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Abstract—Most real-life engineering optimization problems
are non-convex by nature. In a topology optimization con-
text, this non-convexity is even exacerbated by the extra re-
strictions imposed during the optimization process to enforce
mesh-independent black/white manufacturable solutions. Such
restrictions include intermediate density penalization, as well as
external regulation techniques imposed to tackle some numerical
instabilities such as checkerboarding and mesh dependence, in
addition to various design constraints. This non-convexity gives
rise to the problem of local minima, where the converged solution
is greatly affected by the algorithmic parameters as well as the
initial guess. To overcome this non-convexity, filtering techniques
are often employed. In this work, we present a comprehensive
treatment of the potential effects of non-convexification of filters
on the topology optimization problem.

Index Terms—topology optimization, finite element analysis,
filtering techniques, numerical instabilities, convexity

I. INTRODUCTION

Since the introduction of the Solid Isotropic Material with
Penalization (SIMP) method in the seminal paper by Bendsøe
[1], material interpolation methods have become one of the
most active research areas in engineering optimization. Al-
though the origin of almost all density-based approaches lies
in linear elasticity, they have been successfully extended to

Fig. 1. Topology optimization applied to an MBB problem (a.k.a. a bridge).
The top figure shows the problem description and the finite element discretiza-
tion while the bottom figure shows the optimized result (yellow/blue represent
void/material respectively).

even more complicated single and multiphysics fields. In a
general sense, the optimal topology of a problem refers to the
location and number of holes such that an objective function
is extremized (c.f. Fig. 1).

To simplify the numerical implementation of topology
optimization formulations, the normalized density is usually
taken to be element-wise constant rather than the less popular
node-wise approach. This way the design variables can be
taken outside the integral of the elemental stiffness matrices
(c.f. [2, p. 68] and [3, p. 1419]). It is a widely known
fact that any approach that enforces discrete 0/1 solutions is
inherently non-convex. A rather unfavorable consequence of
this non-convexity is the obscureness of the global optimum. In
other words, the converged solution of non-global optimization
approaches would be one of the huge pool of local minima
the problem possesses. To complicate the problem further,
global optimization approaches are extremely computationally
extensive, and, so far, prove unable to handle the typically
massive number of design variables in practical topology
optimization problems [2, p. 74].

A major numerical instability that was early recognized
as a direct consequence of the non-convexification of the
objective function is the Local Minima problem. It mainly
refers to the problem of obtaining different solutions for
the same finite element (FE) discretization upon choosing
different algorithmic parameters [2, p. 74]. The converged
solution of an optimization problem is mainly determined by
three parameters1; the initial guess, the optimization direction,
and the optimization “speed”. The latter two parameters are
characteristics of the optimization algorithm/solver in use [4].
The optimization direction is determined by the gradients2

of the objective function and constraints with respect to the

1Strictly speaking, this statement only applies to optimization problems
with a non-changing objective function, so it doesn’t strictly apply when
continuation methods are used (i.e. increasing the penalization factor). The
use and effect of continuation methods is discussed in depth in a later section.

2The discussion in this study is solely dedicated to gradient-based opti-
mization, since the usefulness of non-gradient based methods is still unclear
as was discussed in the forum article by Sigmund [5].
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design variables (i.e. sensitivity analysis), while the optimiza-
tion speed is determined by how aggressive the algorithm is,
(e.g. how much change in the design variables is allowed per
iteration).

A number of methods have been implemented to overcome
the numerical instability of local minima, the most popular of
which is filtering techniques. Although they have been in use
in the academic and industrial communities for more than two
decades, there has not been a comprehensive study of their
non-convexification effects yet. In this work, we attempt to
investigate the non-convexification effects of various filtering
techniques and their effect of the global optimality of the
topology optimization problem.

II. MESH-INDEPENDENCY FILTERING

Since the first appearance of mesh-independency filters
(i.e. sensitivity filtering by Sigmund [6, 7]), they have be-
come extremely popular in the research community for their
effectiveness, computational efficiency, and ease of imple-
mentation. Generally, filtering methods are implemented as
an intermediate step in the cycle of the analysis step (i.e.
solving the equilibrium equations and calculating the original
sensitivities) and the optimization step (i.e. updating the design
variables). They can be divided into two categories: sensitivity
filtering and density filtering3. Sensitivity (density) filters
work through modifying each element’s sensitivity (density)
based on the sensitivities (densities) of neighbouring elements
within a predefined filter radius. Although these filters were
originally invented to prevent common numerical instabilities
such as checkerboarding and mesh dependency, some filters’
capabilities have been extended to implementing minimum
and maximum length scales in both solid and void regions
in addition to some physics-specific constraints such as pre-
venting one-node hinges in compliant structural mechanisms.
A worthy remark is that although the original filter proposed
by Sigmund [6, 7] was of the sensitivity type, most filters
currently in use are of the density type. One of the reasons
behind this is that it’s relatively easier to conceptually link the
parameters used in defining the density filter to the density
results, which is not easily the case with sensitivity filtering.
For a comprehensive review, see [8] and references therein.

