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Abstract—Oil wells are normally abandoned using several
cement plugs. Plugs above the deepest one are called off-bottom.
The balanced plug method is the most used technique to place
off-bottom plugs. In most cases, the initial stage of the balanced
plug method includes injection of the cement slurry in cased
wells. A tube smaller than the casing is inserted to the depth
where the plug should be placed. Cement slurry is then injected
through the tube into the cased wellbore, that is initially filled
with wellbore liquids. Under field conditions, mixing of the fluids
inside the injector is inevitable.

In this study, we model the above cement injection process in
a representative two-dimensional domain. We explore the effect
of fluids premixing inside the injector on the dynamics below it.
We first consider an idealized case where the displacing fluid fills
the injector initially. To model the fluids premixing, we consider
three other cases where the injector is initially filled with the
displaced fluid, a buffer layer of both fluids and a combination
of both.

Our preliminary results show that the injection in the idealistic
case results in a cement finger developing below the injector. The
finger then breaks due to an interfacial instability. As a result,
a mixed layer forms below the injector. The premixing of fluids
in the injector result in qualitatively similar dynamics as above.
Mixed fluids advect below the injector. Shortly after, unsteady
dynamics, within the injector or below it, facilitate the formation
of a mixed layer below the injector.

Index Terms—Plug and Abandonment, Displacement flow,
Viscoplastic fluid, Premixing

I. INTRODUCTION

Oil and gas wells are classified based on their production
status to active and inactive [1]. Active wells are the ones
producing oil and gas economically. Wells that do not produce
oil and gas in 12 months, however, are considered inactive [1].
Companies can either close inactive wells temporarily (i.e. sus-
pend) or permanently (i.e. abandon) [2]. As of July 2019, the
province of Alberta in Canada had ∼ 75, 000 suspended wells
and ∼ 42, 000 abandoned [3]. The numbers then represented
∼ 25% and ∼ 14% of the registered wells in the province,
respectively [3]. The cost of abandoning an oil well can be
anywhere from ∼ 10, 000$ to ∼ 1, 000, 000$, depending on
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the geographic location, depth and site conditions [4]. In
2019, the average cost of plugging a well in Alberta was
∼ 29, 000$ [5]. Abandonment jobs that are not done properly
incur significant additional costs [6].

Although there is much diversity in the abandonment pro-
tocols of the regulatory body across the globe, the goal of the
process is to eliminate the potential risks to the environment
[2], [6]. Recent studies, however, showed that abandoned wells
are leaking Methane [7]–[9]. Improper placement of plugs may
be considered as one of the possible reasons for such leaks.
This study in motivated by common abandonment practices
in Canada. In most cases, several plugs are placed along the
well to ensure proper isolation to the perforated formations so
that the well integrity is maintained. Plugs above the bottom
one are often called off-bottom. The balanced plug method
is the most used technique to place such plugs. A tube of
smaller size compared the cased wellbore is positioned at the
target location, where the off-bottom plug should be placed.
Cement slurry is then injected into the well (see Fig.1). The
aim here is for the heavy cement slurry to accumulate on a
layer of a lower density wellbore fluids. While it may seem
hydrodynamically infeasible, there is an anecdotal evidence of
successful placement following this procedure [10].

Displacement flows in confined geometries are well stud-
ied for Newtonian fluids [11]–[14]. Problems involving non-
Newtonian fluids, however, are less systematically explored.
Taghavi et. al [15] and Alba et. al [16] conducted exper-
imental studies of the displacement of a viscoplastic fluid
by a higher density Newtonian fluid in a pipe for a wide
range of inclination angles. Two primary flow regimes, central
and slump flows, were observed. The authors also revealed
different unsteady flows for high inclinations from horizontal.
Zare et. al [17], [18] examined both density stable and unstable
displacement flows numerically. The authors considered an
upwards injection of a Newtonian fluid in a channel filled with
a viscoplastic fluid. Amiri et. al [19], conducted both experi-
mental and theoretical studies on the downward displacement
flows in a vertical geometry. The authors used a Newtonian



Fig. 1: An illustrative schematic of an idealistic injection stage
of the balanced plug method. The dashed rectangle refers to
the target location of the off-bottom plug. Note: the schematic
is not to scale.

fluid to displace a slightly lower density viscoplastic fluid. The
results showed both static and moving residual layers. Both
stable and unstable flows were reported for the latter cases.

