
Proceedings of the Canadian Society for Mechanical Engineering International Congress 2021
CSME Congress 2021

June 27-30, 2021, Charlottetown, PE, Canada

Attitude dynamics model of a CubeSat with
reaction wheels for an extended Kalman filter

Robert Bauer
Department of Mechanical Engineering

Dalhousie University
Halifax, Canada

robert.bauer@dal.ca

Abstract—This paper presents a derivation of the attitude
dynamics equations of motion of a CubeSat with reaction wheels.
The rigid-body equations of motion can be extended to any
number of arbitrarily-oriented and arbitrarily-located reaction
wheels. The equations of motion are implemented and validated
using numerical simulations. It is then shown how the resulting
equations of motion can be propagated within a quaternion-
based extended Kalman filter. This filter combines attitude
quaternion and angular velocity measurements with the derived
attitude dynamics model. For the simulation conditions used in
this research, the filter provides an improved estimate of the
CubeSat’s attitude quaternion and angular rates.

Index Terms—attitude dynamics, extended Kalman filter,
derivation, equations of motion, reaction wheels

I. INTRODUCTION

Accurate attitude determination is becoming increasingly
important for CubeSats as their payloads become more ad-
vanced [1]. The extended Kalman filter (EKF) is often used
in spacecraft attitude estimation [2]. While Kalman filters can
be implemented without incorporating the attitude dynamics
equations [3], Yang and Zhou [4] suggest that including the
spacecraft dynamics in the EKF can yield improved attitude
estimates.

This paper derives the spacecraft attitude dynamics equa-
tions of motion for a rigid body with n reaction wheels and
is based on the derivation presented by Hughes [5] for a
rigid body with a rotating wheel using his “vectrix” notation
convention. The resulting dynamics model is validated for an
example CubeSat with a non-diagonal inertia matrix and three
reaction wheels.

The paper then shows how these equations of motion can be
implemented within a quaternion-based EKF. The developed
EKF is based on the formulation presented by Yang [2] but
instead of using a reduced quaternion model it includes all four
attitude quaternion components and incorporates the attitude
dynamics model derived in this paper. With this full-quaternion
model, the resulting EKF can be applied to a tumbling satellite
without any limits placed on the range of satellite orientations.

II. DERIVATION OF EQUATIONS OF MOTION

This derivation of the equations of motion of a CubeSat
with reaction wheels is based on the “gyrostat” derivation
presented by Hughes [5] and uses similar notation. Referring

to Fig. 1, let R correspond to a rigid body without wheels,
and Wi (i = 1, 2...n) be axially-symmetric rotors or wheels
which have been mounted to R. The goal of this derivation is
to formulate the equations of motion as nonlinear state-space
equations for subsequent use in an EKF.

Fig. 1. Rigid body R with arbitrarily positioned and oriented wheels Wi,
i = 1..n fixed in R

Referring to Fig. 1, Fa is the Earth-centered inertial (ECI)
frame of reference and Fb is a body-fixed (BF) frame fixed
in R at the center of mass (COM) O of the entire system
R+W1 +W2 + ...+Wn. Frame Fb should be conveniently
oriented withinR since all vectors will be ultimately expressed
in this BF frame. In terms of notation, bold font corresponds
to vectors, column matrices, dyadics and matrices, while non-
bold font corresponds to scalars. Let

~
IR be the second-

moment-of-inertia dyadic of R about the COM of R (without
wheels), and

~
Jb be the second-moment-of-inertia dyadic of R

about O. These two dyadics can be related using the parallel-
axis theorem

~
Jb =

~
IR +mR

(
b2R
~
1−

~
bR
~
bR
)

(1)

where mR is the mass of R,
~
bR is the vector with magnitude

bR from O to the COM of R, and
~
1 is the unit dyadic.



