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Abstract—The restrictions related to air quality are increasing
making the improvement of the air system important. The
squirrel cage fan (SCF), also known as forward-curved multi-
blade centrifugal fan, is widely used in vacuum systems. Most
of researches so far used commercial software to study and
optimize the SCF. In the present study, a complete automatic
optimization process loop is developed based only on open source
libraries: Dakota, Salome and OpenFOAM. Up to seven design
parameters are selected. The Latin Hypercube Sampling (LHS)
method is preferred to determine the design points and then the
Kriging and Efficient Global optimization (EGO) metamodels
are built. A 3D incompressible simple FOAM solver is coupled
to the Multiple reference frame (MRF) approach to model the
flow in the SCF. An efficiency improvement of 8.46% is reached
by the EGO approach. A strong vortex is observed in the cut-
off region. The optimal design is finally validated against the
produced prototype, with an error of 3.4% on the efficiency.

Index Terms—Squirrel cage fan, OpenFoam, Dakota, Design
of Experiments, Surrogate model, Latin Hypercube Sampling

I. INTRODUCTION

The society is highly concerned and more sensible to the
air quality of their outdoor and indoor environments. The
COVID-19 pandemy certainly strengthens the researches about
the improvement and adaptation of ventilation systems [1].
The improvement of the HVAC (heating, ventilation and air-
conditioning) system component efficiency is becoming a
necessity to ensure a trade-off between particle captation and
power consumption. The squirrel cage fan (SCF) has been
extensively used for decades in HVAC systems and other
household appliances (bath room, range hood) [2]. The SCF
is a special centrifugal fan and also known as forward-curved
multi-blade centrifugal fan. In general, the SCF is prone to
flow separation around the blades due to their two-dimensional
circular arc profile [3], and is also subject to non-uniformity
of the flow at the impeller inlet due to the sharp flow direction
turning [4], [5]. These flow mechanisms and patterns lead to
lower performances of the SCF and the increase of the power
consumption [6]. Thus, an improvement of the flow condition
inside the SCF is necessary.

Design of experiments (DOE) and metamodels have been
used gradually in the optimization process of squirrel cage
fans due to their ability to converge towards optimum designs
efficiently. Kim and Seo [7] investigated numerically the
improvement of the SCF efficiency by studying the effect
of cutoff location and radius, and impeller width. The au-
thors coupled numerical calculations and the response surface
method (RSM) or also known as metamodels. For the numer-
ical calculations, 3D incompressible RANS simulations were

run using the commercial software CFX and the turbulence
model k-ε. The flow around the blades and inside the impeller
was not modeled to reduce computing time and was calculated
by an impeller force model. For the response surface method,
the quadratic polynomial model available in the commercial
software SPSS was used. Kim and Seo [7] validated their
numerical calculations against the experimental data of Kim
and Kang [8] by hot-wire probe around the reference SCF
design. At the inlet, an acceptable agreement was observed
for the axial distribution of the radial velocity component with
a maximum error of 20%. The quadratic polynomial model
allowed to improve the maximum efficiency and the static
pressure coefficient by 38.8% and 1.66%, respectively. Any
validation of the obtained optimum design by a metamodel was
accomplished by CFD or experimental tests. In a recent study
by Zhou et al. [9], the Kriging surrogate model was coupled
with CFD to optimize the blade profile for a centrifugal SCF.
The authors used the modified Hicks-Henne function to design
a simple arc blade, where three amplitude coefficients were
selected as input parameters for the optimization process. In
their study, only the blade profile function was optimized and
the other part of the SCF remained identical. For the numerical
calculations, a 3D incompressible RANS approach was used
with the turbulence model k-ω SST and the commercial soft-
ware ANSYS Fluent. A latin hypercube design was employed
to obtain the sets of sampling points and the NSGA-II method
was used to determine the optimal design from the Kriging
response surface. Zhou et al. [9] observed a good agreement
between the predicted values by the Kriging model and the
CFD with an average relative error of 2.74% and 2.61%
for the efficiency and flowrate, respectively. Furthermore, the
optimal design improved the efficiency by 4.21% compared to
the initial design. The authors validated also their numerical
model for the optimal design against experimental data with
a maximum error of 3.2% in terms of efficiency.