Evidently, the studies on displacement flows are not rep-
resentatives of neither the geometry nor the conditions of the
cement injection stage in the balanced plug method (see Fig.1).
In this study, therefore, we model the injection of a viscoplastic
fluid into a channel initially filled with a lighter Newtonian
fluid. We focus on the effects of the fluids premixing inside
the injector on the dynamics below it.

II. PROBLEM SETUP

We model the injection process in a representative two-
dimensional channel as illustrated in Fig. 2. The aspect ratio
of the computational domain (L̂c/D̂c) is 90, where L̂c and
D̂c are the casing length and width, respectively. We con-
sider a fixed width ratio between the injector and the casing
(D̂i/D̂c = 0.5). Also, the ratio between the injector and casing
lengths (L̂i/L̂c) is 0.5. Fluid 1 is viscoplastic fluid and fluid
2 is Newtonian. Initially, the casing is filled with fluid 2. The
slanted area in Fig. 2 indicates the region where different initial
conditions are considered to explore the effect of premixing
in the injector.

To facilitate the introduction of the initial conditions, we
define the phase fraction field based on the mixture density,
ρ̂,

φ =
ρ̂− ρ̂o

∆ρ̂

where ρ̂0 = (ρ̂1 + ρ̂2)/2 is the reference density and ∆ρ̂ =
ρ̂1 − ρ̂2 is the density difference, ρ̂1 is the density of the

Fig. 2: Simplified illustrative schematic for the computational
domain. The dashed rectangle represents the target plug posi-
tion. The slanted lines for ICi represent a generalized initial
condition for the fluids in the injector, see Fig.3 for the cases
considered. Note: the schematic is not to scale.

displacing fluid (fluid 1) and ρ̂2 is the density of the displaced
fluid (fluid 2). We use .̂ to denote a dimensional quantity. The
phase fraction value for pure fluid 1 is thus 0.5, and the phase
fraction value for fluid 2 is −0.5. We consider four different
initial conditions for the phase fraction inside the injector (see
Fig.3):

(I) constant at φ = 0.5 (fluid 1),
(II) linear decrease between the injector inlet (φ = 0.5, y =

−45) and outlet (φ = −0.5, y = 0),
(III) linear decrease between the injector inlet (φ = 0.5, y =

−45) and its half length (φ = −0.5, y = −22.5),
followed by a constant value (φ = −0.5) till the injector
outlet (y = 0),

(IV) constant at φ = −0.5 (fluid 2).
The mathematical representations of the initial phase frac-

tion fields in the injector are illustrated in Table I.
No-slip and no-penetration are applied on the walls. Fluid

1 is injected at the inlet with a uniform velocity. We assume
the flow to be fully developed at the outlets.

A. Governing Equations

For the length and velocity scales we use the casing width
(D̂c) and average inlet velocity (V̂o), receptively. The dimen-
sionless variables become:
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Fig. 3: Illustration of the presented fluids in the injector
initially (ICi). The colors refer to the phase fraction (φ). The
displayed colormaps show the full length of the computational
domain, −45 ≤ y ≤ 45. The white color represents the
injector walls. (a) injector filled with fluid 1, (b) injector filled
with a linear gradient between fluids 1 and 2, (c) the top half
of the injector is similar to (b) and the other half is filled with
fluid 2, (d) injector filled with fluid 2.

TABLE I: Mathematical Representations of the Initial Phase
Fraction Fields in the Injector

ICi Casea Injector Initial Phase Fraction Fields

(I) 0.5 for −Li ≤ y ≤ 0

(II)
−1

Li
y − 0.5 for −Li ≤ y ≤ 0

(III)


−2

Li

(
y +

Li

2

)
− 0.5 if −Li ≤ y ≤

−Li

2

−0.5 if
−Li

2
< y ≤ 0

(IV) −0.5 for −Li ≤ y ≤ 0

aSee Fig.3 for visual representations. The injector width is |x| ≤ Di/2

xi =
x̂i

D̂c

, t =
V̂ot̂

D̂c

, ui =
ûi

V̂o
, P =

P̂

ρ̂oV̂ 2
o

,

τij =
τ̂ij

ρ̂oV̂ 2
o

, γ̇ij =
ˆ̇γijD̂c

V̂o
, µ =

µ̂

ρ̂oV̂oD̂c

.

where (x1, x2) = (x, y), P is pressure, t is time, ui is the
fluid velocity in the xi direction, τij represents the deviatoric
stress tensor, γ̇ij represents the strain rate tensor and µ is the
dynamic viscosity of the mixture.