Let mW i be the mass of Wi, Isi be the scalar second
moment of inertia ofWi about its axis of symmetry defined by
the arbitrarily-oriented spin axis

~
ai (where

~
ai is a unit vector

fixed in R), and Iti be the scalar second moment of inertia of
Wi about any transverse axis to

~
ai. Then the second-moment-

of-inertia dyadic of Wi about the COM of Wi is given by
[5]

~
IW i = Iti

~
1 + (Isi − Iti)

~
ai
~
ai , i = 1...n (2)

Furthermore, the second moment of inertia dyadic of the entire
systemR+Wi about O (again using the parallel-axis theorem)
is given by

~
J =

~
Jb +

n∑
i=1

[
~
IW i +mW i

(
b2i
~
1−

~
bi
~
bi
)]

(3)

where
~
bi is the vector with magnitude bi from O to the COM

of Wi.
The system R+Wi has a total of 3+n degrees of freedom

(DOF): three DOF associated with the rotation of R about
O, and n DOF associated with the rotation of wheels Wi,
i = 1...n about their respective spin axes

~
ai. The resulting

3 + n equations of motion can be derived from the rate of
change of momentum equations [5]

~
ḣ =

~
g (4)

ḣai = gai , i = 1...n (5)

where
~
ḣ is the time derivative measured in Fa of the absolute

angular momentum of R+Wi about O, ḣai is the component
along the rotor spin axis

~
ai of the rate of change of the absolute

angular momentum of Wi about the COM of Wi,
~
g is the

external torque on R, and gai is the axial torque from the ith

reaction wheel motor on Wi about spin axis
~
ai.

The three equations of motion given by (4) can be written in
terms of angular velocities by recognizing that, with O located
at the COM of the entire system R +Wi, the total absolute
angular momentum about O is given by [5]

~
h =

~
J ·
~
ω +

n∑
i=1~

aiIsiωsi (6)

where
~
ω is the absolute angular velocity of R (with respect to

Fa), and ωsi is the relative angular speed of Wi with respect
to R about its spin axis

~
ai corresponding to the speed of the

ith reaction wheel.
Let

~
h̊ be the time derivative of

~
h measured in Fb. Then

~
ḣ =

~
h̊ +

~
ω ×

~
h (7)

Substituting (4) into (7) and rearranging for
~
h̊ results in

~
h̊ = −

~
ω ×

~
h +

~
g (8)

Taking the time derivative measured in Fb of (6) (while
recognizing that dyadic

~
J̊ =

~
0, vector

~
åi =

~
0, scalar I̊si ≡

İsi = 0, and scalar ω̊si ≡ ω̇si) gives

~
h̊ =

~
J ·
~
ω̊ +

n∑
i=1~

aiIsiω̇si (9)

Equating (8) and (9) yields

~
J ·
~
ω̊ +

n∑
i=1~

aiIsiω̇si = −
~
ω ×

~
h +

~
g (10)

Recognizing that
~
ω̇ =

~
ω̊ +

~
ω ×

~
ω =

~
ω̊, then (6) can be

substituted into (10) and rearranged to give

~
J·
~
ω̇ = −

~
ω×

(
~
J ·
~
ω +

n∑
i=1~

aiIsiωsi

)
+
~
g−

n∑
i=1~

aiIsiω̇si (11)

This equation of motion contains two angular velocity deriva-
tive terms

~
ω̇ and ω̇si. To relate these two terms note that the

component along the rotor spin axis
~
ai of the absolute angular

momentum of Wi about the COM of Wi is given by [5]

hai = Isi
~
ai ·

~
ω + Isiωsi , i = 1...n (12)

Taking the time derivative of (12) results in

ḣai = Isi
~
ȧi ·

~
ω + Isi

~
ai ·

~
ω̇ + Isiω̇si , i = 1...n (13)

Note that in (13)

~
ȧi ·

~
ω = (

~
åi +

~
ω ×

~
ai) ·

~
ω = (

~
ω ×

~
ai) ·

~
ω

=
~
ai · (

~
ω ×

~
ω) = 0

(14)

Setting (13) equal to (5) gives

Isi
~
ai ·

~
ω̇ + Isiω̇si = gai , i = 1...n (15)