It seems prevalent that almost all the work published on
black/white enforcing filters recommends using continuation
methods with the filtering schemes (c.f. [9, p. 409], [10,
p. 249], and [11, p. 128]). In other words, there is a consen-
sus in the literature that sophisticated filtering schemes (i.e.
filters that perform any task beyond the simple prevention
of checkerboarding and mesh dependency) - if implemented
without continuation - would generally cause either unstable
behavior at worst, or cause convergence to local minima at
best. Yet, little attention is usually given to attempting to
investigate the effects of the filtering schemes on the convexity
of the problem. A probable cause for this general attitude is the

3We chose to categorize Heaviside filtering as a type of density filtering
since it operates on the elemental densities while some other references treat
it as separate from density filtering.

fact that the severe localized penalization imposed by density-
based methods on intermediate density elements is generally
much stronger and tends to overshadow any other form of
non-convexification caused by additional constraints.

In the following, we attempt to investigate the effect of filter-
ing methods on the convexity of the problem. At this point, it’s
worthwhile to revisit some generalizations of convex functions,
namely quasiconvex functions. Following the treatment in
Bazaraa et al. [12, p. 134], a function f : S → R, where
S is a nonempty convex set in RN , is said to be quasiconvex
if for each x1 and x2 ∈ S, the following inequality is true:

f [λx1 + (1− λ)x2] ≤ max{f(x1), f(x2)},
for each λ ∈ (0, 1).

(1)

Although quasiconvex functions have a single minimum,
their definition don’t preclude the existence of multiple sta-
tionary points (see Fig. 2a), which is detrimental to iterative
solvers. Hence, a more useful concept is the strictly quasicon-
vex functions. A function f : S → R, where S is a nonempty
convex set in RN , is said to be strictly quasiconvex if for each
x1 and x2 ∈ S with f(x1) 6= f(x2), the following inequality
is true:

f [λx1 + (1− λ)x2] < max{f(x1), f(x2)},
for each λ ∈ (0, 1).

(2)

By enforcing f(x1) 6= f(x2) and the strictness of the
inequality, we actively eliminate any stationary points except
at the global minimum (see Fig. 2b). If one is interested in a
generalization of convex functions that supports uniqueness of
solutions, strongly quasiconvex functions might be of interest.
A function f : S → R, where S is a nonempty convex set
in RN , is said to be strongly quasiconvex if for each x1 and
x2 ∈ S, with x1 6= x2, the following inequality is true:

f [λx1 + (1− λ)x2] < max{f(x1), f(x2)},
for each λ ∈ (0, 1).

(3)

By enforcing x1 6= x2, strongly quasiconvex functions (see
Fig. 2c) assert uniqueness of the global optimum. However,
a major disadvantage of the above mentioned functions is
that they must have convex lower level sets. That is, for S
a nonempty convex set in RN , the lower level sets defined as:

Lα = {x ∈ S | f(x) ≤ α}. (4)

for α ∈ R, must be convex [13, p. 95]. This disadvantageous
property is usually hard to prove for multivariate functions
and doesn’t add significant value for an iterative solver.
Hence, it would be useful to explore a more generalized
concept, that is unimodal functions. Bazaraa et al. [12, p. 156]
define univariate unimodal functions as follows; a function
f : S → R, where S is some interval on R, is unimodal on
S if there exists an x∗ ∈ S at which f attains a minimum
and f is nondecreasing on the interval {x ∈ S : x∗ ≤ x} and
nonincreasing on the interval {x ∈ S : x ≤ x∗}. As for multi-
variate unimodal functions, a number of conflicting definitions
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Fig. 2. Generalization of convex functions: a. quasiconvex, b. strictly quasiconvex, and c. strongly quasiconvex. Notice the difference between the stationary
points in the three types.

exist in literature, specially in the field of Probability and
Statistics [14, 15, 16]. Some authors associate the definition of
unimodality with that of quasiconvexity as in having convex
lower level sets, which is true for univariate functions but
not for multivariate ones. In this work, for the definition
of multivariate unimodal functions, the natural extension of
univariate unimodal functions is utilized [16, p. 38]. That
is; a multivariate function f(x) is called unimodal if it’s
nondecreasing along rays emanating from its global minimum
in all directions (see Fig. 3). To preclude the existence of
multiple stationary points, we could utilize the notion of
strict monotonicity so that f(x) is strictly increasing in every
direction emanating from its global minimum.

