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Abstract—With the advances in manufacturing and design 

methods, engineers have been constantly pushed to improve 

mechanical components performance by minimizing part 

weight, maximize stiffness and optimize material usage. Tools 

such as topology optimization has been widely used to support 

the development of new components. While the optimization 

process for metallic components is well stablished, composite 

materials optimization still possess challenges to designers, 

especially due to the plies stacking sequence definition. The 

recent advances in 3D printed composite additive 

manufacturing have brought a new alternative to the 

composite manufacturing adding geometric freedom and 

challenges on the definition of the optimum material layout 

and lay-up. Thus, this paper expands upon existing 

mathematical methods by providing an algorithm to 

simultaneously minimizing the material distribution and the 

laminate stacking sequence of composite plates. Lamination 

parameters are used as design variables to optimize the 

laminate stacking sequence avoiding local optimum solutions 

and reducing the number of designable variables. Once the 

optimum topology and set of lamination parameters are 

defined, angle retrieval is performed to define the optimum 

plies orientation. Two problem examples are solved to 

illustrate the applicability of this approach. 

Keywords-component; Additive manufactuing; simultaneous, 
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I.  INTRODUCTION 

Additive Manufacturing (AM) has been shifting from its 
roots on the production of simple plastic prototypes to printers 
that can handle materials ranging from plastic to titanium [1], 
and more recently short and continuous composite fibers. 
Whilst metal AM parts have already been applied in aircrafts as 
structural component [2-4], composite AM, especially 
continuous fiber, is still a relatively new and undeveloped 
research topic which possesses significant challenges [5].  

Besides the fact that companies such as MarkForged [6] 
and Continuous Composites [7] have been advancing on the 
development of continuous fiber 3D printers, there is still the 
need for methods and tools able to generate paths that can 
allow for the fabrication of parts possessing enhanced 
mechanical properties [8]. 

Topology optimization (TO) has been reported by many 
authors as a method to generate unconventional load paths [9-
12]. TO was used by [13], for instance, in the conceptual 
design of an automotive engine cradle showing significant 
mass reduction results. Reference [14] on the other hand, 
investigated TO on a pre-stiffened bulkhead with a frequency-
based problem, where the first frequency eigenfrequency is 
maximized subjected to a mass ratio of the component. 

In the last decade, there has been an increase interest in the 
development of TO applied to additive manufacturing 
techniques. The cost of 3D printed components, for example, 
has been investigated by [15] and [16]. In their work, TO was 
applied to additive manufacturing seeking to maximize the 
component’s stiffness considering the time and supported 
material required for the design. Design for additive 
manufacturing has also been considered by [17] and [18] where 
the simultaneous TO and build orientation optimization were 
used to achieve optimum designs that minimizes the 
manufacturing cost. 

Common to most of the TO applied to additive 
manufacturing techniques is the use of isotropic materials as 
candidate material. Nevertheless, with the increasing 
application of composite materials on the design of lightweight 
structures, especially due to their high strength to weight ratio, 
there is an increased need for methods and tools that allow 
designers to exploit the unidirectional composite properties 
along with the manufacturing freedom delivered by additive 
manufacturing processes. 

This article proposes an algorithm to simultaneously 
perform TO and stacking sequence optimization of 
unidirectional composite plates. Two sets of design variables 
are simultaneously solved by the optimizer, the TO artificial 
densities and the stacking sequence design variables. Stacking 
sequence design variables are defined through a set of 
lamination parameters (LPs) that overcomes the lack of 
convexity of the objective function inherent of lamination 
angles as well as limits the maximum number of design 
variables independently of the number of angle plies. 

Topology Optimization was introduced as a 
homogenization method to provide the optimal shape and 
topology of mechanical elements by [19]. Shortly after, [20] 
proposed the application of artificial densities as design 
variables as a method of removing the discrete nature of the 



   

problem by the introduction of a density function that is a 
continuous design variable, the process was afterwards 
denominated as Solid Isotropic Material with Penalization 
(SIMP) by [21].  