The governing equations become:

(2Atφ+ 1)

[
∂ui
∂t

+ uj
∂ui
∂xj

]
= − ∂P

∂xi
+
∂τij
∂xj

− 2At

Fr2
φδi2

(1)

2At

[
∂φ

∂t
+ ui

∂φ

∂xi

]
+ (2Atφ+ 1)

∂ui
∂xi

=
2At

Pe

∂2φ

∂xi∂xi

(2)

where At is the Atwood number, Fr is the Froude number,
Pe is the Peclet number, and δi2 is the kronecher delta.

We model the viscoplastic fluid using the Bingham consti-
tutive law: τij = 2

[
1

Re
+
Bn

2γ̇

]
γ̇ij if τ > Bn

γ̇ij = 0 if τ ≤ Bn

(3)

where Bn is the Bingham number, Re is the Reynolds
number, τ and γ̇ are the second invariants of strain rate and
shear stress tensors,

γ̇ =

√
1

2
γ̇ij γ̇ij , τ =

√
1

2
τijτij

We define the strain rate as: γ̇ij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
.

When τ = Bn, the Bingham model is non-differentiable.
We therefore regularise the Bingham model following
Bercovier-Engelman [20].

τij = 2µ1,eγ̇ij

µ1,e =

[
1

Re
+

Bn√
ε2 + (2γ̇)2

]
(4)

Here µ1,e is the effective viscosity of the viscoplastic fluid
and ε is the regularization parameter.

The mixture viscosity is approximated by a linear function
of the phase fraction,

µ = (0.5 + φ)µ1,e + (0.5 − φ)
m

Re
(5)

where m is the viscosity ratio.
We show the definitions and values of the above dimen-

sionless numbers in Table II. The Reynold number (Re) and
viscosity ratio (m) are chosen such that case I (i.e. idealistic
case) is representative of a laminar flow below the injector
in off-bottom plug placement. The values of the remaining
dimensionless groups are chosen consistent with the practical
ranges. We note here that the effective Peclet number (Pe) is
typically orders of magnitude higher than the values associated
with the molecular diffusion.



TABLE II: Definitions and Values of the Dimensionless
Groups from the Governing Equations. D̂ is the diffusion
coefficient, ĝ is the gravitational acceleration, τ̂y is the yield
stress, µ̂1 is the plastic viscosity of the displacing fluid (fluid
1) and µ̂2 is the dynamic viscosity of the displaced fluid (fluid
2).

Dimensionless Group Value

At =
∆ρ̂

2ρ̂o
0.130

Fr =
V̂o√
ĝD̂c

0.395

Pe =
V̂oD̂c

D̂
2.8× 103

Bn =
τ̂y

ρ̂oV̂ 2
o

0.0027

Re =
ρ̂oV̂oD̂c

µ̂1
527

m =
µ̂2

µ̂1
1.3

B. Numerical Method and Validation

The simulations are carried out using OpenFOAM v6 from
the OpenFOAM Foundation. The software is based on the
finite volume method. Since our problem involves two mis-
cible incompressible fluids, we use the multiphase solver,
twoLiquidMixingFoam. The solver algorithm is a combination
of PISO (Pressure Implicit with Splitting of Operator) and
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions). The Bercovier-Engelman viscosity model is added in
a user-defined script. Our space discretization is second order
accurate, and our time discretization is first order implicit. We
validated our simulations of unsteady flows in [21].

III. RESULTS AND DISCUSSIONS

We show the dynamics following the injection of a heavy
viscoplastic fluid in a lower density Newtonian fluid. We
consider four different scenarios for the fluids that initially fill
the injector. We focus our discussion on the dynamics below
the injector and explore if they may differ as a result of the
premixing inside the injector.

