟𝑎𝑑)−1 80,000     

𝑐𝑟/𝑁(𝑟𝑎𝑑)−1 80,000     

𝑐𝑡/𝑁(𝑟𝑎𝑑)−1 80,000     

𝑎 /𝑚 1.5 1.35 1.65 1.65 1.6059 

𝑏 /𝑚 1.5 1.35 1.65 1.65 1.5805 

𝑑 /𝑚 2.7 2.43 2.97 2.7784 2.4452 

𝑒 /𝑚 3.0 0 6.0 4.6558 4.1317 

ℎ /𝑚 3.0 0 6.0 1.3442 1.8683 

IV. MODEL PREDICTIVE CONTROLLER 

Model predictive control (MPC) is a feedback control algorithm 
that uses a model to make predictions about future outputs of a 
process. MPC uses the model of the plant to make predictions 
about the future plant output behavior. It also uses an optimizer 
which ensures that the predicted future plant output tracks the 
desired reference [20]. After the prediction is made over a finite 
time, then certain control steps are obtained to minimize the 
objective performance index. Only the first control step is 
considered at the current time step and all other control steps 
are discarded to get predicted state variables at the next time 
step, the whole process repeats itself in order to get the new 
control action for the coming time steps. Car trailer model is 
discretized (matrix 𝐴𝑑 is the discretized matrix A and 𝐵𝑑  is the 
discretized matrix B) having sample time Ts = 0.1 is shown 
below, 
          𝑥(𝑘+1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘);          𝑦(𝑘) = 𝐶𝑥(𝑘)            (7) 

1) Performance Index 

Performance index is a way to show model predictive 
control in the form of an optimization problem and the ultimate 
target of this optimization strategy is to minimize the error 
between the reference output and the predicted output. 𝐽𝑀𝑃𝐶  
reflects the cost function over a finite prediction horizon (PH) 
and control horizon (CH), and the details about PH and CH are 
shown in Appendix.  

  𝐽𝑀𝑃𝐶 = ∑ ||𝑦𝑑(𝑘) − 𝑦(𝑘)||
2

𝑄

𝑃𝐻−1
𝑘=0 + ∑ ||∆𝑢(𝑘)||

2

𝑅

𝐶𝐻−1
𝑘=0 +

∑ ||𝑢(𝑘)||𝑆
2𝑃𝐻−1

𝑘=0                                                                      (8) 

Where, 𝑦𝑑(𝑘) is the reference output at current time step which 

is desired lateral position and desired yaw angle, 𝑦(𝑘)  is the 

predicted output at current time step which is lateral position 
and yaw angle, PH is the prediction horizon which is considered 

at 10-time steps, CH is the control horizon which is considered 
as 7-time steps. 𝑢(𝑘) is the current input which is steering angle 

of car. Q, R, and S are the weighting factor matrices which 
shows the importance of control actions. Constraints of steering 
angle are considered as -0.5 and 0.5, respectively. 

2) Reference and Error 

As shown in Fig.4, reference defines the desired trajectory 
which is to be followed by the center of gravity of both the car 
and trailer. Reference consists of desired values of lateral 
position of the desired trajectory in global coordinate system. 
This trajectory is designed based on ISO-14791 standard. 
Longitudinal speed is considered as constant and the value is 
equal to 30m/sec. A 2.437 m lane change is designed having a 
peak lateral acceleration of 2.5m/sec^2 and a time period of 2.5 
sec. 

V. EXPERIMENT SETUP  

A. Overall simulation diagram 

One of the experiment goals is to find the best geometry 
design ( 𝑎, 𝑏, 𝑑, 𝑒, 𝑎𝑛𝑑 ℎ ) of the car-trailer system, which 
particularly, are to optimize the geometry dimensions shown in 
Table.1. Another goal is to find the optimal weighting factors 
( 𝑚1, 𝑚2, 𝑚3, 𝑎𝑛𝑑 𝑚4 ) used in MPC fitness function. The 
overview co-simulation is presented as the flow chart shown in 
the Fig3. The detailed Simulink model could be found in the 
Appendix. 

First, the experiment parameters are to be defined by the 
users, which are mainly defining the population size and 
termination criteria. The values used in this experiment could 
be found in Table2, where the termination criteria are defined 
as number of cost function calls (NFC) is equal to 300. 