Most of the published studies that investigated and opti-
mized the SCF focused on the impeller or the volute pa-
rameters separately. Also, they used commercial softwares for
the CFD calculations and optimization like ANSYS Fluent or
CFX [2], [10], [11]. In the current study, full 3D simulations
are carried out in order to optimize the efficiency and force
applied on the impeller by using only opensource softwares.
Different geometrical parameters of the impeller and volute
are integrated simultaneously in an optimization loop using the
Latin Hypercube Sampling (LHS), CFD and metamodels. The
optimization process is also governed by an opensource soft-



ware named Dakota. The first numerical results obtained by
the Design Of Experiment (DOE) method are used to construct
a response surface of a Surrogate Based Optimization (SBO,
Metamodels). Furthermore, an advanced optimization method
named Efficient Global Optimization (EGO) is employed to
obtain the best configuration. The numerical performance of
the optimal configuration is carefully validated against a new
set of experimental data.

II. NUMERICAL MODELING

A 3D steady-state Navier-Stokes incompressible solver has
been employed by using the opensource OpenFOAM 6 li-
brairies to model and optimize the SCF performances.

A. Geometrical modelling

Figure 1 shows a 3D sketch of the SCF in Configurations
1 and 2. In both configurations, a Latin Hypercube Sampling
(LHS) has been used in the Design of Experiments (DoE)
technique. The main difference between both configurations
remains in the design of the hub. For Configuration 1, a
conical hub is constructed with a diameter and a height of
0.12 m and 0.077 m, respectively. For Configuration 2, the
hub corresponds to a cylinder with a diameter and a height
of 0.04 m and 0.066 m, respectively. The external diameter
(D2) and the height of the impeller (H2) are equal to 0.1524
m and 0.0762 m, respectively. The SCF is a 51 bladed fans
equipped with 4 digit NACA having a thickness of 2.2 mm.

Fig. 1. 3D sketch of the SCF for Configurations 1 and 2.

The SCF is placed in an open environment represented
herein by a half sphere with a diameter of Dext = 1.2 m
(Fig.2). The volute is connected to an exit duct with a diameter
and length of Dp = 0.10 m and Lp = 0.92 m, respectively.
A transition zone with a length Ltr = 0.051 m is employed
to link the volute outlet and the exit duct.

B. Numerical methods

The calculations of the flow dynamics around the SCF
are performed by a 3D steady-state incompressible Reynolds
averaged Navier-Stokes (RANS) solver named SimpleFoam
(OpenFoam 6), which was successfully applied to model the
flow around fans and turbines [12]–[14].

A fully second-order scheme is used for the spatial dis-
cretization in order to minimize excessive numerical dissipa-
tion. The Laplacian and gradient terms are discretized by a
bounded Gauss linear numerical scheme. A linear approach
is selected for the interpolation scheme. The SIMPLE algo-
rithm enables to overcome the pressure-velocity coupling. The
generalized geometric-algebraic multi-grid (GAMG) solver
with the combined Diagonal incomplete-Cholesky/Gauss Sei-
del (symmetric) smoother is selected to solve the pressure.
The preconditioned bi-conjugate gradient (PBiCG) solver with
Diagonal incomplete-LU (DILU) pre-conditioner is used to
solve the rest of the discretized equations.

The turbulent flow is modeled by the k − ω SST closure
developed by Menter [15]. It combines the robust formulation
of the k − ω Wilcox model [16] in the near wall region
and the k − ε away from the wall. Very satisfactory results
were obtained by multiple authors when using the k−ω SST
turbulence closure in different fan configurations [17]–[19],
and even better results than other two-equation models as the
k − ε family [20].

C. Numerical parameters

Fig. 2. 3D sketch of the computational domain with the boundary conditions.

The different boundary conditions of the computational
domain are shown in Figure 2. Three main regions are defined:
the rotor (impeller), the surrounding environment and the
volute with the exit pipe. The rotor region lies inside the volute
and includes the fan blades, the rotating ring and the hub.
The rotor rotating speed is set to 900 rpm. An inlet mass
flowrate condition of 0.0588 kg/s (105 cfm) is imposed at
the half-sphere surface with a turbulence intensity of 5%. The
air parameters are assumed to be constant and evaluated at
293 K. For the impeller, a no slip wall condition is imposed
at the blade surfaces, hub, rotating ring and disc plate. The
same condition is also applied on the volute and the exit pipe
surfaces. A pressure outlet is used at the pipe outlet surface
where a static pressure of 24.91 Pa is imposed. The multiple
reference frame (MRF) approach is used to model the rotation
motion of the rotor region.