This equation can be rearranged to solve for Isiω̇si as follows

Isiω̇si = −Isi
~
ai ·

~
ω̇ + gai , i = 1...n (16)

which relates ω̇si to
~
ω̇ as desired. Substituting (16) into (11)

allows (11) to be written in terms of
~
ω̇ to yield

~
J·
~
ω̇ =−

~
ω×

(
~
J·
~
ω+

n∑
i=1~

aiIsiωsi

)
+
~
g+

n∑
i=1

(Isi
~
ai
~
ai ·
~
ω̇−

~
aigai)

(17)
Collecting the

~
ω̇ terms in this equation results in(

~
J−

n∑
i=1

Isi
~
ai
~
ai

)
·
~
ω̇=−

~
ω×

(
~
J·
~
ω+

n∑
i=1~

aiIsiωsi

)
+
~
g−

n∑
i=1~

aigai

(18)
Setting

~
J∗ ,

~
J−

n∑
i=1

Isi
~
ai
~
ai (19)

then (18) can be written with only one derivative term as

~
J∗ ·

~
ω̇=−

~
ω×

(
~
J·
~
ω+

n∑
i=1~

aiIsiωsi

)
+
~
g−

n∑
i=1~

aigai (20)

which can be implemented as a nonlinear state-space equation
in an EKF with state variable

~
ω. In this work the EKF was

implemented using the 3 + n nonlinear state-space equations
of motion represented by (20) and (5) with corresponding state
variables

~
ω and hai, i = 1...n.



III. EXTENDED KALMAN FILTER

An EKF is now developed that is based on the formulation
presented by Yang [2] but instead of using a reduced quater-
nion model it includes all four quaternion components and
implements the equations of motion derived in the previous
section. Yang’s formulation assumes the availability of attitude
quaternion measurements (from, for example, QUaternion
ESTimation (QUEST) [6]) and angular rate measurements
(from, for example, a gyroscope). To implement (20) and (5)
within the EKF, these vector equations need to be expressed
in a frame of reference. Frame Fb is chosen for convenience
since

~
IW i,

~
J,
~
J∗,

~
bi,

~
bR, and

~
ai are constant when expressed

in this reference frame. Using vectrix notation, all vectors and
dyadics are expressed in Fb as follows [5]

[ω ω̇ ai g bi bR] , Fb ·
[
~
ω
~
ω̇
~
ai
~
g
~
bi
~
bR
]

IW i , Fb ·
~
IW i · F ᵀ

b

J , Fb ·
~
J · F ᵀ

b

J∗, Fb ·
~
J∗ ·F ᵀ

b

(21)

where ω, ω̇, ai, g, bi and bR are 3× 1 column matrices con-
taining the components of their respective vectors expressed
in Fb. Similarly, IW i, J and J∗ are the 3× 3 inertia matrices
corresponding to their moment of inertia dyadics expressed
relative to the Fb axes.

Let n = 3 reaction wheels for the scope of this paper. Then
the resulting equations of motion from (20) and (5) become

ḣa1 = ga1 + φ01

ḣa2 = ga2 + φ02

ḣa3 = ga3 + φ03

ω̇ = J∗−1
[
−ω×

(
Jω+

3∑
i=1

aiIsiωsi

)
+ g−

3∑
i=1

aigai

]
+ φ1

(22)
where the notation ( )× represents the skew-symmetric matrix,
φ0i and φ1 correspond to zero-mean process Gaussian noise,
and, with 1 as the 3× 3 identity matrix, (3) and (19) become

J = Jb +

3∑
i=1

[
IW i +mW i

(
b2i 1− bibᵀ

i

)]
J∗= J−

3∑
i=1

Isiaia
ᵀ
i

(23)

The nonlinear quaternion kinematics equations of motion with
the addition of process Gaussian noise φ2 and φ3 are [2]

q̇ = −1

2
ω×q +

1

2
q0ω + φ2

q̇0 = −1

2
ωᵀq + φ3

(24)

where q represents the vector components of the attitude
quaternion, q0 is the scalar component of the attitude quater-
nion, and the noise has a mean of zero.