After setting up the algorithms, the relative parameters are 
used in PSO or DE, the algorithms are initializing the first 
generation of population that are defined as 10 in this 
experiment. All the population are vectors containing all five 
optimizing geometry variables, which are generated randomly 
but constrained by the defined limitations. 

Each population generated from the algorithms are sent to a 
vehicle model builder, which build the vehicle dynamics model 
based on the generated geometries (𝑎, 𝑏, 𝑑, 𝑒, 𝑎𝑛𝑑 ℎ)). Then, 
vehicle model is sent and used in the MPC controlling algorithm 
to conduct proper controlling command.  

 

Figure 3 Flow chart of overall simulation diagram. Two main cycles 
are contained in this process, which are optimization and Simulink 
dynamic model.  



   

 

Figure 4 Reference, where the left vertical axis is corresponding to the 
lateral position of car and the right axis is corresponding to that of trailer. 
The gap is created due to the distance between the car center of gravity and 
trailer center of gravity. 

The MPC controller is conducting the controlling based on 
the predefined single-lane-change path as shown in Fig.4. The 
actual vehicle performance (lateral position, yaw angle) is used 
to calculate the fitness value for optimization cycle to do 
selection. Finally, the optimization cycle makes proper 
mutation and selection based on the fitness value received. Then 
the next generation of population is generated and send to the 
vehicle dynamics model builder again to update the old plant 
model.  

Fitness functions for these two algorithms are identical, 
which is the error between car and trailer lateral positions 
against reference lateral position plus the error between the car 
and lateral yaw angles against reference yaw angle. Shown in 
equation (9), as the units of yaw angle error and the lateral 
position error are different (rad and meter), standardization of 
the errors have been conducted, which means the normalized 
error of each point in the path is equal to the actual error divided 
by the maximum error among all trajectory points in this path, 
𝑚1/𝑚2, and 𝑚3/𝑚4 are representing the weighting factors for 
lateral position, yaw angle errors respectively, and in this 
experiment, and the range of the parameters are shown in 
Table2. 

Table 2 Optimization Algorithms Parameters Settings 

Parameters PSO DE 

Population 10 10 

Number of Generation 30 30 

Termination Criteria NFC = 300 NFC = 300 

Personal Train Weight 0.25 X 

Global Train Weight 0.25 X 

Inertia Weighting  0.5 to 0.2 X 

Crossover Possibility  X 0.8 

Weight 1 5 to 10 5 to 10 

Weight 2 0 to 10 0 to 10 

Weight 3 0 to 5 0 to 5 

Weight 4 0 to 5 0 to 5 

Number of Runs 2 2 

𝐹(𝑙𝑖, 𝜑𝑖, 𝑙𝑖′)
=  𝑀𝑒𝑎𝑛. [∑ 𝑚1 (

𝑙𝑖−𝑙𝑟𝑒𝑓𝑖

𝑀𝐴𝑋(𝑙−𝑙𝑟𝑒𝑓)
)

2

+𝑖=𝑘
𝑖=1

𝑚2 (
𝜑𝑖−𝜑𝑟𝑒𝑓𝑖

𝑀𝐴𝑋(𝜑−𝜑𝑟𝑒𝑓)
)

2

+ 𝑚3 (
𝑙′𝑖−𝑙𝑟𝑒𝑓𝑖

𝑀𝐴𝑋(𝑙′−𝑙𝑟𝑒𝑓)
)

2

+

𝑚4 (
𝜑′𝑖−𝜑𝑟𝑒𝑓𝑖

𝑀𝐴𝑋(𝜑′−𝜑𝑟𝑒𝑓)
)

2

]                                                           (9)                                                                                        

B. Two optimization algorithms  

Both PSO and DE are popular algorithms for optimization 
tasks, but one of the major differences between DE and PSO is 
in the mechanism to produce a new population of solutions via 
perturbation of solutions from the old population. As discussed 
in [21], the population diversification of DE is better than PSO 
because the best solution in the population is independent of the 
other solutions in the population. Another comparison between 
DE and PSO is the clustering of particles. PSO has a higher 
chance to cluster rapidly and the swarm may quickly become 
stagnant but clustering in DE is least and re-initialization has 
the least effect for DE.  

