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Abstract—In this paper, the flight software development and
design of the attitude determination and control system for
the ESSENCE CubeSat mission is documented and discussed.
The majority of the software is reused from the DESCENT
mission, which was previously written by the RACS team, with
strong inspiration from NGC Aerospace’s work on the PROBA
satellite program. The paper highlights the benefits of reusable
software modules and methodologies between projects. Finally,
it is encouraged that similar processes be considered by other
CCP teams developing ADCS systems for future missions.

Index Terms—ADCS, Attitude Control, Attitude Filter, CCP,
CubeSat, CSA Flight Code, RACS, Real Time Operating System,
Reaction Wheels, Requirements, Software Architecture .

I. INTRODUCTION

The Educational Space Science and ENgineering Cubesat
Experiment (ESSENCE) Mission is aligned with the Canadian
CubeSat Project (CCP) sponsored by the Canadian Space
Agency (CSA). The primary motivation for the ESSENCE
mission is to train Highly Qualified Personnel (HQP) through
the experience of designing, building, launching and operating
a CubeSat. ESSENCE will be launched from the International
Space Station (ISS) via the NanoRacks launching service and
operated by the project team through the ground station located
at York University.

One mission objective is to fly and operate a 3U-CubeSat
to observe the impact of climate change and solar storms on
the Earth’s environment. Simultaneously, the spacecraft will
be used to demonstrate novel attitude navigation and control
algorithms for an under actuated system on-orbit. The details
of the Attitude Determination and Control System (ADCS)
specific mission requirements will be discussed in Section II.
This work expands upon ADCS software design and testing
methodologies used in a previous mission, as outlined in
Section III, validating that these tools are replicable for varying
mission objectives. Section IV will focus on the design,
development and testing of the ADCS flight software for the
ESSENCE mission and how flight code will be generated and
implemented in the onboard computer’s Real Time Operating
System (RTOS). Preliminary results for key function modules
are shown in Section V while future work and concluding
remarks can be found in Section VI and VII respectively.

II. MISSION REQUIREMENTS

The ADCS specific mission requirements were developed
to satisfy the main mission objectives as well as known
good practices used by the Ryerson Attitude Control Systems
(RACS) team. The naming convention can be defined as:
M – mission requirement, ADCS-SW – ADCS software
requirement and ADCS-HW – ADCS hardware requirement,
PER – performance, FUN – function and INT - integration.

A. Applicable Mission Requirements

ADCS applicable mission requirements are as follows:
REQ-M-PER-001

• The spacecraft shall de-tumble within a timespan of
24 hours, it shall then autonomously switch to coarse
pointing mode with magnetic torquers once the orbital
estimator is operational and confirmed to be valid.
REQ-M-PER-002

• The system shall have attitude knowledge with a tolerance
of 0.5 degrees RMS reported in terms of a quaternion.
REQ-M-PER-003

• The system shall have a pointing accuracy with tolerances
of 0.5 degrees RMS and 0.01 degrees/s RMS.
REQ-M-FUN-001

• Attitude experiments shall be programmed as modes
within the ADCS system.

B. ADCS Software and Hardware Requirements

From the requirements outlined in Section II-A, the ADCS
software and hardware requirements were produced:

REQ-ADCS-SW-FUN-001
• Attitude experiments shall have a back up safety mode

to intervene in maintaining safety limits and redundancy.
REQ-ADCS-SW-FUN-002

• The ADCS shall be configured to operate in a hybrid
magnetic attitude control mode. Control torques shall be
provided by continuous use of the magnetorquers and
impulsive operations of the reaction wheels.
REQ-ADCS-SW-FUN-003

• The spacecraft shall report GPS data to the ground
station, while using raw GPS measurements for orbital
determination.
REQ-ADCS-SW-PER-001



• Actuators shall have the ability to be selectively enabled
and disabled to support experiments and ADCS require-
ments.
REQ-ADCS-SW-INT-001

• Required orbital knowledge shall be no better than
USSTRATCOM TLEs.
REQ-ADCS-HW-FUN-001

• The on-board computer shall be capable of executing the
ADCS SW at a rate of 10 Hz.

