
Proceedings of the Canadian Society for Mechanical Engineering International Congress 2021
CSME Congress 2021

June 27-30, 2021, Charlottetown, PE, Canada

Mixing of complex fluids: on the effects of
inhomogeneity

Mohammad Reza Daneshvar Garmroodi
Dept. of Mechanical, Industrial & Aerospace Engineering

Concordia Universiy
Montreal, Quebec

mohammadreza.daneshvargarmroodi@concordia.ca

Ida Karimfazli
Dept. of Mechanical, Industrial & Aerospace Engineering

Concordia Universiy
Montreal, Quebec

ida.karimfazli@concordia.ca

Abstract—We investigate the time evolution of mixing in a
cylindrical container that is initially stably stratified. The bottom
and top halves of the container are filled with Bingham and
Newtonian fluids, respectively. The mixing is promoted by a
rotating disk. We consider three different disk positions and
illustrate that a non-negligible steady velocity magnitude is not
a sufficient condition for effective local mixing. For the model
problem considered, setting the disk mixer at the middle and
top of the container leads to the shortest and longest mixing
times, respectively.

Index Terms—Mixing, Viscoplastic fluids, Yield stress, Buoy-
ancy.

I. INTRODUCTION

Mixing is one of the common industrial and technological
processes. Wastewater, food, and oil industries are among the
examples where multiple liquids should be mixed together. In
most previous studies on the mixing, working fluid is assumed
to be homogeneous. In some of the homogeneous studies,
mixing is evaluated using a passive concentration field. Wu
[1] numerically studied the turbulent mixing of a homogeneous
fluid in a container. He used a passive concentration field, and
to evaluate the mixing, he defined the degree of homogeneity
as follows:

M(x, t) =
|c(x, t)− cavg(t)|

cavg(t)
× 100% (1)

Where c(x, t) is the concentration field, and cavg is the
average concentration in the entire domain. He found that the
mixing time is sensitive to the passive concentration field’s
initial position and the rheological properties of the working
fluid.

It is common in studies of mixing to use the steady velocity
field to identify the cavern and the dead zone. Qualitatively,
the cavern is the region within the container where the fluid
has a non-negligible velocity, and outside the cavern is referred
to as the dead zone [2]. Mixing is considered to be negligible
within the dead zone and efficient within the cavern. Pakzad
et al. [3] studied both numerically and experimentally the
cavern formation around a radial impeller during the mix-
ing a Herschel-Bulkley fluid. They used velocity magnitude
to define the cavern boundary. They considered 1% of the
impeller tip speed for the cavern boundary’s velocity, similar to

what Adam [4] proposed for power-law and Newtonian fluids.
In their experiments, they observed significant cavern growth
during the transitional regime.

Most studies of mixing of complex fluids assume that
the working fluid is homogeneous [1-6]. The variation of
the fluid’s properties is thus neglected in these models. In
practice, mixing is often used to homogenize an otherwise
inhomogeneous fluid. There are limited studies on the mixing
of stratified liquids with different rheological properties. Derk-
sen [7] numerically studied turbulent mixing of two miscible
liquids with density differences in a container. He found that
increasing the density difference between two liquids can
impede mixing and increase the required time for complete
mixing.

We consider the working fluid with a non-uniform density
and rheology. The top half of the domain has a lower density
and is described as a Newtonian fluid. The bottom half of
the domain is filled with a viscoplastic fluid with a higher
density. This initial condition can be used to model the mixing
of two miscible fluids with different rheologies and densities
or an inhomogeneous solution where the solute has different
concentration in the top and bottom halves of the container.

We use numerical simulations to investigate the develop-
ment of the flow field and the evolution of mixing when the
mixer is placed at different positions. Details of the model
problem and the numerical approach are discussed in section
2. In section 3 we illustrate flow features and discuss the
effects of the position of the mixer. We close in section 4
by summarizing our findings.

II. PROBLEM SETUP

A. Model problem

As illustrated in Fig. 1, a cylindrical tank with a rotating
disk is considered as a simplified model of forced mixing in
the present study. The top and bottom halves of the container
are initially filled with fluid A (Newtonian fluid) and fluid
B (Bingham fluid), respectively. r̂d, ĥd, R̂, ĥ and ĥB are the
radius of the disk, distance of the disk from the bottom of the
container, radius of the container, and height of the container
and fluids interface, respectively. To reduce the computational
cost, we assume that flow is axisymmetric. At top, bottom,
and side walls, the no-slip boundary condition is applied.



