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Abstract—Fatigue damage process inherently has multiscale 
characteristics. As a result, fatigue cracks mainly classified as 
short cracks (SCs) and long cracks (LCs). It is necessary to 
quantify the fatigue crack growth (FCG) rate in both the short 
and long crack regimes. Especially in the case of lightweight 
alloys and high cycle fatigue in which short cracks’ behavior 
dominates total fatigue life. There is still no proper model to 
characterize FCG rate in the SC regime. In the presented 
study, a radial basis function artificial neural network (RBF-
ANN) model as a machine learning approach has been 
developed to quantify the FCG rate in both the SC and LC 
regimes. Experimental data sets of 2024-T3 and 7075-T6 
aluminum alloys are employed to train and verify the model. 
The presented study showed that the RBF-ANN model can 
accurately predict the nonlinearity of FCG rate in terms of 
stress intensity factor range in both the SC and LC regime. 
However, the predictions showed that the extrapolation ability 
of the model is not as appropriate as its interpolation 
capability. In addition, density and distribution of the input 
data strongly affect the accuracy of the RBF-ANN model.   
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I.  INTRODUCTION  
Fatigue crack growth (FCG) should be investigated in 

different scales. As Kitagawa- Takahashi type diagram [1] 
suggests, fatigue cracks are classified as short cracks (SCs) and 
long cracks (LCs). In addition, SCs can be divided as 
microstructurally short cracks and physically short cracks [2].  
Linear elastic fracture mechanics (LEFM) method has been 
developed to quantify FCG rates mainly in LC regime. 
However, it is widely accepted that SC regime dominates total 
fatigue life at lower stress levels [2]. The most famous LEFM 
method was proposed by Paris and Erdogan [3] as follows:  

  (1) 

Where da/dN is the FCG rate, ∆K is the stress intensity 
factor (SIF) range, and C and m are materials constants. One of 

the most important shortcomings of Paris and Erdogan model is 
that it cannot account for stress ratio (R-ratio). As a result, this 
model has been received many modifications. Many of such 
modifications are based on crack closure concept such as the 
ones suggested by Elber [4] and Newman [5]. However, there 
is still an ambiguity that if crack closure is really an important 
controlling parameter in the SC regime or even in the LC 
regime. Another group of such modifications is based on the 
“Unified Approach” introducing two controlling parameters to 
quantify FCG rates [6]. Noroozi et al. [7] introduced UniGrow 
model and showed that an appropriate two-parameter driving 
force model can account for stress ratio in the LC regime. 
However, Bang et al. [8] demonstrated that UniGrow model 
has a substantial deficiency to quantify FCG in the SC regime. 
The substantial point is that most of all mentioned models 
introduced a mathematical function such as “f ” shown in (2) to 
quantify FCG rate in the LC regime. The function “f” depends 
on two controlling parameters (∆K and R-ratio). On the other 
hand, it has been widely accepted that in the case of SC regime, 
FCG rate depends on three controlling parameters which are 
∆K, stress level (σ) and R-ratio [2]. As a result, the function “f” 
in (2) can be replaced by function “g” in the case of SC regime 
as shown in (3). 

   (2) 

   (3) 

The aim of almost all models given in literature is to 
stablish a mathematical expression like (2) or (3). Although 
UniGrow model showed a noticeable improvement to 
characterize behavior of LCs, there is still no proper model to 
account for the SC regime. The reason is that the number of 
controlling parameters affecting FCG rate simultaneously are 
more than that which were considered in previous models 
given in literature. Recently, artificial neural network (ANN) 
algorithms as machine learning methods, which can account for 
many variables, received a great interest in the fatigue failure 
area [9-13]. However there has been no investigation to employ 
such approaches to quantify FCG rate in the SC regime. In the 
presented study, a radial basis function artificial neural network 



   

(RBF-ANN) method is developed to characterize FCG rate in 
both the short and long crack regime. In other words, an RBF-
ANN model is developed to come up with a function like “f” 
and “g” in (2) and (3) for the long and short crack regime, 
respectively. To train and verify the model experimental data 
sets of 2024-T3 and 7075-T6 aluminum alloys are employed. 