III. DESIGN EXPERIENCE AND APPROACH

Prior to the ESSENCE mission, the RACS team were
key contributors to the De-orbiting Spacecraft using Elec-
trodynamic Tethers (DESCENT) mission[1] that launched
in November 2020. The process followed while developing
DESCENT was based largely on the ideas conceived and
published by NGC Aerospace for the PROBA program of au-
tonomous satellites outlined in [2] and [3]. In order to test the
ADCS flight software for this mission, the team developed an
ADCS simulator within the MATLAB/Simulink environment.
Additionally, working in Simulink allowed the team to convert
flight code into C-code for direct implementation on the RTOS.
With the same team leading the ADCS for ESSENCE, the
focus can be on the development and testing of novel ADCS
software by reusing a significant portion of the DESCENT
simulator.

While certain modules require slight modifications, much
of the simulator and ADCS SW can transfer from DESCENT
seamlessly, such as: the International Geomagnetic Reference
Field (IGRF) magnetic field model [4] [5] and the Sun
[section 5.1.1 of 6] and Earth ephemeris models [section
5 of 7]. The major difference between the ESSENCE and
DESCENT simulation environments are the actuators that are
being used for attitude control. DESCENT operated using only
magnetorquers while ESSENCE has included reaction wheels.
The addition of these reaction wheels requires new actuator
models and slight modifications to the simulation. Additional
modifications needed for ESSENCE include upgrading the
navigation filter from a fixed rigid body and developing
new sensor models, i.e. two-axis Sun sensors, a fibre-optic
gyroscope and Global Positioning System (GPS).

The development process of the ESSENCE on-board soft-
ware proves the reusable design concept is feasible, efficient
and reliable. Maintaining libraries of functions and unit tests
allows for consistency in the development and implementation
of software for future missions. This work is being shared for
others who may be considering developing ADCS systems of
their own.

IV. ADCS ARCHITECTURE AND DESIGN PHILOSOPHY

The ADCS SW is developed within the MATLAB/Simulink
environment, as it provides a high-level graphical language
designed for the development and testing of control systems. It
also allows for the creation of stand alone library blocks, which
are developed and tested separately before being integrated
with one another to create a more complex system. Simulink

also provides means of generating portable and readable
C/C++ code from these large models via the embedded coder
tools. This conversion capability enables the ADCS SW to be
easily implemented on most modern RTOS.

The ADCS simulator is divided into two primary functions,
as seen in Figure 1. First, the Real World Software (RWSW),
which consists of models for actuators, spacecraft dynamics,
and sensors. Then the Onboard Software (OBSW), which is
the flight software written in Simulink library blocks. To make
the flight software simpler to develop and test, it is split into
three key functions: Navigation (NAV), Guidance (GDC), and
Control (CTL). NAV is the process used to determine where
the spacecraft is located in orbit, it’s orientation and all desired
target orientations and is a combination of estimation theory
and propagation of astronmical models. GDC is the process
to calculate a trajectory or difference from the current attitude
to a desired attitude. Finally, CTL is the process of firing
actuators to accomplish the desired trajectory or orientation
computed from guidance. Again as this is computed onboard a
computer the analog to digital and digital conversion processes
and their delays needs to be accounted for as well in the design
process.
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Fig. 1. Abstraction used to model simulation environment and on-board
software.

A. Development Strategy and Testing Philosophy

Testing is planned to be done with respect to the require-
ments outlined in Section II and in ESSENCE’s supporting
technical notes. The standard Vee philosophy from software
development practices fits well with the testing plan and it is
shown in Figure 2.

Starting at the top left of the Vee and working down, it is
expected that User Requirements have been delivered and di-
gested into top level software requirements by the Preliminary
Design Review (PDR). By the end of Critical Design Review
(CDR), the Architectural Design and Conceptual Design tasks
are complete. Also, by this time Implementation and Unit
Testing of functions are to be well under way. Finally working
back up the right side of the Vee, by the Flight Readiness
Review (FDR), Integration Tests, System Level Tests and
System Acceptance Tests shall have formal test plans outlined.
This is to capture scenarios that need to be demonstrated in
order to ensure that top level user software requirements and
user requirements are met.
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Fig. 2. Software development philosophy.