Returning to our discussion on the effect of filtering on
convexity, it’s true that convexity might be distorted. However,
unimodal functions are an example of non-convex functions
that still possess a global minimum attainable through iterative
solvers. Hence, it’s safe to assume that as long as the modified
function is strictly unimodal, no new local minima would
arise because of this non-convexity. It’s worth noting that
in penalized topology optimization, the unfiltered problem is
already non-convex with many local minima. Hence, the above
discussion would be only applicable to smaller locally convex
parts of the large non-convex function (i.e. a localized valley
that has a single minimum). In the following, we reflect this
discussion onto sensitivity filtering.

III. SENSITIVITY FILTERING

What the sensitivity filtering does is that it modifies the
descent direction used in the optimizer, albeit without affecting
the value of the objective function itself [17, p. 474]. One
could say that sensitivity filtering “tricks” the optimizer by
altering the gradient of the objective function. Hence, the
optimizer would follow a different route towards the minimum
and obviously would settle at a different minimum from the
unfiltered original minimum, mainly because the sensitivity
filtering flattened the objective function at this point as seen
from the gradient’s perspective. Since the gradient has been
altered, it’s safe to say that sensitivity filtering “might” cause
some degree of non-convexification, albeit it cannot strictly be
called penalization since the value of the objective function
itself hasn’t been altered.

Fig. 3. Function f(x1, x2) =
√

|x1| +
√

|x2| is an example of a multi-
variate unimodal function that doesn’t belong to any category of quasiconvex
functions since its lower level sets aren’t convex. Yet, it has a unique global
minimum that can be found using iterative solvers.

Any filtering method starts by determining the neighbour-
hood of each element; that is the set Ne consisting of the
elements with centers spatially located within a given filter
radius r of the center of element e as follows:

Ne = {i | ||xi − xe|| ≤ r}. (5)

where xi denotes the spatial location of the center of element
i.

A modified version of the sensitivity filter that accounts
for non-regular meshes with varying elemental volumes is as
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follows [9, p. 408]:

∂̃f

∂ρe
=

∑
i∈Ne

we(xi)ρi
∂f

ρi
/vi

ρe/ve
∑
i∈Ne

we(xi)
, (6a)

we(xi) = r − ||xi − xe||. (6b)

where f is the objective function, ρe is the density of element
e, we(xi) is a linearly decaying (cone-shaped) weighting
function4 of element i within the neighbourhood of element
e, vi is the volume of element i, and ∂f/∂ρi and ∂̃f/∂ρi
denote the original and modified sensitivity respectively of the
objective function with respect to element i.

A noteworthy remark is on how the descent direction
is calculated inside the typical mathematical solvers used
in topology optimization (e.g. OC, GCMMA, MMA, etc.).
The general concept is that the solvers try to satisfy the
Karush-Kuhn-Tucker conditions by utilizing a combination of
the gradients of the objective function and the constraints.
Subsequently, the descent direction and step are calculated
based on the given move limits and the bounds of the design
variables. Consequently, it is safe to say that as long as
the inputted gradients denote ascent directions, the outputted
updated design variables would always denote a reduction
in the objective function (except at a minimum of course).
Hence, our investigative approach for sensitivity filters would
be focused on the input to the mathematical solvers; that
is whether the filtered sensitivities still constitutes an ascent
direction or not. In other words, whether the modified function
is locally strictly unimodal or not. In mathematical terms, it
means satisfying the following condition:

∂f

∂ρ
·
∂̃f

∂ρ
> 0 (7)

In order to ensure that such a dot product is always positive,
we need to ensure that each multiplication term is actually
positive on its own as follows:∑

i∈Ne

we(xi)ρi
∂f

ρi
/vi

ρe/ve
∑
i∈Ne

we(xi)
· ∂f
∂ρe

> 0 (8)

Since we(xi), ρi, and vi are always positive, any multi-
plicative combination of these quantities would always be
positive. Given the fact that sensitivities are always negative
in compliance minimization problems, this means that the
modified sensitivities are always negative. Hence, each indi-
vidual term in Eq. 8 is in fact positive as it’s a multiplication
of two negative quantities. This concludes the proof that

4The upcoming proof still applies to other weighting functions such as the
Gaussian (bell-shaped) distribution and the constant weighting functions since
they are always positive.

the filtered sensitivities in compliance minimization problems
always constitute an ascent direction (i.e. the modified func-
tion is locally strictly unimodal). A worthy remark is that
an essential component of our proof is that in compliance
minimization problems, the original sensitivities are always
negative. Hence, in other problems where the sensitivities
might be either positive or negative, there exists the possibility
that sensitivity filtering might cause non-convexification and
disturb the trajectory of the mathematical solver.