Figure 3 shows different views of the unstructured grid mesh
generated by the open-source Salome library. The mesh is



composed of tetrahedral elements. Ten prismatic layers are
generated around the blades with a stretching factor of 1.1.
Different mesh refinements with factors equal to 4 and 3 are
imposed in the volute and the exit pipe, respectively. The
average total number of elements in the whole domain is
around 11.7 million cells, with 9 and 2.2 million elements
in the rotor and volute regions, respectively. The maximum
value of the wall coordinate satisfies the requirement for a low-
Reynolds number approach (y+ < 0.9). The selected mesh
parameters are obtained based on a mesh convergence study.

Fig. 3. Views of the mesh distribution: (a) front; (b) rear; (c) lateral.

Each RANS calculation took approximately 1-2 days using
32 processors (AMD Opteron 6172). During all the optimiza-
tion process, around 4736 processors were used for a total time
of 296 days. The convergence is achieved when: (i) the global
fan efficiency deviation between two subsequent iterations gets
below 0.1%; (ii) all residuals are lower than 10−7; and (iii)
the mass imbalance is lower than 10−6. A relaxation factor of
0.3 was used for the velocity components, k and ω.

III. OPTIMIZATION PROCESS AND METHODS

A. Optimization loop

The optimization procedure is displayed on Fig.4. Initially,
the design space is determined by the selected input parameters
and their minimum and maximum bounds. In Configurations
1 and 2, five input parameters are selected, while in Configu-
ration 3, two more design parameters are added to expand the
design space of Configuration 2. The input variables are:

1) D1/D2 is the ratio between the wheel interior diameter
and the wheel external diameter;

2) β1 is the blade leading edge angle (angle of attack);
3) β2 is the blade trailing edge angle (outlet angle);
4) Rc/D2 is the ratio between the cutoff radial position

and the wheel external diameter;
5) θc is the cut-off angular position;
6) D2 is the wheel external diameter;
7) rc/D2 is the ratio between the cutoff radius and the

wheel external diameter.
The different input variables are introduced in Dakota and

a DOE is conducted by using LHS. The LHS is a stratified

TABLE I
DESIGN PARAMETERS WITH LOWER AND UPPER BOUNDS OF THE DESIGN

SPACE.

Design parameters lower bound upper bound
D1/D2 [-] 0.8 0.9
β1 [◦] 85 110
β2 [◦] 25 35
Rc/D2 [-] 0.556 0.620
θc [◦] -35 -10
D2 [m] 0.1524 0.1587
rc/D2 [-] 0.05 0.065

Fig. 4. Optimization loop process for the LHS method.

sampling method where the uncertain variable range is divided
into N parts (segments) with equal probability. A random
sample is selected from each of the equal probability segments.
The N values for each of the selected parameters are combined
in a shuffling operation to construct a set of N parameter
vectors with a specified correlation structure. The LHS method
has the advantage to require fewer samples than the traditional
Monte-Carlo method for the same accuracy in statistics.

As the LHS technique is run by Dakota, a set of input
parameters variables are defined. In the next step, Salome
is loaded and the entire computational domain is created
automatically based on Python scripts. As the geometry is
constructed, a Python script is used to check any irregularity in
the geometry. In the next step, the Salome mesh library is used
and a Python script with all the mesh parameters is executed
in order to generate the unstructured mesh. A CheckMesh
function of OpenFOAM is used in order to ensure the mesh
quality. After, all the calculations are run simultaneously on
a cluster. Once accomplished, a post-processing is executed
to extract the objective functions herein: the global efficiency
and the forces applied on the impeller.

B. Metamodel approach

The optimal design obtained by the LHS method represents
the best configuration over limited design points. In order to
explore the entire design space and to confirm or find another
optimal design, a metamodel (Surrogate-Based Optimization
SBO) has to be constructed. The metamodel construction
process is displayed in Fig.5. Multiple surrogate models are
used in the design optimization such as radial basis functions,
polynomial regression, neural networks, etc. In this study,



Fig. 5. Metamodel (surrogate based) optimization workflow.

the Kriging metamodel is selected to its ability to predict
accurately the efficiency on axial and centrifugal fans [21] and
to model different function typologies. The Kriging surrogate
(Gaussian process) is based on the achievement of a Gaussian
stochastic process to the modeled objective functions. Math-
ematically, the Kriging function prediction at a point (design
parameter) x is defined as:

f̂(x) = µ̂+ ψR−1(Y − 1µ̂) (1)

where µ̂ is the maximum likelihood estimator of the random
field mean and f̂(x) is the predicted objective (response)
function for the variable x. Y represents a set with a dimension
N of the calculated data and is expressed as follows:

Y = [f(x(i))...f(x(N))] (2)

f(x) represents the value obtained by CFD at the design points
(x) selected by the LHS method. ψ in Eq.1 is a vector with a
length N representing the basis functions. The basis functions
ψ are weighted by the term R−1(Y − 1µ̂), where R is the
N ×N correlations matrix among the design points.