B. ADCS Control Modes

ADCS systems are seldom required to meet all of the
mission requirements at one time, due to conflicting objectives.
Therefore, one of the first design tasks is to plan out the
modes of operation and how they will be toggled based on the
mission and system requirements. For the ESSENCE mission,
requirements were distilled into the modes shown in Figure 3
along with how the modes interface with eachother. A detailed
description of each mode is as follows:

BDOT Mode
• Used to dampen the angular rates of the spacecraft to

provide an acceptable starting point for the magnetic
torquer nadir pointing mode.
BDOT with Bias Mode

• Used to align the spacecraft with the local magnetic field
by providing a magnetic moment that will tend to align
with the local magnetic field.
Quiescent Mode

• Used to provide a mode that will output no control signal
to actuators, this is to allow for testing and tuning of
the on-board Kalman filters or help identify sources of
unexpected disturbance torques.
MTQ Nadir Pointing Mode

• Used to orient the spacecraft’s long axis with the nadir
vector through magnetorquer actuation only.
Angular Momentum Management Mode

• Used to prevent the reaction wheels from either saturation
or constant zero crossing through magnetorquer actuation.
This mode is typically augmented with an active wheel
mode, but has the ability to be turned off or on separately.
3 Axis ORB Pointing Mode

• Used to point the Body Orientation Frame (BOF) axes
relative to the instantaneous Orbital (ORB) axes through
reaction wheel actuation only.
3 Axis WGS Pointing Mode

• Used to point the BOF axes relative to the instantaneous
World Geodetic System (WGS) axes through reaction
wheel actuation only.
3 Axis SUN Pointing Mode

• Used to orient the spacecraft’s long axis with the relative
Sun position vector through reaction wheel actuation
only.
3 Axis ECI Pointing Mode

• Used to point the BOF axes relative to the instantaneous
Earth Centered Inertial (ECI) axes through reaction wheel
actuation only.
Experiment One Mode

• Used to perform the University of Toronto Institute for
Aerospace Studies (UTIAS) experiment, both magnetic
torquers and reaction wheels will be active.
Experiment Two Mode

• Used to perform the Ryerson University experiment, both
magnetic torquers and reaction wheels will be active.
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Fig. 3. ESSENCE mission ADCS mode diagram.

C. Real Time Operating System Implementation

The Flight code for the ADCS needs to be executed with
a constant and repeatable interval in order to ensure con-
trollability of the spacecraft and to capture flight experiment
data at a rate fast enough to evaluate the performance of the
experimental modes. The desired cycle time of 10Hz for the
ADCS SW will allow for rapid control of the reaction wheels
and estimation of the attitude state. The GOMspace NanoMind
A3200 [8] was chosen as the On-board Computer (OBC)
for the ESSENCE mission since it meets the ADCS mission
requirements, has a user friendly development environment
and a free RTOS environment.

Real time operating systems differ from regular operating
systems since they are designed to allow for multitasking while
ensuring tasks are executed by a given deadline. Software
designed to operate in RTOS environments need to keep track
of ideas such as reentrency (e.g. no dependency on unprotected
global variables shared between tasks, keeping calls to external
hardware short, etc.) and avoid dynamic memory creation or
manipulation (e.g. malloc, free, new, delete).



For ESSENCE, the ADCS SW will run separate tasks from
the sensor tasks to prevent potential sensor communication
failure from interrupting the ADCS SW. Communication be-
tween the ADCS SW tasks and the sensors and actuators tasks
will be handled by mutex protected getters and setters. At a
high level, the model for these threads can be described by
figure 4.
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Fig. 4. Flight code threading model.

The use of MATLAB/Simulink to develop and test the
ADCS SW allowed the team to leverage many high level
benefits of Simulink mentioned earlier and this choice also
helped to ease the learning curve for new team members.
Additionally, with the built in capability for Simulink to
convert well crafted models into C-code, the models are easily
implemented on the RTOS. The C-code that is generated has
a simple interface consisting of three functions: initialize,
terminate and execute. The variable types that are generated
for this code include: inputs (e.g. sensor data in), outputs (e.g.
commands out), parameters (e.g. unchanging spacecraft mass),
and states (e.g. the current state estimate).