IV. BASIC DENSITY FILTERING

This category includes types of density filtering that enforce
a grey transition region along the boundaries. Density filtering
works by mapping each design point to another design point
based on the details of the density filtering scheme. This
mapping results in two main effects; (i) a jump from the
original design point to the filtered one, and (ii) based on
this jump, the sensitivity has to be modified. A typical density
filtering takes the following form [18, 19]:

ρ̃e =

∑
i∈Ne

we(xi)viρi∑
i∈Ne

we(xi)vi
. (9)

and the sensitivities are modified accordingly as follows:

∂f

∂ρe
=

∑
i∈Ne

∂f

∂ρ̃i

∂ρ̃i
∂ρe

, (10a)

∂ρ̃i
∂ρe

=
we(xe)ve∑

j∈Ni

we(xj)vj
. (10b)

Let’s focus on the resulting sensitivities first, it’s clear
that ∂ρ̃i/∂ρe is always positive since it’s a multiplicative
combination of we(xe) and ve which are always positive.
Hence, according to Eq. 7, the modified sensitivities (Eq.
10a) didn’t change signs and still in fact constitute an ascent
direction. This proof, unlike the sensitivity filtering proof,
applies to any problem, not just to compliance minimization.

As for the modified densities, it’s worthy to investigate
whether the filter constitutes an affine transformation or not.
A careful look at the modified densities (Eq. 9) reveals that it
can be put in the form:

{ρ̃} = [A]{ρ}. (11)

where A is an N ×N square matrix since ρ̃ and ρ have the
same dimension N . This relation constitutes a linear mapping
(or an affine mapping to be more general [13, p. 79]) from
the original to the modified densities. A rather nice property
of affine transformations is that the resultant set is convex if
the original is, i.e. the modified densities set is convex if the
original densities set is convex, which it is. This concludes that
the modified domain is indeed convex. As for the convexity of
the codomain, since the objective function is merely evaluated
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at a new design point, its codomain undergoes no changes and
retains its original convexity, if any existed.

Although we have proven the basic density filter maintains
convexity, an intriguing question remains; does the affine
mapping exclude any design points from the modified domain?
In order to answer this question, we need to investigate
whether the matrix A is invertible or not. This is mainly
because a non-invertible affine mapping collapses the space
along some directions, i.e. the modified set is smaller than the
original one. The matrix A is singular if its determinant is
zero, which can happen in one of two cases (or both): (i)
a whole row/column is zero, or (ii) two rows/columns are
linearly dependent. The first case cannot happen since the
worst case scenario, i.e. having a filtering radius r that doesn’t
span any adjacent elements, will result in an identity matrix.
Any increase in the filtering radius r would fill in more zero
elements and hence it’s impossible for A to have a whole
row/column of zeros. As for the second case, the only scenario
that would result in two (or more) rows/columns being linearly
dependent is if two elements have the same neighbourhood of
elements Ne and a constant weighting function we(xi). The
only case we can see this happening is at the free edge of a
thin structure comprised of two rows of finite elements, the
two elements at the edge would have the same neighbourhood
of elements. Of course this is an extremely-unpractical5 case
and could be safely ignored. Hence, for all practical purposes,
the modified domain of a basic density filter doesn’t exclude
any design points. We conjecture that with a careful choice of
a weighting function combined with a specific design point,
though unrealistic, could result in a checkerboard pattern as a
result of filtering.

V. FILTERING THAT ENFORCES 0/1 DESIGNS

As mentioned before, sensitivity as well as basic density
filters enforce a grey transition region along the boundaries. To
overcome this issue, a class of filters that enforce 0/1 discrete
designs were developed. The first appearance of such filters
was in the pioneering work by Guest et al. [10], in which the
authors used a nonlinear projection (a regularized Heaviside
step function) to ensure a discrete 0/1 boundary and enforce a
minimum length scale on the solid phase. A slight modification
of this filter could enforce the minimum length scale to the
void instead of the solid phase, c.f. Guest [11, p. 125].