In addition to the different metamodels, the efficient global
optimization (EGO) method is also applied to predict the
objective functions. The EGO has been developed by Jones
et al. [22] and is based on the Kriging metamodel. The EGO
model contrary to the surrogate model has the ability to select
the next sample point with the maximum probability that the

global minimum exists in the design space. The probability is
defined as an expected improvement (EI) function:

E(I(x)) =
(
fmin − f̂

)
Φ

(
fmin − f̂

s

)
+ sφ

(
fmin − f̂

s

)
(3)

where fmin is the obtained minimum value from the CFD
calculations, f̂ is the predicted value by the Kriging model.
The parameter s is the standard error at x. φ(.) and Φ() are the
standard normal density and distribution function, respectively.
I(x) is the improvement at the point x defined as:

I(x) = max
[
(fmin − f̂(x)), 0

]
(4)

The iterative process will continue until a global minimum
is found and validated against the CFD results. A convergence
tolerance of 10−2 is selected for the efficiency and the force
applied on the wheel. Contrary to standard metamodels, the
EGO approach needs more computational resources to con-
verge toward an optimal design.

IV. RESULTS AND DISCUSSION

In this section, the results of the optimization process
by using LHS and metamodels are presented for the three
configurations.

A. Performance comparison

The optimal value of the efficiency and Fxy are determined
after completing all the optimization process for the LHS
approach and constructing the surrogate models according to
the charts displayed in Figures 4 and 5. The optimization
objective is to minimize Fxy in order to avoid any mechanical
damage and to maximize the SCF efficiency.

All the predicted values of the objective functions by the
different methods are presented in Table II. In Configuration
1, the Kriging model predicts with accuracy the efficiency and
Fxy values with errors of 2.16% and 8.4%, respectively. The
major source of error is essentially due to its limitation in
complex responses, where the flow is highly turbulent with 3D
vortices interacting with the impeller blades. The application
of the EGO based on the Kriging metamodel allows the
improvement of the efficiency and Fxy by 2.35% and 5.71%,
respectively, compared to the optimal LHS design. The EGO
method converges after 10 iterations. As the design space is
expanded by the EGO approach compared to the Kriging,
the probability to find an optimal design which meets the
objective function requirements is increased. In Configuration
2, by using the Kriging model and EGO, the initial optimal
design obtained by the LHS is improved in a short time and
few calculation resources with an improvement of 2.63% and
28.45% for the efficiency and Fxy , respectively. As in Configu-
ration 1, the optimal design with the EGO model improves the
objective functions specifically Fxy by 11.49% compared to
the Kriging model validation. In Configuration 3, the Kriging
model provides an accurate prediction with errors of 1.13%
and 8.15% for the efficiency and Fxy , respectively. The EGO



TABLE II
SUMMARY OF THE PREDICTED OBJECTIVE FUNCTION VALUES BY THE

DIFFERENT MODELS FOR THE THREE CONFIGURATIONS.

model provides an optimal design with an improvement of
the efficiency by 3.27% and 4.22% compared to the Kriging
OpenFOAM (OF) validation and LHS, respectively.

B. Mean flow field

Fig. 6. Distribution of the mean velocity magnitude U (m/s) on plane 1
(x = 0, y = 0,z = H2/2) for Configurations 1, 2 and 3.

Figure 6 displays the 2D contours of the mean velocity
magnitude U (m/s) on plane 1. Plane 1 is located at the mid-
span of the SCF (x = 0, y = 0,z = H2/2). For Configurations
1 and 2, a flow separation is observed on the leading edge of
multiple blades located toward the outlet (transition), followed
by a flow acceleration near the trailing edge region. The flow
acceleration region is also observed in Configuration 3. This
acceleration is mainly due to the rotating acceleration by the
impeller. Near the cut-off, a recirculation region is observed for
Configuration 1. However, in Configuration 2, the recirculation
region is shifted near the blades. The displacement of the
recirculation region is due to the narrower cut-off angle and
larger exit surface. In Configuration 3, a small recirculation
is observed near the cut-off region. In the hub region, all the
configurations show a comparable U distribution.