The gyroscope drift rate can be modelled by [7]

β̇ = φ4 (25)

where β is the bias drift in the angular velocity measurement
and φ4 corresponds to zero-mean process Gaussian noise.

Referring to the equations of motion (22), let the 13×1 state
column matrix x=[ha1, ha2, ha3,ω ,Tq ,T q0,β

ᵀ]
ᵀ and the pro-

cess noise column matrix φ= [φ01, φ02, φ03,φ
ᵀ
1 ,φ

ᵀ
2 , φ3,φ

ᵀ
4]
ᵀ

so that the nonlinear state-space equations can be written in
the form ẋ = f(x, gai, g,φ). Letting dt be the sampling period
and k enumerate the sampling instants, the discrete-time state-
space equations used in the EKF prediction phase can be
obtained using the finite difference method ẋ ≈ (xk+1−xk)/dt
as follows

ha1k+1

ha2k+1

ha3k+1

ωk+1

qk+1

q0k+1

βk+1


=





ha1k
ha2k
ha3k
ωk
qk
q0k
βk


+



ga1k
ga2k
ga3k
�

− 1
2ω
×
k qk+ 1

2q0kωk
− 1

2ω
ᵀ
kqk

0


dt


+



φ01k
φ02k
φ03k
φ1k

φ2k

φ3k
φ4k


dt

xk+1 = F(xk, gaik, gk) + G(φk)
(26)

where �=J∗−1[−ω×k(Jωk+
∑3
i=1aiIsiωsik)+gk−

∑3
i=1aigaik],

0 is the zero matrix with compatible dimensions, F is called the
state transition matrix, G(φk) = φkdt, ωsik can be calculated
from elements of xk using (12), and gaik and gk are measured
torque inputs. Note that J∗−1 is constant and, therefore, need
only be calculated once prior to beginning the EKF iterations.

The measurements used in the EKF update phase are
the reaction wheel speeds ωsiy , angular velocity ωy (from
the gyroscope) and attitude quaternion qy and q0y (from,
for example, QUEST). The resulting measurement equations
including zero-mean Gaussian noise ψ0i, ψ1, ψ2 and ψ3 are

ωs1y = ωs1 + ψ01

ωs2y = ωs2 + ψ02

ωs3y = ωs3 + ψ03

ωy = ω + β +ψ1

qy = q +ψ2

q0y = q0 + ψ3

(27)

Let y =
[
ωs1y, ωs2y, ωs3y,ω

ᵀ
y ,qᵀ

y , q0y
]ᵀ

be the 10 × 1
measurement column matrix. The reaction wheel speed ωsiyk
can be related to the angular momentum states haik using (12)

ωsiyk =
haik
Isi
− aᵀ

i ωk , i = 1...n (28)

The resulting observation matrix H can then be used to relate
the measurements to the states as follows

ωs1yk
ωs2yk
ωs3yk
ωyk
qyk
q0yk

=



1
Is1

0 0 −aᵀ1 0 0 0
0 1

Is2
0 −aᵀ2 0 0 0

0 0 1
Is3
−aᵀ3 0 0 0

0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0





ha1k
ha2k
ha3k
ωk
qk
q0k
βk


+


ψ01k

ψ02k

ψ03k

ψ1k

ψ2k

ψ3k


y = Hx +ψ

(29)



where ψ=
[
ψ01k, ψ02k, ψ03k,ψ

ᵀ
1k,ψ

ᵀ
2k, ψ3k

]ᵀ
is the measure-

ment Gaussian noise column matrix, 1 is the 3 × 3 identity
matrix and 0 is the zero matrix with compatible dimensions.