It’s well known that intermediate density penalization is
mainly achieved by the penalization of the objective function
itself, and is usually enforced gradually through a continuation
method. To get rid of the grey transition regions, these
filtering schemes enforce the jump to be towards a discrete
rather than an intermediate density design point, which can
be considered a form of penalization. Intermediate density
penalization, if enforced by the filtering scheme rather than
the objective function, would cause unstable behavior (c.f.
Guest et al. [10, p. 249] and Sigmund [9, p. 409]). Mainly

5Even with including the elements outside boundary as void elements, the
two elements could still have the same neighbourhood of elements (c.f. [9,
p. 407] for more details on the treatment of mesh boundaries).

because the filtering scheme is not designed to seek the
minimum discrete point of the problem and consequently its
modified sensitivities wouldn’t lead to that direction. Hence,
it’s essential that continuation is utilized in the filtering scheme
so as to follow a similar (or lower) degree of penalization as
that of the objective function. In what follows, a mathematical
justification is presented.

Guest et al. [10, p. 248]’s Heaviside filter takes the following
form:

ρ̄e = 1− e−βρ̃e + ρ̃e e
−β . (12)

where the parameter β controls the curvature of the regular-
ization (β = 0 recovers the basic density filter and β → ∞
recovers the Heaviside step function), and ρ̃ is calculated
as in Eq. 9 using a linear weighting function as in Eq. 6b
(other weighting functions could also be used). The affine
mapping argument used in proving the convexity of basic
density filtering is not valid here since its converse is not true
(i.e. not being an affine mapping doesn’t necessarily mean
producing a non-convex set). Hence, a different argument is
needed, namely the generalization of which the affine mapping
argument is a special case.

Soltan [20, p. 114] stated that “a mapping f : RN → RM is
called convexity-preserving if the f -images of all convex sets
in RN are convex sets RM”. In our case, M = N . Hence,
we can focus our attention on a single modified density ρ̄,
whether its output is a convex set or not. It’s clear from the
analytical form of the Heaviside filter (recovered as β →∞)
that the result contains only two elements {0, 1}. In other
words, any combination of neighbourhood elements’ weights
and densities would always result in a filtered density of 0 or
1. In other words, certain design points would be excluded
from the modified set, and in our case the excluded points are
the intermediate density ones. Hence, it’s clear that the result
is not a convex set, and the filter is not a convexity-preserving
mapping. It’s worth noting the resemblance between the effect
of these filters and that of domain discretization on the
problem’s convexity.

VI. OTHER FILTERS

This subsection concerns the filters that don’t enforce nei-
ther grey nor discrete designs. To overcome the downsides of
the Heaviside filter, Sigmund [9] introduced the morphology-
based operators dilate and erode, which enforce a minimum
length scale on the solid and void phases respectively. These
filters work as maximum (dilate) or minimum (erode) oper-
ators, meaning they will select the maximum (or minimum)
value of the neighbourhood elements6. Later, Svanberg and
Svärd [21] provided alternative definitions of the dilate/erode
operators based on the second and third Pythagorean means
(i.e. geometric and harmonic means) instead of the usual first
Pythagorean mean (i.e. arithmetic mean).

6Assuming constant weighting as in Sigmund [9]’s original formulation.
Using a different weighting function will slightly alter this definition.
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It’s worth noting that these filters are nonlinear (not affine
mappings), but they can produce a convex set for each ρ̄.
With various combinations of neighbourhood elements, they
can produce ρ̄ ∈ [0, 1]. In fact, Svanberg and Svärd [21,
p. 865] proved that the three dilate operators (i.e. morphology,
geometric, and harmonic) are convex density filters (i.e. each
ρ̄ is a convex function of ρ) through analytically proving that
the Hessian is always positive semidefinite.

VII. CONCLUSIONS

Convexity is a core concept in optimization given the
abundance of convex programming algorithms and the fact that
global optimality can be proven easily in convex problems.
However, the current formulation of topology optimization
problems inherently introduces non-convexification into the
problem. This non-convexification is introduced first by the
simple domain discretization required to solve the problem
numerically, and later by the intermediate density penalization
required to enforce discrete solutions. Various design con-
straints can be sources of additional non-convexity. In this
article, we presented a mathematical treatment on effects of
some of the common filtering methods on the convexity of the
problem. Aside from the filters that enforce 0/1 designs, most
filtering techniques do not cause non-convexification.
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