II. MODELIN METHODOLOGY 

A. Radial basis function artificial neural network  
RBF-ANN suggests that every point in a particular data set 

influences the value of the hypothesis at an arbitrary point 
based on the distance between the point and the hypothesis. In 
the presented study, Gaussian function is employed to quantify 
such influence. Gaussian function is shown in Fig. 1 
schematically. As shown in Fig. 1, the influence decreases 
gradually by increasing the distance from the center of the 
bump as the coordinates of the hypothesis. With all these in 
mind, the hypothesis can be defined as follows: 

  (4) 

Where N is the number of data, k is the number of radial 
basis functions, b is named bias, µk are the center of each 
activation function, wk are called weights, and γ  is a positive 
constant called spread of radial basis function (SRBF). As 
shown in Fig. 1, SRBF indicates how sharp the influence 
changes through the distance. As shown in Fig. 2, RBF-ANN 
consists of three layers. The first layer embraces the input data 
(Xi). The model generates K subdomains and determines a 
center (µi) to each of them. The second layer includes the 
activation functions receiving the distance between each input 
data and their corresponded centers. The third layer embraces 
the output data. The developed model needs to solve the 
equation shown in (4) for all the input data. That is to say, N 
equations consisting K unknown, in which K ≤ N, is solved 
simultaneously in order to calculate bi and wi. It should be 
noticed that RBF-ANN is a feedforward static neural network.    

B. Charactrizing fatigue crack growth rate by the means of 
artificial neural network 
As discussed earlier, FCG rate can be expressed by a 

function of “f” shown in (2) depending on two controlling 
parameters in the LC regime.  

 

 
Fig. 1. The influence of SRBF on Gaussian Function. a) High SRBF and b) 

low SRBF 
However, FCG rate can be quantified by a function like “g” 

shown in (3) depending on three controlling parameters in the 

SC regime. With this in mind, two separate RBF-ANN are 
developed to quantify FCG rate in the LC and SC regime. The 
first model is intended to provide a function of “f” shown in (2) 
in the case of LC regime. As a result, the first model is a two-
input single-output RBF-ANN. It means, the first model 
receives ∆K (SIF range) and R-ratio (stress ratio) as the input 
and da/dN (FCG rate) as the output. In other words, X1 is (∆K1, 
R1), X2 is (∆K2, R2), etc. in Fig. 2. The second model is 
developed to calculate FCG rate in the SC regime. However, 
since the number of data in the case of SC regime is limited in 
the literature, SC regime is investigated in a constant R-ratio. 
One may realize that if R-ratio is considered as a constant, FCG 
rate in the SC regime can be quantified by a function like “g*” 
depending on ∆K and σ (stress level) as shown in (5): 

   (5) 

As a result, the second model is a two-input single-output 
RBF-ANN. This model takes ∆K and σ as the input and da/dN 
as the output while R-ratio is kept as a constant. In this case, X1 
is (∆K1, σ1), X2 is (∆K2, σ2) in Fig. 2. The procedure employed 
to develop the models is explained as follows: First, the 
logarithm of ∆K and da/dN is taken to decrease the scatter 
influence caused by order of the magnitude. Then all of them 
are normalized. Afterward, the RBF-ANN models are trained 
by the means of toolbox of MATLAB R2018b software. In the 
presented study 30% of data were used to verify the model. It 
means, software uses 70% of data to train the model and then 
employ 30% of them to verify if the number of neurons, 
weights and biases are appropriately calculated. If the 
prediction results are not accurate enough, software adjusts the 
mentioned values until acceptable results are achieved. The 
latter step is taken by software automatically. In the next step 
the predicted results are compared with the experimental ones. 
If the results of interpolation or extrapolation are not accurate 
enough, the user needs to adjust SRBF manually. According to 
the Fig. 1, one may realize that a high SRBF provides a 
relatively better extrapolation. On the other hand, a low SRBF 
results accurate interpolation. As a result, the user needs to 
balance both sides and find an optimized value of SRBF. It will 
be discussed that such optimized value would be achievable if 
the number and distribution of the data are appropriate.  