Taking the partial derivative of the state transition matrix F
from (26) with respect to xk gives the state transition Jacobian
matrix Fk−1 as follows [2]

Fk−1 ,
∂F
∂xk

(30)

This operation takes partial derivatives of the rows of F with
respect to each state variable. For example, referring to (26) let
F2 be the rows of F corresponding to the vector component of
the quaternion. Then F2 = qk+ (− 1

2ω
×
k qk+ 1

2q0kωk)dt. The
corresponding partial derivatives of these rows with respect to
the state variables are
∂F2

∂xk
=
[
∂F2

∂ha1k

∂F2

∂ha2k

∂F2

∂ha3k

∂F2

∂wk

∂F2

∂qk

∂F2

∂q0k

∂F2

∂βk

]
(31)

Evaluating each of the first three of these partial derivatives
gives three zero matrices 0 of dimension 3× 1. The term ∂F2

∂w

can be evaluated using the fact that ∂(a×b)
∂wk

= a× ∂b
∂wk
−b× ∂a

∂wk

∂F2

∂wk
=

[
−1

2

∂

∂wk
(ω×k qk) +

1

2
q0k1

]
dt

=

[
−1

2
(−q×k ) +

1

2
q0k1

]
dt

=
1

2

(
q×k + q0k1

)
dt

(32)

where 1 is the 3 × 3 identity matrix. Repeating this partial
derivative evaluation for each row of F yields

Fk−1=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 � 0 0 0
0 0 0 1

2 (q×k+q0k1)dt 1− 1
2w
×
k dt

1
2wkdt 0

0 0 0 − 1
2qᵀ

kdt − 1
2w

ᵀ
kdt 1 0

0 0 0 0 0 0 1


(33)

where � = 1−J∗−1[ω×k J−(Jωk+
∑3
i=1aiIsiωsik)×]dt, and 0

is the zero matrix of compatible dimensions. Similarly, refer-
ring to (26) set Lk−1 , ∂G

∂φk
= 1dt where the identity matrix

1 has dimensions 13 × 13. Let the process and measurement
Gaussian noise have covariance matrices Qk = E(φkφ

ᵀ
k) and

Rk = E(ψkψ
ᵀ
k), respectively.

A. Prediction phase

Using similar notation as in [2], the EKF iteration begins
by first calculating the predicted state x̂k|k−1 using (26)

x̂k|k−1 = F(x̂k−1|k−1, gaik−1, gk−1) (34)

Note that ωsik in (26) can be calculated from (12) as

ωsik−1|k−1 =
ĥaik−1|k−1

Isi
− aᵀi ω̂k−1|k−1, i = 1...n where

ĥaik−1|k−1 and ω̂k−1|k−1 are elements of x̂k−1|k−1.
The notation x̂k|k−1 in (34) can be read as “the state

estimate x̂ at the current time step k given the state and

measurement information from the previous time step k−1”.
In other words, this current estimate has not yet taken into
account the most recent kth measurement (hence the |k−1 sub-
script notation). Similarly, the first k−1 subscript of x̂k−1|k−1
in (34) refers to the state estimate x̂ from the previous k − 1
time step. The second |k − 1 in the subscript again indicates
that the most recent kth measurement information has not yet
been accounted for. Also note that the predicted state estimate
for the current kth time step x̂k|k−1 uses torque measurements
from the previous time step (gaik−1, gk−1).

After the state prediction step is the covariance prediction
step. The covariance matrices Pk|k−1 and Pk−1|k−1 describe
the uncertainty of the current state estimate x̂k|k−1 and previ-
ous state estimate x̂k−1|k−1, respectively, and are related by

Pk|k−1 = Fk−1Pk−1|k−1Fᵀ
k−1 + Lk−1QkLᵀ

k−1 (35)

where the state transition Jacobian Fk−1 is evaluated at
(x̂k−1|k−1, gaik−1, gk−1).

B. Update phase

Having completed the prediction phase, the update phase of
the EKF calculates the innovation or output prediction error
ỹk and innovation covariance Sk as follows [2]

ỹk = yk −Hx̂k|k−1
Sk = HPk|k−1Hᵀ + Rk

(36)

The Kalman gain Kk can then be calculated as

Kk = Pk|k−1HᵀS−1k (37)

The updated state estimate x̂k|k and updated covariance
matrix estimate Pk|k are then calculated using the Kalman
gain

x̂k|k = x̂k|k−1 + Kkỹk
Pk|k = (1−KkH)Pk|k−1

(38)

The subscript |k in (38) indicates that the most recent kth

measurement information has now been accounted for. Note
that the updated attitude quaternion in the state estimate needs
to be normalized. These updated estimates can then be used
in (34) and (35) as x̂k−1|k−1 and Pk−1|k−1 to repeat the EKF
iteration. Also note that Lefferts et al. [3] indicate that since
all four quaternion elements are not independent, singularity
issues in the covariance matrix result. While these singularities
did not occur for the conditions used in this research, there
are different approaches that can be applied to overcome this
issue [3].