In Fig.4, we show snapshots of the phase fraction colormaps
for case I, where fluid 1 initially fills the entire injector.
Following the onset of injection, a viscoplastic finger devel-
ops below the injector and advects downstream (see Fig.4,
t = 15, 20). Waves then appear at the interface between the
two fluids (see Fig.4, t = 25). The waves evolve over time
and break the viscoplastic finger. Vortices develop behind
the broken finger as it travels downstream (see e.g. Fig.4,
t = 30). A mixing layer thus forms below the injector (see
Fig.4, t = 50). After the broken finger is diffused, the mixing
layer reaches a qualitatively quasi-steady length (see Fig.4,
t = 70, 90, 100). The mixed layer reduces the local buoyant

Fig. 4: Phase fraction color maps for case I, where the injector
is initially filled with fluid 1 (see Fig. 3I for the initial
condition). For the values of the dimensionless groups, see
table II. The successive non-dimensional snapshot times from
left to right are t = 15, 20, 25, 30, 50, 70, 90, 100. Blue color
refers to the Newtonian fluid (φ = −0.5), while the red color
refers to the viscoplastic (φ = 0.5). The white color represents
the injector walls. The displayed colormaps show a fraction
of the computational domain, −5 ≤ y ≤ 20.

forces such that the injected fluid diverts into the gap between
the injector and channel walls.

Fig.5 shows snapshots of the phase fraction field for case
II (the initial condition is illustrated in Fig.3II). A finger
of mixed fluids, with a relatively low phase fraction of the
viscoplastic fluid, appears below the injector shortly after the
injection onset (see Fig.5, t = 3). The phase fraction of the
fluids within the finger increases as it advects downstream
(see Fig.5, t = 10, 15). The downstream advection of the
finger is destabilized shortly after, leading to the finger breakup
and enhancing the mixing below the injector (see Fig.5,
t = 20, 25, 30). At later times, the viscoplastic fluid wipes
out all the mixed fluids in the injector.

A qualitative comparison between cases I and II for the
front travelled distance over the same time interval suggests
that the advective front velocity is higher in case I. This is
not surprising as buoyancy effects are stronger in case I. We
also note that the quasi-steady mixing layer of case II has a
high density gradient near the injector tip and a relatively short
length compared to case I (see Fig.5, t = 70, 100).

Fig.6 shows snapshots of the phase fraction for case III
(the initial condition is illustrated in Fig. 3III). Initially, a
finger appears to start forming below the injector. Similar to



Fig. 5: Phase fraction color maps for case II (see Fig.3II for the
initial condition). For the values of the dimensionless groups,
see table II. The successive non-dimensional snapshot times
from left to right are t = 3, 10, 15, 20, 25, 30, 70, 100. Blue
color refers to the Newtonian fluid (φ = −0.5), while the red
color refers to the viscoplastic (φ = 0.5). The white color
represents the injector walls. The displayed colormaps show a
fraction of the computational domain, −5 ≤ y ≤ 20.

case II, the phase fraction within the finger increases with
time (see Fig.6, t = 17, 20). This flow regime is quickly
destabilized, with apparent instabilities within and below the
injector. Similar to the cases discussed before, the finger
breakup leads to enhanced mixing below the injector and
the formation of a quasi-steady mixing layer. The mixing
continues as higher quality of mixed fluids emerge from the
injector (see Fig.6, t = 30). The developed mixed layer in this
case is similar to case II: it is short compared to case I and
has a high density gradient close to the injection point. The
mixing layer here also shows that it is reaching a quasi-steady
state (see Fig.6, t = 50, 70, 90, 100).