Furthermore, the disk is assumed to rotate at a constant angular
velocity (Ω̂) around the z-axis.

Fig. 1: Geometry in the present study

In order to model two miscible liquids, advection-diffusion
equation is coupled with the Navier-Stokes equations. The
non-dimensional conservation equations for momentum and
concentration can be written as follows:

[Atα+ 1]

(
∂U
∂t

+ U.∇U
)

+∇P =
1

Re
∇.τ +Riα eg (2)

∂α

∂t
+∇.(Uα) +

1

At
∇.U− 1

ReSc
∇.(∇α) = 0 (3)

Here U, P , and τ represent non-dimensional velocity, pres-
sure, and deviatoric stress tensors, respectively. α is the
dimensionless concentration field such that α = 0 (α = 1)

corresponds to pure fluid A (B), α =
ρ̂− ρ̂A
ρ̂B − ρ̂A

. Furthermore,

eg = (0, 0,−1) is the gravitational unit vector.
To obtain the non-dimensional form of the governing equa-

tions, the following dimensionless parameters are defined:

r =
r̂

r̂d
z =

ẑ

r̂d
U =

Û
r̂d Ω̂

t = Ω̂t̂

P =
P̂

ρ̂A r̂2d Ω̂2
η =

η̂

µ̂A
γ̇ =

̂̇γ
Ω̂

where Û, P̂ , η̂, and ̂̇γ represent velocity, pressure, mixture
viscosity, and strain rate, respectively. The dimensionless
viscosity of fluid B can be written as follow:

ηB = n+
Bn

γ̇
(4)

where n =
µ̂B

µ̂A
is the non-dimensional viscosity ratio. Bn

is the Bingham number, which is the ratio of plastic forces to
Newtonian viscous forces, and it is defined as:

Bn =
τ̂y

µ̂AΩ̂
(5)

The dimensionless mixture viscosity and shear stress are
defined as follows:

η =
(1− α)µ̂A + αη̂B

µ̂A
= (1− α) + α(n+

Bn

γ̇
) (6)

τij = η γ̇ij (7)

At is the Atwood number, which represents the dimension-
less density difference:

At =
ρ̂B − ρ̂A
ρ̂A

(8)

Re is the Reynolds number, which represents the ratio of
inertial forces to Newtonian viscous forces,

Re =
ρ̂AΩ̂r̂2d
µ̂A

(9)

Sc is the Shmidt number which is representative of the
ratio of momentum diffusivity and mass diffusivity of the
Newtonian fluid:

Sc =
µ̂A

ρ̂AD̂m

(10)

and Ri represents the Richardson number which is the ratio
of gravitational to inertial forces:

Ri =
Atĝ

r̂cΩ̂2
(11)

To quantify the mixing, mixing index (MI) is defined using
the standard deviation of concentration in the domain:

MI = 1− σ

ᾱ
(12)

where σ is:

σ =

√
1

A

∫
A

(α− ᾱ)2dA (13)

Here α and ᾱ are the concentration field and averaged
concentration in the computational domain, respectively.

The dimensionless groups governing the model problem
and the ranges considered in the current manuscript are
summarized in Table. I.



TABLE I: Range of non-dimensional parameters

Non-dimensional num-
bers

Definition Range

Reynolds (Re)
ρ̂AΩ̂r̂2d
µ̂A

102

Schmidt (Sc)
µ̂A

ρ̂AD̂m

103

Richardson (Ri)
Atĝ

r̂d Ω̂2
10−2

Bingham (Bn)
τ̂y

µ̂AΩ̂
10−1

Atwood (At)
ρ̂B − ρ̂A

ρ̂A
10−2

Viscosity ratio (n)
µ̂B

µ̂A
1

Disk height (hd)
ĥd

r̂d
2 − 6

Container radius (R)
R̂

r̂d
4

Container height (h)
ĥ

r̂d
8

Fluid B height (hB)
ĥB

r̂d
4

B. Numerical method

In the present study, the finite volume method has been
used to discretize the governing equations. The open-source
OpenFOAM toolbox has been used for the numerical so-
lution of the equations. The numerical simulation of the
problem was carried out using the ”twoLiquidMixingFoam”
solver. In this solver, PIMPLE or PISO-SIMPLE algorithm
(Pressure-Implicit with Splitting of Operators-Semi-Implicit
Method for Pressure-Linked Equations) has been used for
decoupling pressure-velocity in the governing equations. In
the discretization schemes, time derivatives are discretized by
the first-order implicit ”Euler” scheme. The divergence and
gradient terms are discretized with the second-order linear
”Gauss linear” scheme. Also, standard second-order central
differencing ”Gauss linear corrected” is used for the diffusion
terms.