 
Fig. 2. The structure of RBF-ANN 



   

III. RESULTS AND DISCUSSION 

A. Long cracks 
In order to formulate a function of “f” in (2) in the LC 

regime, FCG date in terms of ∆K and R-ratios should be fed to 
RBF-ANN model. In the presented study, such experimental 
data sets of Al7075-T6 and Al2024-T3 are employed. Fig. 3 
shows the experimental data sets of the mentioned alloys in the 
LC regime. The experimental data sets and the corresponded 
experimental procedures can be found in the literature [7-1-14-
15-16]. It should be emphasized that 70% of the data are 
randomly chosen and employed to train the network, and the 
30% are used in order to verify the ANN results. Fig. 4 presents 
the experimental data and ANN results of Al7075-T6 in 2D 
and 3D views. The number of input data in this case is 365 and 
they are distributed under five different R-ratios. In Fig. 4 (a) 
the acceptable extrapolation results are indicated by blue 
dashed closed curves in the threshold and fracture regions. On 
the other hand, Fig. 4 (b) in a 2D view presents the 
interpolation capability of the model. The agreement between 
experimental data and ANN interpolation results shows that 
RBF-ANN is able to predict the nonlinearity of FCG rates in 
terms of ∆K under different R-ratios.  

10 0 10 1 10 2

K(MPa √ m)

10 -8

10 -6

10 -4

da
/d

N
(m

/c
yc

le
)

R=0 (test data)

R=0.1 (test data)

R=0.33 (test data)

R=0.5 (test data)

R=0.75 (test data)

a

Long Crack Regime

 

10 0 10 1 10 2

K(MPa √ m)

10 -10

10 -9

10 -8

10 -7

10 -6

da
/d

N
(m

/c
yc

le
)

R=-1 (test data)

R=-0.5 (test data)

R=0 (test data)

R=0.1 (test data)

R=0.5 (test data)

b

Lonc Crack Regime

 
Fig. 3. FCG data in LC regime of a) Al7075-T6 and b) Al2024-T3. 

Fig. 5 presents the experimental data and ANN results for 
2024-T3 aluminum alloy. The number of input data in this case 
is 93 under five different R-ratios as shown in Fig. 3 (b). Fig. 5 
(b) shows an excellent agreement between the experimental 
data and ANN results. That is to say, RBF-ANN model can 
interpolate accurately in the case of Al2024-T3 as well as 
Al7075-T6. However, in Fig. 5 (a) there is no extrapolation 
results. It means, in the case of Al2024-T3, the RBF-ANN 
model is not able to predict the behavior of FCG rate in the 
regions, in which there is no input data in hand. One may 
realize that in the case of Al7074-T6 (see Fig. 4), in which the 
number of data is 365, the developed RBF-ANN model is able 
to interpolate and extrapolate simultaneously. However, since 
the number of input data decreases from 365 to 93 in the case 
of Al2024-T3, the model can only interpolate accurately. It 
should be noticed that even in the case of Al2024-T3, an 
acceptable extrapolation is achievable by increasing the SRBF 
value. However, that results a poor interpolation. As shown in 
Fig. 1 (a) a relatively high spread of radial basis function is 
suitable to have an accurate extrapolation. The reason is that 
the hypothesis can receive influence from the input data in a 
larger distance. As a result, FCG rate in an arbitrary point can 
be predicted based on the input data in a larger distance.  
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Fig. 4. LCs experimental data and corresponded ANN results of Al7075-T6 in 

a) 3D view and b) 2D view. 



   

On the other hand, a relatively low SRBF as shown in Fig. 
1 (b) is suitable for interpolation. As shown in Fig. 1 (b) the 
influence on hypothesis sharply decreases through the distance. 
It means, only local input data can be employed to predict the 
FCG rate in an arbitrary point. With all these in mind, an 
optimized SRBF is required to have an acceptable 
extrapolation and interpolation simultaneously. However, such 
optimized value of SRBF is achievable if the number and the 
distribution of the input data are appropriately selected.  

B. Short cracks 
As discussed earlier, FCG can be characterized by three 

controlling parameters (∆K, σ, and R-ratio) in the SC regime. 
However, since the number of input data in the literature is 
limited in the case of SC regime, in the presented paper FCG 
rates are investigated under a constant R-ratio. In other means, 
the aim is to come up with a function of “g*” under a constant 
R-ratio rather than a function of “g” in (3). As a result, FCG 
data in terms of ∆K and maximum stress level (σ) is required 
in order to train and verify the RBF-ANN model in SC regime. 
Such data sets and the corresponded experimental procedure is 
accessible in literature [1,17-22].  
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Fig. 5. LCs experimental data and corresponded ANN results of Al2024-T3 in 

a) 3D view and b) 2D view. 