In general, figure 5 outlines the approach to the code
generation. First, the Simulink tested algorithm for the ADCS
SW is placed into a code generation harness to keep track
of the compilation settings. Since the ADCS SW exists as
a library block in Simulink, any changes to the software
will propagate to this harness if any changes are made. The
embedded coder1 in Simulink is used to generate the C-
code for the model. In general parameters of the software
were configured to be tunable to ensure it can be modified
in orbit. The sole exception for this are parameters related
to execution time which need to be fixed to generate the
code. Another parameter managed by the code generation
harness is the stack size of the generated code, managing this
parameter correctly is considered an improvement from the
previous mission (DESCENT) . Setting this as a parameter
allows Simulink to automatically identify the larger variables
and create a structure that can be added to the heap systemat-
ically, removing the need for manual intervention if the code
generation tools decided to place large variables in the stack.

After validating that the code compiles as expected, a list of
all variables, along with their sizes and data types is generated.

1Our team has chosen to use Simulink’s ”Embedded coder” tool over the
”Simulink coder” tool for a few aesthetic reasons. Namely, we found the code
generation report valuable for evaluating if a change increased or decreased
memory usage or made the code either simpler or more complex by checking
the code complexity estimate for the step function

OBSW SW
(Simulink)

OBSW SW
C code

Function to
write Task

OBSW SW
Task (wrapper)

Test Function
Task

Systems
Acceptance Test

Function to
Convert Data
for Test Task

Test function
Data

ADCS Task ADCS Tester
Task

Sensor and Actuator
Tasks

Other Tasks

Unit Test

Flight Code

Embedded Code Tool
Code Generation

Determine I/O Parameters
From Model

Generate Task Generate Test Harness

Compile OBSW and Wrapper Compile Test Task and Data

Copy Data From Passing Test

Converted Data Format

Fig. 5. Procedure for code generation.

This list is used to create wrapper code for a freeRTOS task to
run the ADCS SW. Similarly, a tester task is used to run input
data through the system and save the output data in order to
verify that the code is running correctly and that the interfaces
work as intended. These two tasks and code are shared with
the rest of the ESSENCE team for integration of the ADCS
SW with the Flight Software (FSW), for additional testing.
This method allows for easy modifications to be made to the
ADCS code should an issue arise.

V. EARLY UNIT AND SYSTEMS TESTING

This section contains preliminary results for some early
unit and integration testing to highlight the testing philosophy
discussed previously. Beginning with the unit test results for
the on-board magnetic field model, then the integration test
used to validate the performance of the attitude filter, and
lastly, the early integration test results of the nadir pointing
guidance and control modes.

A. Magnetic Field Navigation Model Results

The validation of the on board magnetic field model is to
show that the model is able to accurately compute the local
magnetic field at a given point. This type of model may be
inspected against other implementations to ensure its accuracy.
Fortunately, there are several on-line calculators available to
compare results as well as the magnetic field intensity map.
The generated map shown in Figure 6 is comparable to similar
sources, such as the world magnetic model in [9].

B. Attitude Filter Design and Results

As previously mentioned, one of the primary objectives
of the ESSENCE mission is to educate engineering students
with real space mission application. With ESSENCE being a
learning experience for many students, it allowed the attitude
filter to be designed in a non-conventional manner. The attitude
filter at its core level contains four separate functions: the
TRIAD algorithm, two different attitude filters, and a selection
logic function. The breakdown for this model is shown in
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Fig. 6. Magnetic field intensity plot generated from NAV MAG.

Figure 7, where the dashed lines provide the interaction with
outside of the system and the bold lines show interaction
within the system. Note, the SELECT function provides reset
conditions for the filter models if the ground station commands
it to.

TRIAD

Attitude Filter
(Dynamics Model)

Attitude Filter
(Gyro Reading)
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Fig. 7. Inside attitude filter navigation model.