In Fig.7, we show snapshots of the phase fraction colormaps
for case IV, where fluid 2 initially fills the entire injector.
Before t = 30, there is negligible mixing below the injector
and the dynamics are unsteady in the injector. Shortly after, an
unsteady stream of mixed fluids reaches the injector tip and
advances downstream (see Fig.7, t = 32, 35). The dynamics
below the injector then become unsteady, enhancing the mix-
ing therein. A mixing layer forms as the phase fraction of
the fluid streaming out of the injector increases (see Fig.7,
t = 38). The mixing layer prevents the injected fluid from
penetrating downstream (see Fig.7, t = 50). We also note that
the mixed layer reaches a quasi-steady state. The length and

Fig. 6: Phase fraction color maps for case III (see Fig.3III
for the initial condition). For the values of the dimensionless
groups, see table II. The successive non-dimensional snapshot
times from left to right are t = 17, 20, 25, 30, 50, 70, 90, 100.
Blue color refers to the Newtonian fluid (φ = −0.5), while
the red color refers to the viscoplastic (φ = 0.5). The white
color represents the injector walls. The displayed colormaps
show a fraction of the computational domain, −5 ≤ y ≤ 20.

phase fraction profile within the layer are similar to cases II
and III (see Fig.7, t = 70, 90, 100).

The four illustrative cases investigated here reveal a few key
similarities. Initially, fluids stream out of the injector and ad-
vect downstream. Unsteady dynamics then result in enhanced
mixing below the injector, leading to the formation of a mixed
layer therein. We note that the length and phase fraction profile
of the mixing layer depend strongly on premixing of the fluids
in the injector and the amount of advected fluids below it.

IV. CONCLUSIONS

In this study, we introduced a model problem to investigate
the early stages of cement injection in off-bottom plugs.
We modelled the cement slurry as a viscoplastic fluid and
the wellbore liquid as Newtonian. We considered injecting a
viscoplastic fluid into a channel filled with a Newtonian fluid,
through an injector. We studied different initial phase fraction
profiles within the injector, exploring four cases spanning a
wide range of scenarios. For the idealistic case where the
injector is initially filled with the viscoplastic fluid, a distinct
finger develops below the injector and advances downstream.
The finger then breaks due to interfacial instabilities. A mixing
layer thus forms below the injector. We observed qualitatively
similar dynamics for the other cases, where lower phase
fraction fluids fill the injector initially. A low phase fraction



Fig. 7: Phase fraction color maps for case IV, where the
injector is initially filled with fluid 2 (see Fig.3IV for the
initial condition). For the values of the dimensionless groups,
see table II. The successive non-dimensional snapshot times
from left to right are t = 30, 32, 35, 38, 50, 70, 90, 100. Blue
color refers to the Newtonian fluid (φ = −0.5), while the red
color refers to the viscoplastic (φ = 0.5). The white color
represents the injector walls. The displayed colormaps show a
fraction of the computational domain, −5 ≤ y ≤ 20.

finger first emerge from the injector. Unsteady dynamics then
facilitate the formation of the mixed layer below the injector.
The mixed layer here has short length and high density
gradient as compared to the idealistic case.

Future parametric studies will reveal the premixing effects
on the contamination of the accumulated fluids above the
injector.
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(http://www.calculquebec.ca) and Compute Canada
(http://www.computecanada.ca).

REFERENCES

[1] Life Cycle of a Well — Exploration — Well Abandonment — Recla-
mation.

[2] Suspension and Abandonment — Alberta Energy Regulator.

[3] Vanessa Alboiu and Tony R. Walker. Pollution, management, and
mitigation of idle and orphaned oil and gas wells in Alberta, Canada.
Environmental Monitoring and Assessment, 191(10):1–16, 2019.

[4] Mary Kang, Denise L. Mauzerall, Daniel Z. Ma, and Michael A.
Celia. Reducing methane emissions from abandoned oil and gas wells:
Strategies and costs. Energy Policy, 132:594–601, 2019.

[5] Orphan Well Association 2019 Report. Technical report, Orphan Well
Association (OWA), Calgary, Alberta, 2019.

[6] Mari R. Tveit, Mahmoud Khalifeh, Tor Nordam, and Arild Saasen. The
fate of hydrocarbon leaks from plugged and abandoned wells by means
of natural seepages. Journal of Petroleum Science and Engineering,
196:108004, 2021.

[7] Stuart N. Riddick, Denise L. Mauzerall, Michael A. Celia, Mary Kang,
and Karl Bandilla. Variability observed over time in methane emissions
from abandoned oil and gas wells. International Journal of Greenhouse
Gas Control, 100:103116, 2020.

[8] Eric D. Lebel, Harmony S. Lu, Lisa Vielstädte, Mary Kang, Peter
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