With regards to the stacking sequence optimization, many 
different optimization approaches have been proposed in the 
literature. For instance, early attempts were done by [22] that 
proposed to minimize the weight of symmetric fiber 
composite-laminates subjected to strength and stiffness 
constraints using the layer thickness as design variables at 
specific orientation angles. Results showed that depending on 
the load and boundary conditions the thickness of specific plies 
were reduced to zero indicating that the vanished ply was not 
contributing to the performance measure of the optimization 
problem. Reference [23], on the other hand, used ply angles as 
design variables. They minimized the Tsai-Wu failure criteria 
as with strength restrictions for composite laminates with few 
plies – no more than three design variables were used in the 
design optimization process. 

In composite lay-up optimization, one of the major 
problems of using ply angles as design variables is the lack of 
convexity of the objective function and thus the existence of 
local optima [24]. Due to this fact, several approaches have 
been proposed in order to optimize composite stacking 
sequence in different applications, examples are [25] and [26] 
who used genetic algorithms and simulated annealing, 
respectively, to minimize the mass of composite plates 
subjected to transversal impact with plies angles as design 
variables. 

In this context, parametrization of the ply orientation via the 
LPs presents an alternative to overcome the difficulties to the 
lack of convexity of the objective function. Figure I illustrates 
both LPs and fiber angles spaces in the optimization process, in 
this illustrative example, it is possible to notice that the fiber 
angles space (solid line) is represented by a non-convex 

function ( )f   with two local minima (points 2 and 4), while 

the LPs domain (dotted line) is represented by a convex 

function ( )f   which leads to a unique optimum point (dark 

point).  

 
FIGURE I – ILLUSTRATION OF THE OPTIMIZATION PROCESS IN BOTH SPACES OF 

THE LAMINATION PARAMETERS AND THE FIBERS ORIENTATION [27]. 

Attempts to simultaneously optimize the shape and stacking 
sequence of composite laminates have been proposed. For 
example, gradient-based cellular automata optimization was 
proposed by [28] to solve the TO and fiber path design of 
composite layers. Reference [29] proposed a two-step 
minimization problem to solve the stackings sequence 

optimization using LPs and the TO problem sequentially. 
Reference [30] proposed a method for solving the compliant 
mechanism optimization considering fiber orientation and 
topology optimization.  

II. OPTIMIZATION PROBLEM STATEMENT 

A. Traditional TO Statement 

The objective of TO problems is to define the materials 
distribution over a design domain such as the objective 
function is minimized subject to a constraint. The well-known 
compliance minimization subject to volume fraction problem 
statement is presented in (1). 
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where ( )C u,  is the compliance that is a function of the 

displacement vector u  and the artificial design variables  , 

k  is the element stiffness matrix, ( )V  , iV  and V  are the 

penalized element volume, the initial volume of the design 
space and the volume fraction constraint, respectively, f  is 

the nodal forces vector and m  is the number of elements in the 

design space. 

B. Lamination parameters 

Lamination parameters are defined as trigonometric 
functions of the ply orientations. In this article, only the 
extensional matrix is considered, thus the set of four 
extensional LPs can be defined as (2): 
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where k  is the ply orientation angle, T  is the laminate 

thickness, n  is the number of layers and kh  is the distance 

from the center of the laminate to the interface between the 
thk   

and the 
1thk +

 layer.  

The composite extensional material stiffness matrix [A], 
can be defined using the extensional LPs as (3): 
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where 
A
i i = , 1,2,3,4i = , and 

EU , 
GU , 

CU
 and 

CU
 are 

the stiffness invariants defined in (4): 
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where 
ijQ  are the reduced stiffness for unidirectional lamina 

defined as (5): 
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where 
1E , 

2E , 
12G  are the longitudinal, transverse and shear 

moduli, respectively, and 
12  and 

21  are the Poisson’s ratio.  