IV. NUMERICAL SIMULATIONS

The EKF developed in the previous section was validated
in simulation on the example 2U CubeSat geometry shown
in Fig. 2 consisting of a rigid body R with three reaction
wheel rotors Wi. The asymmetry of the solar panels was
exaggerated to highlight the ability of the equations of motion
used in the EKF to handle non-diagonal inertia matrices for
R. The example CubeSat was designed in SolidWorks 2020
and then exported and simulated in MATLAB R2020b using



Fig. 2. Example 2U CubeSat geometry R with reaction wheel rotors W1,
W2 and W3 used in simulator to validate EKF

the Simscape Multibody Simulink toolbox. The moments of
inertia Ixx, Iyy , and Izz and products of inertia Ixy = Iyx,
Iyz = Izy , and Ixz = Izx of R (without the reaction wheel
rotors Wi) about the COM of R taken with respect to the Fb

axes were calculated using the Mass Properties window of
SolidWorks 2020. Table I summarizes these mass properties.

TABLE I
CUBESAT R (WITHOUT REACTION WHEEL ROTORS) MASS AND INERTIA

Property Value
mR 3.8 kg
Ixx 0.0359 kgm2

Iyy 0.0398 kgm2

Izz 0.0483 kgm2

Iyz = Izy −0.0024 kgm2

Ixz = Izx −0.0031 kgm2

Ixy = Iyx −0.0014 kgm2

It is important to recognize that the calculated products of
inertia from SolidWorks 2020 shown in Table I are the negative
of what are needed in the inertia matrix IR from (1)

IR =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (39)

Note that, as shown in Fig. 2, SolidWorks reported the COM
of R relative to a frame at bottom-dead-center of the CubeSat
with axes aligned with Fb. Let the COM of R from bottom
dead center be rR. Similarly, let the COM ofWi from bottom-
dead-center be rWi

. Then the location of O (COM of R+Wi)
from bottom dead center can be calculated as

rO =
1

mR +
∑3
i=1mWi

(mRrR +

3∑
i=1

mWi
rWi

) (40)

from which, referring to Fig. 1, the locations from O to the
COM of R and Wi can be calculated

bR = rR − rO
b1 = rW1− rO
b2 = rW2− rO
b3 = rW3− rO

(41)

Noting that all vectors and dyadics in this section are
expressed relative to axes aligned with Fb, Table II sum-
marizes the results of these calculations for the simulated
example CubeSat. The orientation of the rotor spin axes can

TABLE II
COM AND ROTOR MASS AND INERTIA PROPERTIES FOR CUBESAT

Property Value
mWi

, i = 1..3 0.0126 kg
Isi 2.51× 10−6 kgm2

Iti 1.36× 10−6 kgm2

rR [−0.0237,−0.0158, 0.1403]ᵀ m
rW1

[0.0375, 0.0250, 0.1500]ᵀ m
rW2

[0.0000, 0.0375, 0.1500]ᵀ m
rW3

[0.0000, 0.0000, 0.1750]ᵀ m
rO [−0.0233,−0.0154, 0.1404]ᵀ m
bR [−0.00036,−0.00036,−0.00018]ᵀ m
b1 [0.0608, 0.0404, 0.0096]ᵀ m
b2 [0.0233, 0.0529, 0.0096]ᵀ m
b3 [0.0233, 0.0154, 0.0346]ᵀ m

be arbitrarily set, but for the scope of this simulation they
have been defined as a1 = [1 0 0]

ᵀ, a2 = [0 1 0]
ᵀ and

a3 = [0 0 1]
ᵀ.