1) Differential Evolution 

Differential evolution (DE) is a population-based meta- 
heuristic search algorithm which optimizes a problem by 
iteratively improving a candidate solution based on an 
evolutionary process. Such algorithms make few or no 
assumptions about the underlying optimization problem and 
can quickly explore very large design spaces. In differential 
Evolution, each solution is known as Chromosome. Each 
chromosome undergoes mutation followed by recombination. 
A target vector is the solution which undergoes evolution. 
Target vector is used in mutation to generate the donor vector 
and the donor vector undergoes recombination to obtain that 
trial vector. A greedy selection is employed between target 
vector and trial vector and the better solution among these two 
vectors survives for the next generation. The selection of better 
solutions is performed only after the generation of all trial 
vectors. Donor Vector (V) of a chromosome (Xi) is created as: 

                    𝑉 = 𝑋𝑟1 + 𝐹(𝑋𝑟2 − 𝑋𝑟3)                        (10) 

Where F is the mutation constant and r1, r2, r3 are the three 
random solutions from the population. Trial Vector is created 
as: 

𝑘′ = {
ℎ𝑗   𝑖𝑓   𝑛 ≤ 𝑝𝑐  𝑂𝑅  𝑗 = 𝛿

𝑚𝑗   𝑖𝑓 𝑛 > 𝑝𝑐   𝐴𝑁𝐷  𝑗 ≠ 𝛿
                  (11) 

Where pc is the crossover probability, n is a random number 
between 0 and 1 and δ is randomly selected variable location 
which ensures that at least one variable is obtained from the 
donor vector. 

Differential Evolution is implemented to minimize the 
difference between the resultant lateral position of the car trailer 
and the reference lateral position. The population size is kept as 
10. The dimension of the problem is 5 and the generation was 
set as 20. Crossover possibility and scale factor were set as 0.8 
and 0.8 respectively. More detail about DE could be found form 
the DE flow chart in the Appendix.  



   

2) Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was proposed by 
Kennedy and Eberhart in 1995, which is one of the stochastic 
population-based metaheuristics inspired from swarm 
intelligence [22]. This algorithm mimics social behavior like 
bird flocking and fish schooling. The first step in Particle swarm 
optimization is to initialize the position and velocity randomly 
within the search space and initial velocities are set as zero. 
Fitness function (shown in equation 9) called to find the path 
error, and if the error is less than the former, the personal best 
record is updated, if not, the personal best will not be updated. 
Each personal best value is compared within this generation in 
order to find the global best and record it. In the next generation, 
velocities will be updated based on the global best and personal 
best from the former generation. 

As a result, two training weights (personal and global) were 
defined as 0.25 (as shown in Table. 2), inertia weighting was set 
decaying from 0.5 at the first generation to 0.2 at the last 
generation, since the generation increases the population is 
getting closer to the optimized solution and the velocity of 
search should be reduced. Besides, regular parameters like 
population size, termination criteria and number of runs were 
specified as in Table.2 and identical with DE algorithm. More 
detail about PSO could be found form the PSO flow chart in the 
Appendix.  

VI. EXPERIMENT RESULTS 

A. Lateral Position  

The first simulation result is the car and trailer trajectories, 
where the car and trailer should follow with the reference lateral 
position. Therefore, it is important to find the difference 
between the lateral position reference and the lateral position of 
car’s mass center and trailer’s mass center. The results of car 
and trailer are shown in fig.5 and fig.6, respectively. Both the 
optimized results from PSO and DE are shown and compared 
with the nominal design performance. First, it is obvious that 
the PSO-optimized design has the largest delay against the 
reference lateral position. The optimized geometries are listed 
in the Table. 3, where the dimension e of the PSO-optimized 
design is the largest, which means the trailer center of gravity is 
closest to the rea end. This is the reason leading to this large 
lateral position delay. It is obvious in the plot of trailer 
trajectories, DE-optimized design has efficiently decreased the 
deviation of the trailer from the target path, where the peak 
offset is lower than the nominal design. It can be realized that 
DE algorithm has moved the car center of gravity forward 
compared to the nominal design and increased the controlling 
weight on the trailer path-following error, which is the reason 
to the performance improvement.  

B. Lateral Acceleration 

The lateral acceleration of single lane change maneuver 
should be a single cycle of sine wave. The following results 
(Fig.7 and Fig.8) are presenting the lateral acceleration histories 
of both car and trailer. Three designs (PSO, DE, and Nominal) 
are plotted together for convenience of comparison.  

 

 

Figure 5, car trajectories, where the target path is represented by the 
black color. DE-optimized design (blue) slightly reduced the error between 
trajectory and target path. PSO-optimized design has a larger error 
compared to DE and nominal designs. 