Those data sets are presented in Fig. 6 for 7075-T6 and 
2024-T3 aluminum alloys. The R-ratio is kept constant and it 
equals 0.0 and 0.5 for Al7075-T6 and Al2024-T3, respectively. 
In this section, 70% of the input data is utilized to train the 
network and 30% of them is employed to verify the results as 
well as the previous section as per LC regime. Fig. 7 presents 
the experimental data and ANN results in the SC regime for the 
7075-T6 aluminum alloy under a constant R-ratio in 3D and 
2D views. As shown in this figure an acceptable agreement 
between experimental data and ANN results is achieved. 
However, the RBF-ANN model is not able to predict the 
nonlinearity of FCG rates on the basis of ∆K and maximum 
stress level (σ). The reason is that the input data is distributed 
under only two stress levels (σ=120 MPa and σ=140 MPa). In 
other words, the number of data points in both the ∆K and σ 
direction is important. It is obvious that only a line would fit 
between two points. To produce a nonlinear function at least 
three points are required. As a result, the input data should be 
distributed at least under three maximum stress levels to predict 
the nonlinearity of FCG rates in terms of stress intensity factor 
(SIF) range and maximum stress level. That is to say, in 
addition to the number of input data, the distribution of the 
input data is also important.  
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Fig. 6. FCG data in SC regime under constant R-ratio of a) Al7075-T6 and b) 

Al2024-T3.  
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Fig. 7. SCs experimental data and corresponded ANN results of Al7075-T6 in 

a) 3D view and b) 2D view. 

Fig. 8 shows the experimental data and ANN results in the 
SC regime for the Al2024-T3 under a constant R-ratio in 3D 
and 2D views. Since the number of input data is higher than 
that of Al7075-T6 and the input data are distributed under three 
different maximum stress levels (σ), RBF-ANN can predict the 
nonlinearity of FCG rate in terms of SIF range and stress level.  

C. Prediction accuracy 

In the presented study, probability density function (PDF) is 
employed to investigate the accuracy of RBF-ANN model in 
the short and long crack regimes. The PDF calculates the 
difference between the predicted and experimental FCG rate as 
the error values. Normal probability distribution is utilized to 
present the error distribution and fit PDFs. Positive and 
negative error values are corresponded to conservative and 
non-conservative prediction, respectively. Fig. 9 presents the 
error PDFs for Al7075-T6 and Al2024-T3 in the LC regime 
under various R-ratios. Error distribution of PDFs proves that 
the developed RBF-ANN can accurately predict FCG behavior 
in the LC regime, however prediction performance still relies 
on the sufficiency of the experimental data [23]. 
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Fig. 8. SCs experimental data and corresponded ANN results of Al2024-T3 in 

a) 3D view and b) 2D view. 

Fig. 10 shows the error PDFs for 7075-T6 and 2024-T3 
aluminum alloys under a constant R-ratio and different stress 
levels in the SC regime. Although FCG data are significantly 
scattered, the error PDFs show the acceptable agreement 
between RBF-ANN predictions and experimental data under 
all stress levels in the SC regime. 

I. CONCLUSION  

In the presented study a machine learning RBF-ANN 
algorithm is employed to quantify FCG rate in both the SC and 
LC regime. The algorithm is based on the radial basis function 
artificial neural network method. To train and verify the model 
experimental data sets of 2024-T3 and 7075-T6 aluminum 
alloys are utilized. The results indicate that RBF-ANN has a 
strong capability of interpolation to predict the nonlinearity of 
fatigue crack growth rate in both the short and long crack 
regime. However, the extrapolation capability of investigated 
approach is not as potent as its interpolation ability. The 
efficiency of the proposed model dramatically depends on 
sufficient and distribution of training data sets.  



   

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Error 10 -5

0

0.5

1

1.5

2

2.5

3

PD
F

10 6

R=0

R=0.1

R=0.33

R=0.5

R=0.75

Long Crack Regime

a

 

-10 -5 0 5

Error 10 -8

2

4

6

8

10

12

PD
F

10 7

R=-1

R=-0.5

R=0

R=0.1

R=0.5

Long Crack Regime

b

 
Fig. 9. Probability density function (PDF) of prediction error in LC regime for 

a) Al7075-T6 and b) Al2024-T3. 
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Fig. 10. Probability density function (PDF) of prediction error in SC regime 

for a) Al7075-T6 and b) Al2024-T3. 
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