C. Validation

To validate our numerical solver we benchmarked our
results in comparison with Huang et al. [8]. Huang et al. [8]
studied laminar mixing of two miscible Newtonian liquids in
a lid-driven cavity both numerically and experimentally. The
schematic of their problem setup is shown in Fig. 3. The cavity
is cubic with dimensions of L × W × H = 5 × 5 × 4 cm,
where L, H , and W are length, height, and width of the
cavity, respectively. The top wall has a constant speed equal

to Û = 0.02
m

s
. Initially, the heights of liquid 1 and 2 are set

equal to 0.75H and 0.25H , respectively. The concentration
colormaps of liquid 2 at different time instances are shown in
Fig. 3. Comparing the present findings with Huang et al. [8]
results shows a perfect agreement and our numerical solver is
considered accurate.

Furthermore, four different mesh sizes are studied to verify
precision. We used the finest grid (120× 240) to estimate the
computational error for the other grids. Table. II summarizes
the results of our grid-independence studies. We have used
mesh II for the rest of the simulations presented in this
manuscript.

Fig. 2: Geometry in Huang et al. [8] study

(a)
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Fig. 3: Comparison of present results with [8] for
Ar

Re
=

119, ρ̂1 = 1307
kg

m3
, and ρ̂2 = 1297 kg

m3

III. RESULTS

An illustrative case of mixing development (at Re =
102, Bn = 10−1, Sc = 103, Ri = 10−2, At = 10−2, R =
4, hd = 2, hB = 4, h = 8, n = 1) is shown by Fig. 4. Fig. 4a
shows the initial condition where the top and bottom halves of



TABLE II: Estimated numerical error of mixing index based
on different mesh sizes

(Re = 102, Bn = 10−1, Sc = 103, Ri = 10−2, At = 10−2, R =
4, hd = 2, hB = 4, h = 8, n = 1, t = 12.8 × 104)

Grid Mixing index Error(%)

Mesh I = 60 × 120 0.6954 2.64
Mesh II = 80 × 160 0.6810 0.51

Mesh III = 100 × 200 0.6787 0.17

the container are filled with Newtonian and Bingham fluids,
respectively. When the disk starts to rotate, three eddies form
and mixing starts (see Fig. 4b). As time progresses, the middle
eddy expands and the eddy in the top half of the container
breaks down into two smaller eddies (see Fig .4c). Meanwhile,
as concentration increases in the top half of the container, new
unyielded regions form and grow. (Fig. 4d and 4e). Figure. 4f
illustrates the evolution of mixing index. Initially, MI increases
rapidly (see Fig. 4f, t < 2×104). After the initial rapid growth,
the flow reaches a quasi-steady state. The slope of MI versus
time reduces and mixing is dominated by diffusion (see Fig.
4f, t > 2× 104).

(a) t = 0 (b) t = 576 (c) t = 6400 (d) t=32000 (e) t=128000

(f) Mixing index evolution

Fig. 4: Evolution of mixing at Re = 102, Bn = 10−1, Sc =
103, Ri = 10−2, At = 10−2, R = 4, hd = 2, hB = 4, h =
8, n = 1. (a-e) Snapshots of the concentration field at different
times. The gray and black lines represent the streamlines and
the boundaries of the un-yielded regions, respectively. (f) Time
evolution of MI.

(a)

0 0.5 1
0

2

4

6

8

(b)

0 5 10 15

10
4

10
-6

10
-4

10
-2

(c)

Fig. 5: (a) Spatio-temporal diagram of r-averaged concentra-
tion. The dash line shows ᾱ = 0.3 which is used for tracking
the interface of the two phases.(b) Distribution of r-averaged
concentration along the z-axis in different time instances. The
dash line shows ᾱ = 0.3. (c) The growth rate of the mixed
region in the vertical direction
(Re = 102, Bn = 10−1, Sc = 103, Ri = 10−2, R = 4, hd =

2, hB = 4, h = 8, n = 1)

Fig. 5a illustrates the spatio-temporal diagram of r-averaged
concentration, ᾱr(z, t), which is defined as follow:

ᾱr(z, t) =
1

R2

∫ R

0

2rα(r, z, t)dr (14)

The white dash-line represents the contour αr = 0.3, from
hereon referred to as ξ. ξ is representative of the average height
of the fluids’ interface above which the fluids are not mixed.
It can be seen that the variation of the αr becomes slow
after t ≈ 22000. Fig. 5b shows αr distribution at different
time instances. The back dash-line indicates αr = 0.3. The
intersection of the αr(t) and this line represent ξ(t).