Band-limited Gaussian process noise φ was added to the
simulated EKF model with variances σ2 for each noise signal
of σ2

φ0i
= 1×10−9 (kgm2/s2)2, σ2

φ1
= 1×10−8 (rad/s2)2,

σ2
φ2

= σ2
φ3

= 1×10−5 s−2, and σ2
φ4

= 1×10−5(rad/s2)2.
Similarly band-limited Gaussian measurement noise ψ was
added with variances σ2

ψ0i
=1(rad/s)2, σ2

ψ1
=1×10−5(rad/s)2,

and σ2
ψ2

= σ2
ψ3

= 1×10−2. Diagonal matrices with these
process and measurement noise variances were used to form
Qk and Rk, respectively. Since, in practice, the actual inertia
cannot be precisely known, 5% model uncertainty was added
to the calculated inertia J used in the EKF. Sinusoidal external
disturbance torques g of frequency 0.1Hz having amplitude
2×10−5Nm about the body x-axis and 5×10−5Nm about the
body y- and z-axes were applied. Similarly, sinusoidal reaction
wheel motor torques gai of frequency 0.1Hz having amplitude
1.5×10−4Nm were applied. It was assumed that g and gai
used in the EKF model were measured with a Gaussian noise
variance of σ2

g = 1×10−10(Nm)2 and σ2
gai

= 1×10−9(Nm)2,
respectively. The EKF initial conditions for the state vector
were randomly set.

The equations of motion derived in Section II were imple-
mented and, when no noise was added, the results matched
those from the Simscape Multibody toolbox as desired —
effectively validating the derived equations of motion and
their implementation. Process and measurement noise were
then added to the simulator and the EKF was simulated for
500s using a sample rate of 1Hz. Fig. 3 plots the resulting
CubeSat body angular velocity components as a function of
time. In each subplot, the actual angular velocity is shown as a
dashed-red line, the noisy and biased gyroscope measurements
are superimposed as dotted blue lines, and the EKF estimated
angular rates are plotted as a solid black line. It can be seen
in this figure that, despite the presence of noise and gyroscope
drift, the EKF is able to converge towards the actual angular
rates as desired.
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Fig. 3. Simulation results for body angular velocity ω

Similarly, Fig. 4 plots the corresponding four attitude quater-
nion components as a function of time consisting of the vector
components (qx, qy, qz) and scalar component q0. Similar to
Fig. 3, the actual quaternion components are plotted as a red-
dashed line, the noisy quaternion measurements are plotted
as a blue dotted line, and the EKF estimated quaternion
components are plotted as a solid black line. It can be seen
that, despite the randomly-incorrect initial conditions, the EKF
is able to converge towards the actual quaternion components.
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Fig. 4. Simulation results for attitude quaternion vector components q =
(qx, qy , qz) and scalar component q0

Lastly, Fig. 5 plots the gyroscope bias drift as a function of
time. The actual bias is shown as a red-dashed line while the
EKF bias estimate is shown as a black solid line. Note that
this bias is measured as part of the gyroscope angular velocity

measurement — bias itself is not directly measured. It can be
seen from this figure that the EKF bias estimates are able to
converge towards the actual bias as desired.
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Fig. 5. Simulation results for gyroscope bias drift β

V. CONCLUSIONS

This paper derives the equations of motion for a general
rigid body with n arbitrarily-positioned and arbitrarily-oriented
reaction wheels. It then demonstrates how these nonlinear at-
titude dynamics equations can be used in an extended Kalman
filter formulation by creating a nonlinear state-space equation
using states that include the angular momentum of the reaction
wheels as well as the angular velocity of the rigid body.
Additional states in the EKF include the attitude quaternion
and gyroscope bias. Numerical simulations are then carried out
using an example CubeSat geometry to validate the derived
equations of motion and corresponding EKF formulation. For
the simulation conditions used in this research, the results
demonstrate that the EKF is able to converge towards the
actual CubeSat’s attitude quaternion and body angular velocity
as desired.
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