To confirm the flow separation around the blades and near
the cut-off, the relative total pressure (Pa) is investigated in
plane 1 on Fig.7. The relative total pressure is obtained by
subtracting the atmospheric pressure at the ambient conditions.
The total pressure distributions for Configurations 1 and 2
confirm the observed vortex in Figs 6. The negative spot
between the cut-off and the blades in the exit region represents
the strong vortex rotating motion. However, in Configuration
3, the negative spot is significantly reduced due to the wide
and small cut-off angle and radial position, respectively. Fur-
thermore, the flow around the blades in Configuration 1 is
mostly attached except near the upper region where a flow

Fig. 7. Distribution of the total pressure (Pa) on plane 1 (x = 0, y = 0,z =
H2/2) for Configurations 1, 2 and 3.

separation is observed. The same mechanism is also observed
in Configurations 2 and 3. For all configurations, a depression
is observed in the trailing edge at the upper impeller region.
The negative spot disappears gradually as the blades rotate,
due to the advection of the trailing edge vortex.

Fig. 8. Distribution of the static pressure P (Pa) on the impeller blades in
a lateral view, for Configurations 1, 2 and 3.

In order to investigate the effect of the observed vortex on
the flow around the blades, the parietal distribution of the static
pressure on the impeller is presented in Fig.8. The impeller is
oriented towards the volute exit. In Configurations 1 and 2, the
flow is separated for multiple blades all along the height due to
the strong interaction with the 3D vortex (Fig.7). However, in
Configuration 3, the flow is separated along few blades, mostly
in the tip region. As the flow is more attached along the blades
in Configuration 3, the produced efficiency is higher.

C. Validation

As the SCF in Configuration 3 produced the best objective
functions, a new experimental prototype was constructed. The
static pressure and voluminal flowrate are quantified for the
experimental prototype and compared to the numerical results.
The SCF is connected to a pipe as in the computational domain
(Fig.2). The diameter and length of the pipe are equal to
0.10 m and 0.92 m, respectively. The experimental procedure
consists of measuring the generated flowrate by fixing the
rotation speed of the fan and the pipe outlet pressure. The
outlet pressure was controlled by varying the effective surface
at the exit. The outlet pressure and velocity are measured by a
manometer with an accuracy of ±1% and ±3%, respectively.

Figure 9 represents the experimental and numerical values
of the pressure drop ∆p for different flowrates at a constant
rotating speed of the fan (900 rpm). ∆p is the average pressure
difference between the outlet and the inlet. At the design point,
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Fig. 9. Pressure drop ∆p of the fan as a function of the voluminal flowrate.

a good agreement is observed between the simulated and the
experimental data with a discrepancy of 3.4%. The maximum
error between the numerical approach and the experimental
results is 5.1% for 90 cfm.

V. CONCLUSION

This paper reported numerical results of the optimization
process of an SCF, using opensource libraries. A complete
automatic optimization loop was developed using Dakota,
Salome for the geometry and mesh, and OpenFOAM for the
numerical simulations. LHS and metamodels were selected to
reduce the design points and expand the design space. Three
configurations were tested with up to 7 design parameters.

The optimal design was obtained for Configuration 3 based
on the EGO approach. By adding the two design parame-
ters D2 and Rc/D2, the efficiency was improved by 4.1%
compared to Configuration 2. Using a conical shape of the
hub leads to a decrease and increase by 6% and 2% of
the efficiency and Fxy , respectively. The distributions of the
average velocity magnitude U showed the existence of a strong
vortex between the cut-off and the impeller. The generated
vortex leads to a total pressure decrease and forces the flow
separation on the blades. The parietal static pressure confirmed
the flow separation on multiple blades in Configurations 1 and
2. However, in Configuration 3, the separation region is mainly
concentrated in the tip region.

Future works should integrate the variation of the blade
profile along the span and the extension of the objective
function by adding the radial forces and generated sound.
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[19] A. Theis, T. Reviol, and M. Böhle, “Analysis of the Losses in an Axial
Fan With Small Blade Aspect Ratios Using CFD-Technique and Laser
Doppler Anemometry,” ser. Proceedings of ASME Turbo Expo: Power
for Land, Sea, and Air, vol. 2A: Turbomachinery, Virtual, 2020.

[20] A. E. Benchikh Le Hocine, J. R. W. Lacey, and S. Poncet, “Turbulent
flow over a D-section bluff body: a numerical benchmark,” Journal of
Environmental Fluid Mechanics, vol. 19, pp. 435–456, 2018.

[21] X. Wu, B. Liu, N. Ricks, and G. Ghorbaniasl, “Surrogate models
for performance prediction of axial compressors using through-flow
approach,” Energies, vol. 13, no. 1, p. 169, 2019.

[22] D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of
expensive black-box functions,” Journal of Global Optimization, vol. 13,
pp. 455–492, 12 1998.