Figure. 5c illustrates the time derivative of ξ, i.e. ξ̇. ξ̇
illustrates the growth rate of the mixed region in the vertical
direction. As can be seen, at the beginning of the mixing,
the interface’s speed is high. The flow then approaches a
quasi-steady state, the velocity drops rapidly and stays almost
constant (t > 5× 104).

A. Effect of disk mixer position

In this section, we explore the effect of the vertical position
of the disk. For this purpose, three different positions have



been selected hd = 2, 4, 6, from hereon referred to as the
bottom, middle and top positions, respectively. Fig. 6 presents
the concentration and mixing index evolution for each disk
position. We consider the mixing time as time when the mixing
index reaches MI = 0.95.

Fig. 7 illustrates the spatio-temporal diagrams of r-averaged
concentration for different disk positions. Fig. 7 and Fig. 6
illustrate that when the disk is at the top and bottom positions,
the fluid remains largely unmixed and the interface between
high and low density regions stays almost distinct. However,
when the disk is at the middle position, the interface vanishes
as flow approaches the quasi-steady state. When the disk
is placed in the middle of the container, fluids reach the
mixed condition much faster compared to other disk positions.
There is an initial rapid growth at the beginning of the
mixing process for the top and bottom positions. After this
initial rapid growth, the flow reaches a quasi-steady state and
the diffusion mechanism dominates mixing. However, in the
middle position, mixing is dominated by convection as the
flow approaches a homogeneous steady-state. Mixing is thus
more efficient when the disk is positioned in the middle, and
has a notably shorter timescale compared to the other two
cases. Furthermore, Comparing the quasi-steady states of the
top, middle and bottom cases, it is evident that mixing is the
least effective when the disk is at the top.

The cavern shapes in different positions are shown in Fig.
8. Fig. 8d also shows the evolution of the cavern size, Vc,
for different position. Here, Vc is defined as the volume of
the region where the dimensionless velocity is higher than
0.005. Also, V is the total volume of the container. The middle
position has the largest cavern size compared to the bottom
and top positions. A comparison of Fig8c and Fig6k reveals
that the fluid is indeed not well-mixed within the cavern. This
example disproves, by counterexample, that a non-negligible
velocity in a part of the flow field is a sufficient condition for
efficient mixing there.

IV. CONCLUSION

We have explored the mixing of a fluid with a non-uniform
density and rheology. The top half of the domain has a lower
density and is described as a Newtonian fluid. The bottom half
of the domain is filled with a viscoplastic fluid with a higher
density. The two fluids are considered miscible. To promote
mixing, a rotating disk is placed at different vertical positions
of the container.

When the disk is placed at the bottom and top positions,
initially mixing progresses quickly and is dominated by advec-
tion. After this initial development, the flow reaches a quasi-
steady state, and mixing is dominated by diffusion. However,
for the middle position, advective mixing is more significant
and the fluid reaches an approximately homogeneous quasi-
steady state.

Among different positions of the disk, the middle and
top positions have the shortest and longest mixing times,
respectively. The interface between the high and low density
regions remains relatively distinct and the fluids remain largely
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Fig. 6: Evolution of mixing at Re = 102, Bn = 10−1, Sc =
103, Ri = 10−2, At = 10−2, R = 4, hB = 4, h = 8, n = 1.
(a-d), (e-h), and (i-l) are the snapshots of the concentration
field at different times and mixing index evolution for bottom,
middle, and top positions, respectively.

(a) Bottom (b) Middle (c) Top

Fig. 7: (a) Spatio-temporal diagram of r-averaged concentra-
tion for different disk positions.
(Re = 102, Bn = 10−1, Sc = 103, Ri = 10−2, R = 4, hB =
4, h = 8, n = 1)

unmixed for the bottom and top positions compared to the
middle position.

Finally, we disproved, by counterexample, that non neg-
ligible velocity indicates the areas of effective mixing. We
saw that the top position had a larger cavern compared to the
bottom position. However, the bottom position has a shorter
mixing time compared to the top position.
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Fig. 8: Evolution of cavern at Re = 102, Bn = 10−1, Sc =
103, Ri = 10−2, At = 10−2, R = 4, hB = 4, h = 8, n =
1, t = 128000. (a-c) Snapshots of the quasi-steady state
velocity field at different positions. The white lines show
the boundary of the cavern. (d) Time evolution of cavern in
different positions.
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