C. Feasible Region 

By definition, the LPs can assign values within the bounds 

of 1.0 1.0i−   , 1,2,3,4i = . Nevertheless, LPs bounds are 

not sufficient to guarantee that a combination among the LPs 
represents a feasible lay-up. Thus, further constraints to define 
the feasible region of the set of LPs need to be defined. 

The feasible region has been firstly described by [31], who 
defined the feasible region based on some lamination 
parameters relations. Specifically, the author determined the 
feasible region described by the relation between two in-plane 
stiffness as (6): 

 ( ) ( )
2 2
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Later, the feasible region of the four in-plane LPs was 
derived by [32] as (7): 
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D. Lamination Angle Retrieval 

Once the optimum set of LPs is defined by the optimization 
algorithm, it is necessary retrieve the fiber angles that are 
represented by the parameters. This is done by minimizing the 
least square problem proposed by [30], Equation (8). MMA is 
used to obtain the optimal fiber angles. 
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where ( )f   is the least square function to be minimized 

opt
i , 1,2,3,4i =  is the optimum LPs,   ( 1,2,..., t = ) are 

the design variables, and t  is the number of independent fiber 

angles. 

E. Simultaneous TO and Stacking Sequence Optimizaiton 

The proposed algorithm overview for solving 
simultaneously the TO and stacking sequence optimization of 
composite plates is shown in Figure II. 

 
FIGURE II – OVERVIEW OF THE TOPOLOGY AND COMPOSITE STACKING 

SEQUENCE OPTIMIZATION ALGORITHM STRUCTURE. 

The algorithm starts by initializing the TO artificial 
densities   and the set of initial LPs   followed by the finite 

element analysis (FEA). Objective and constraints functions 
and their respective sensitivities are computed prior to the 
optimization. Then, the optimization is performed by the 
Method of Moving Asymptotes (MMA) [33] and convergence 
is checked. If the problem has not converged the TO and 
design variables and LPs are updated and the algorithm starts a 
new iteration with FEA. The optimization terminates when the 
objective response difference between successive iterations is 
sufficiently small. After convergence, the lamination angles are 
retrieved. 

The problem is defined as a compliance minimization 
subject to volume fraction constraint. The simultaneous TO and 
stacking sequence optimization problem statement is presented 
in (9). 
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F. Sensitivity Analysis 

The MMA optimizer requires the objective and constraint 
function first order derivative. Thus, deriving (3) with respect 
to the LPs yields (10): 
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The compliance C  can be defined as (11): 

 T
e e eC = u k u  (11) 

And the elemental stiffness can be defined as (12): 
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e

V
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where B  is the strain-displacement matrix and A  is the 
extensional material stiffness matrix (3). Thus, the compliance 
sensitivity with respect to the LPs can be defined as (13): 
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where m  is the number of designable elements. The 

compliance sensitivities with respect to the artificial design 
variables is defined as (14): 
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where p  is the interpolation penalty factor 

The volume fraction fV  constraint sensitivity with respect 

to the artificial density is defined as (15): 
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And the two feasible constraints sensitivities are defined as 
(16): 
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III. NUMERICAL EXAMPLES 

In this article, two examples will be used to test the 
proposed TO and stacking sequence algorithm. The 
Messerschmitt-Bölkow-Blohm (MBB) beam and the L-bracket, 
will demonstrate the capability of the algorithm to 
simultaneously place the materials over the design space as 
well as define the optimum ply sequence orientation of the 
composite plate. In this work, the unidirectional Hexcel 8552 
AS4 [34] material will be used for all subsequent problems, 
and material properties are summarized in Table I. Both MBB 
and L-bracket examples are solved considering a plate 
thickness of 2.0 mm or a 10 layers laminate. 

TABLE I.  – HEXCEL 8552 AS4 MATERIAL PROPERTIES [34] 

 Hexcel 8552 AS4 

 1 2=  E E GPa  61.60 

 12 31=  G G GPa  5.72 

 23  G GPa  4.00 

12  0.043 

3 3 10 kg m     1.57 

ply thickness [mm] 0.2 

 

A. MBB Beam 

The first model is the MBB beam with 1,000 mm × 200 
mm × 2 mm. This geometry is meshed using a 5-mm four-node 
quadrilateral elements yielding 8,000 elements. A diagram of 
the design space, boundary conditions as well as the symmetry 
plane definition is shown in Figure III. This problem is solved 

for a volume fraction constraint of 30% ( 0.30V  ). 