Next, Figure 8 shows the individual functions within the
filters, namely: the dynamics and covariance propagators and
the individual sensor measurement updates. Individual sensor
updates are the preferred method over a single monolithic sen-
sor update as sensors are taking independent observations of
the state and separation allows for selective disabling/enabling
of sensors as data is made available.
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Fig. 8. Attitude Filter block diagram.

The two Multiplicative Extended Kalman Filters (MEKFs)
are very similar in structure, but differ in the way that their dy-
namic propagation is computed. Within Figure 7, the first/top
attitude filter models the dynamics fully within the dynamic
propagator, while tracking the attitude quaternion and the
angular rates as the estimated state vector. The second/bottom
filter model uses the angular rate measurement from the fibre-
optic gyroscope to compute the propagated dynamics. The

estimated state vector for the second filter contains the attitude
quaternion and the gyro biases, and uses the gyro reading and
estimated bias to estimate the angular velocity. The reason for
having both filter models with the attitude navigation model
is to compare both methods in flight. With both filters readily
available, the ground station is able to choose between filters
depending on performance, or switch to one in the case of
sensor failure (e.g. single axis sun sensors or gyroscope).

The TRIAD function provides much coarser attitude es-
timates and thus is not a primary mode of navigation. It
is included in this module for early phases of orbit, and
for providing initial conditions for the filters to use before
attempting to converge. The quaternion from the TRIAD
algorithm may also be used as a reset quaternion in the off
chance that the filters diverge.

The filters provide similar estimation data, with the full
dynamic propagation and direct gyro measurement models
providing accuracy of ±1.4° (3σ) and ±0.72° (3σ) respec-
tively.

C. Orbital Frame Pointing (Nadir) using Reaction Wheels

Control results for the nadir pointing guidance law are
summarized in Figures 9 and 10. Figure 9 uses simulated noise
to match what is expected from the described attitude filters.
Note, this is to try and mimic how the control mode will act
with the navigation readings while still preserving the unit
test. The attitude control accuracy with the simulated noise is
±1.01° (3σ) and ±0.07° (3σ) without the simulated noise.
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Fig. 9. Attitude errors for nadir pointing control using reaction wheels.

Finally, Figure 10 provides a 3D visualization of how the
the nadir pointing control mode is working in tandem with
the nadir guidance algorithm. It shows that the x-axis of the
spacecraft stays pointing nadir through the entire orbit. Note,
the axes have been greatly enlarged for graphing purposes and
are not to scale.

VI. FUTURE WORK AND FINAL STEPS

Presently, the RACS team is conducting unit tests to confirm
the operation of the simulator for final deployment on board
ESSENCE. The team is on track to complete its CDR goals
and is benefiting greatly from its reuse of the tests and code



Fig. 10. 3D visualization of nadir pointing control using reaction wheels.

from the DESCENT mission. Future steps to still be completed
include: finalizing the sensor models to have accurate data
interfaces on the OBSW; augmenting the attitude filter models
with estimates of the reaction wheel states to support the
experiment, and finalizing the scripts used to generate the
freeRTOS tasks to execute and test the software. On a long
term basis, the team hopes to integrate power generation and
usage models to the simulator to support testing of future
power optimization modes. It is also hoped in the future to
flesh out the GPS sensor model and to investigate its use
in different applications such as formation flight, or possibly
terrestrial projects.

VII. CONCLUSION

The design philosophy employed by the RACS team for the
ADCS SW development has proven that a modular and flexible
design is reusable between missions, as demonstrated through
DESCENT and ESSENCE. The design philosophy in place for
both missions would not been possible without the original
initiation and development done by NGC Aerospace, which
has been validated by their in orbit demonstrations through the
PROBA program. This methodology allows for a continuous
evolution of the simulator as experimental data is obtained
and operational improvements are made. The modularity of
the software allows for changes in the system, such as sensors
and actuators, to be easily made and the software updates will
autonomously expand across the complete system. Overall,
this method has increased the efficiency in the software design
process and allowed for previous work to be recycled while
simultaneously offering a better representation of the real
world environment through each iteration.
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