 

Figure 6 trailer trajectories, the color legends here are the same as the 
ones used in fig.4. One could find the DE-optimized design reduced the 
response delay compared to the nominal design, and the peak value 
(overshoot) has been reduced as well.  

 

Figure 7 Car lateral acceleration. The PSO-optimized design has 
similar peak lateral acceleration as nominal design. The DE (blue) has 
lower peak lateral acceleration than that of the other two designs, which 
illustrates the lower offset shown in trajectories plots.   

 

 Figure 8 Trailer lateral acceleration. More obvious improvement 
could be found in this plot regarding DE optimized design. Although all 
trailer peak lateral accelerations are higher than that of cars, the DE still 
achieves the lowest peak trailer lateral acceleration.  

Identify applicable sponsor/s here. (sponsors) 



   

Table 3 Lateral Acceleration Peak Value 

 

The peak lateral accelerations of both car and trailer are 
summarized in the Table.3. It shows that both PSO and DE have 
successfully improved the lateral stability compared to nominal 
design. Especially for the trailer, PSO has reduced the peak 
lateral acceleration by 3.58% and the DE has reduced by 
13.74% compared to the nominal design.  

VII. DISCUSSION 

A. Optimization Process  

As discussed in the experiment design section, the 
population of both algorithms are set as 10, and the termination 
criteria is the maximum number of function calls equaling to 
300 (30 generations). The fitness logs of both algorithms have 
been shown in Fig.9. PSO has shown a relative higher fitness 
value compared to the DE, while both algorithms were reaching 
to the optimized design after about 15 generations.  

B. Optimized design summary  

It has been shown in the Table. 4 that DE have achieved 
optimal fitness value at 0.1911 while the nominal design is 
0.2211. For e and h, both PSO and DE have reduced h and 
increased e, DE has moved the car center of gravity forward 
compared with nominal and PSO designs.  

VIII. CONCLUSION 

This paper presents a design synthesis approach to the 
development of autonomous steering control schemes for 
articulated vehicles. To examine the effectiveness of the 
proposed design synthesis approach, numerical simulation is 
conducted. The co-simulation combines optimization 
algorithms, vehicle dynamic modeling, and controller designing 
in order to analyze the influence from geometry design on the  

 

Figure 9 Fitness value log. This plot directly compared the fitness 
history of PSO and DE optimization algorithm. It is obvious that compared 
with DE, PSO presents poorer optimization results, and its fitness was 
trapped around 0.29. However, the DE has further reduced the fitness 
value to about 0.19, which is also identical to the results shown in 
trajectories and lateral acceleration plots.  

Table 4 Optimized results summary 

 

car-trailer system path-following performance, where the 
performance is evaluated based on the lateral position error and 
yaw angle error. 

Verified car-trailer model was implemented in Simulink, 
which was accompanied with hand-tuning model predictive 
controller. The co-simulation has been designed as a whole 
simulation/optimization cycle, and the process experiment data 
was collected from 30 generations of optimization and 10 
individuals in each generation. However, the results have 
shown that the two algorithms successfully achieved the 
designing optimization task after 15 generations. The DE 
algorithm successfully generate the geometry of the car-trailer 
system that could minimize the path-following error during a 
single lane change maneuver (normalized error decreased from 
0.2211 to 0.1911). 

Comparison between these two algorithms were conducted 
and the results were shown in this article as well. The results 
have shown that for this 9-dimension optimization problem, DE 
outperforms PSO in level of error.  

IX. FUTUREN WORK 

This paper presents the preliminary results in developing the 
design synthesis approach, where car-trailer system could be 
designed by the optimization algorithms in order to improve the 
safety features and ability to stay stable under various 
maneuvers. The next step of this project will be focusing on 
adding more design parameters of car-trailer system as the 
optimization variables such as mass, height, and wheelbase, so 
the algorithms could optimize at a larger picture. The future 
work of this project could be using a better vehicle model 
showing more details. For example, including the roll motion 
of the car-trailer system, which is important for emergent 
situation as well. Besides, safety issue ’Fishtailing’ and ’Jack-
knife’ should be considered as the constraints of the 
optimization target to avoid these situations or reduce the 
possibility of these two dangerous behaviors. 