 

 
FIGURE III – MESSERSCHMITT-BÖLKOW-BLOHM BEAM BOUNDARY CONDITION 

AND DESIGN SPACE GEOMETRY 

Figure IV depicts the MBB beam convergency history. The 
dark solid line indicates a smooth objective function 
convergence throughout the iterative optimization process. The 
optimum solution is achieved after 56 iterations. LPs 
convergence, on the other hand, oscillate mostly during the 
initial iterations. This behavior is expected as the optimizer is 
concurrently optimizing the optimum composite lay-up and the 
material distribution over the design space. After iteration 10, 
the LPs convergence behavior becomes smoother with the odd 

LPs, 1  and 3 , converging to value of 0.5 and 0.3, 

respectively. The even LP 2  present the highest oscillation 

among the four LPs, however, such behavior should not impact 



   

the final results  as the even LPs indices tend to be the less 
important [35].  

 
FIGURE IV – MBB BEAM OBJECTIVE AND LAMINATION PARAMTERS 

CONVERGENCE HISTORY 

The stacking sequence for the 10-layers plate is presented at 
the bottom of Figure IV along with the material distribution 
over the design domain for selected iterations. It can be seen 
that the material placement is continuum with the algorithm 
discretizing the optimum material distribution at each iteration. 
Angle plies are retrieved with an angular resolution of 5⁰.  

As can be observed in Figure IV, the solver resulted in 
cross-members with thin members that can be difficult or even 
infeasible from the point of view of manufacturing. 
Nevertheless, it is worth mentioning that the components 
manufacturing process has not been considered in the present 
studies.  

B. L-Bracket 

The second problem will be the L-Bracket problem. The 
geometry presented in Figure V is meshed with 6,500 four-
node quadrilateral elements with an average mesh size of 
4.0 mm. The plate elements are defined with a constant 
thickness of 2 mm and a load of 8,000 N. Again, a volume 

fraction of 30% ( 0.30V  ) is used as TO constraint. 

 

 
FIGURE V – L-BRACKET BOUNDARY CONDITION AND DESIGN SPACE 

GEOMETRY 

Figure VI shows the L-bracket convergency history. It can 
be seen that the objective function converges smoothly 
throughout the optimization. Again, LPs, present oscillation 
behavior at the initial iterations due to the simultaneous 
optimization of the material distribution and material stiffness. 

After few iteration, the LPs start to present a smooth converge 
behavior. The optimum solution is achieved after 62 iterations.  

The 10-layers composite laminate lay-up is shown at the 
bottom of Figure VI for selected iterations. Again, it can be 
noticed that the algorithm discretizes the optimum material 
distribution continuously throughout the optimization. The 
optimum lay-up is retrieved with an angular resolution of 5⁰. 

 

 
FIGURE VI – L-BRACKET OBJECTIVE AND LAMINATION PARAMTERS 

CONVERGENCE HISTORY  

CONCLUSIONS 

This article presented a simultaneous composite plate 
stacking sequence and topology optimization method for 
defining the optimum material distribution and laminate lay-up 
that can help in the additive manufacturing of 3D printed 
composite plates. 

The proposed algorithm extends the application of the 
traditional topology optimization framework to account for the 
change in the material stiffness via the stacking sequence of the 
composite plate. Material stiffness is defined through 
lamination parameters that presents a convex optimization 
function with respect to the composite stiffness. An optimum 
set of lamination parameters are defined as the optimum 
solution and then the lamination angles are retrieved by means 
of a minimization function. 

Two problem examples are proposed to show the 
applicability of the proposed algorithm. Both results showed a 
smooth objective function convergence with lamination 
parameters oscillating at the initial iterations.  
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