Peak Improvement Peak Improvement

Nominal 2.539 0 4.39 0

PSO 2.477 2.40% 4.233 3.58%

DE 2.36 8.98% 3.787 13.74%

Car Trailer Nominal PSO DE

e_trailer 3 3.6668 3.433

h_tariler 3 2.3332 2.567

dimension_a 1.5 1.4536 1.35

dimension_b 1.5 1.5408 1.65

dimension_d 2.7 2.6409 2.43

Weight1 10 6.8858 6.1817

Weight2 5 2.8492 4.3304

Weight3 0 0.3798 0

Weight4 0.1 0.2643 0

max car lateral position error [m] 0.1407 0.1791 0.0527

max car yaw angle error [rad] 0.0686 0.0652 0.0615

max trailer lateral position error [m] 0.3028 0.4095 0.2292

max trailer yaw angle error [rad] 0.0183 0.0449 0.0353

average car lateral position error [m] 0.0153 0.0218 0.0066

average car yaw angle error [rad] 0 0 0

average trailer lateral position error [m] 0.0175 0.0211 0.0046

average trailer yaw angle error [rad] 0 0 0

Fitness 0.2211 0.2901 0.1911
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XI. APPENDIX 

A. State Space Representation Matrices Defination  

𝑨 =

[
 
 
 
 
−𝑖𝑛𝑣(𝑴) ∗ 𝑳 0 0 0 0

0, 1, 0, 0 0 0 𝑢 0
𝑢, 1, −𝑑,−𝑒 0 0 0 𝑢

0, 0, 1, 0 0 0 0 0
0, 0, 0, 1 0 0 0 0]

 
 
 
 

 

 

𝑩 =

[
 
 
 
 
𝑖𝑛𝑣(𝑴)𝑭

0
0
0
0 ]

 
 
 
 

 

𝑪 = [
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

] 

𝑫 = [
0
0
] 

𝑴 = [

1 0 0 0
0 𝑚 + 𝑚′ −𝑚′𝑑 −𝑚′𝑒
0 −𝑚′𝑑 𝐼𝑧𝑧 + 𝑚′𝑑2 𝑚′𝑒𝑑

0 −𝑚′𝑒 𝑚′𝑒𝑑 𝐼𝑧𝑧
′ + 𝑚′𝑒2

] 

𝑳 =
1

𝑢

[
 
 
 
 

0 0 −𝑢 𝑢
𝑢𝑐𝑡 𝑐𝑓 + 𝑐𝑟 + 𝑐𝑡 (𝑚 + 𝑚′)𝑢2 + 𝑎𝑐𝑓 − 𝑏𝑐𝑟 − 𝑑𝑐𝑡 −(𝑒 + ℎ)𝑐𝑡

−𝑑𝑢𝑐𝑡 𝑎𝑐𝑓 − 𝑏𝑐𝑟 − 𝑑𝑐𝑡 −𝑚′𝑑𝑢2 + 𝑎2𝑐𝑓 + 𝑏2𝑐𝑟 + 𝑑2𝑐𝑡 (𝑒 + ℎ)𝑑𝑐𝑡

−(𝑒 + ℎ)𝑢𝑐𝑡 −(𝑒 + ℎ)𝑐𝑡 −𝑚′𝑒𝑢2 + (𝑒 + ℎ)𝑑𝑐𝑡 (𝑒 + ℎ)2𝑐𝑡 ]
 
 
 
 

 

𝑭 = [

0
𝑐𝑓
𝑎𝑐𝑓
0

] 



   

B. Prediction Horizon and Control Horizon 

Explained in the following figure, Prediction Horizon is a parameter which shows how far a controller can predict the future. 
If it is too big, the controller will not be able to control the incidents   that will happen during the period which lies in the 
prediction horizon time and if it is too small, the controller will not be able to cover a safe predicted distance which is 
required to respond to the coming hurdles instantly at high speeds. 

 

 

 

 

 

 

As shown in following figure CH is the number of time steps which are controlled by the controller or the total computations 
run by the controller. Rest of the time steps which are only predicted and do not fall in the controlled horizon are considered 
as constant because they do not have a significant effect on the output Recommended Control Horizon is between 10 to 20 
percent of the prediction Horizon. 

 

 

 

 

 

C. PSO Flowchart 

 
Figure 3 PSO algorithm flowchart 

Figure 1 Prediction Horizon Illustration 

Figure 2 Control Horizon Illustration 



   

D. DE Flowchart  

 
Figure 4 DE algorithm flowchart. 

 

E. Simulink Diagram  

 

Figure 5 Screenshot of the Simulink model. 

 


