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Abstract—The influence of Earth’s rotation on the structure
and mixing of internal hydraulic jumps is studied by means of
three-dimensional numerical simulations with varying values of
the Coriolis parameter. The Navier-Stokes equations with vertical
density stratification are solved numerically for an incompressible
fluid. The flow structure varies across the width of the channel
due to rotation. In particular, different jump structures are
observed at positions across the width of the channel. Mixing
also changes as a result of rotation, with larger mixing values
occurring at lower rotation rates and on the left side of the
channel (when looking in the direction of flow).

Index Terms—internal hydraulic jump, Rossby radius of de-
formation, Coriolis parameter, rotation, mixing.

I. INTRODUCTION

Hydraulic jumps are a phenomenon in which the depth
of a layer of the flow changes suddenly, causing the flow to
transition from supercritical (Fr > 1) to subcritical (Fr < 1),
dissipating energy and converting part of the kinetic energy
of the flow into potential energy. Because of their often
highly turbulent and agitated nature, large eddies can form
in the jump region that make hydraulic jumps very effective
in dissipating mechanical energy and in mixing the fluids
involved in such flows (an example being the introduction
of air bubbles in open-channel flows with surface hydraulic
jumps, or mixing fluid properties in internal hydraulic jumps).
The occurrence of a hydraulic jump largely depends on the
initial velocity of the flow; for subcritical flows, a jump
would not occur, and as the velocity increases to supercritical
with respect to the surface or interfacialinternal wave speeds,
different types of waves and hydraulic jumps can be observed.
Jumps may be held stationary by topography, or they might
propagate, as in the case of a tidal bore [2]. Hydraulic jumps
may exhibit various jump structures, such as a smooth undular
(wave-like) jump, or a turbulent jump with overturns [8].

In open-channel flows, hydraulic jumps are prominent both
at the free-surface and in the density interfaces of stratified
fluids, called internal hydraulic jumps. Internal hydraulic
jumps have been observed in nature both in open channels
such as the Straight of Gibraltar, Knight Inlet, and Hood
Canal [1], [5], [6], [11] and in compressible flows such as
the flow past the Nevada mountain range where changes
in properties such as transitions in pressure and potential
temperatures were attributed to hydraulic jumps [15]. Several
studies have predicted the factors that would lead to the

formation of a turbulent hydraulic jump on a continuously
stratified flow for a rigid bottom [14], [15] as well as flows
over large amplitude topographies [13].

The theory of hydraulic jumps in the interior density
surfaces of a stratified fluid has been discussed in previous
papers using various two-layer approximation theories with
shock-joining models to match upstream and downstream
conditions [3], [4], [12]. These theories do not take into
account the internal hydraulics of the jumps, and they use
the principles of conservation of mass and momentum flux
across the hydraulic jump; however, different theories arise
as a consequence of assumptions made on how the energy
loss is distributed between the layers. Wood and Simpson [3]
proposed a model where energy conservation happened in
the contracting layer, while Klemp et al [4] postulated that
energy be conserved in the expanding layer. These theories
were used by Ogden and Helfrich [8] to study the effect
of upstream shear in flows with hydraulic jumps. Upstream
shear becomes important in flows over topography, which
is common in hydraulic jumps in the environment. Ogden
and Helfrich [8] also present numerical simulations of the
Navier-Stokes equations that account for non-hydrostatic
processes, turbulence, and mixing in the transition from
supercritical to subcritical flow. These simulations revealed
that the different two-layer theories are suitable for different
values of shear, and that strong mixing between the two
layers, and entrainment in the case of jumps with large
upstream shear, occurs, but is not captured by the theory [17].

Hydraulic jumps in continuously stratified flows have been
studied observationally, for example by Gregg and Pratt
[11], who reported on a possible jump in Hood Canal. They
found hydraulic responses that resemble hydraulic jumps
downstream of a prominent sill. Although their observations
regarding a hydraulic jump in the lee of the sill in Hood
Canal are not conclusive, Gregg and Pratt agree that more
idealized simulations of Hood Canal that take into account
the geometry of the topography and the time dependence are
necessary for clarification. The effect of rotation is apparent
in their observations, motivating the current study.

The effects of rotation in the formation of internal hydraulic
jumps have been studied previously. Pratt et al. [10] considered



flow over a steady obstacle on an infinite, rotating channel
where a hydraulic jump was found to have developed in both
the depth and the stream width. They also observed that a
jump formed that resembled a Kelvin wave, with it having a
larger amplitude on the left-side wall and decaying along the
width of the channel. Numerical simulations by Pratt [9] have
also revealed a similar structure for a rotating hydraulic jump,
with the amplitude of the jump changing over the width at
an order of the global deformation radius. Although extensive
studies have been done in rotational hydraulics, most of them
focus on single layer flows. There is a need to expand the
exiting knowledge of the internal hydraulics of continuously
stratified flows to include the effects of rotation. This work
investigates how Earth’s rotation influences the structure and
the mixing of internal hydraulic jumps in channel flows.

II. GOVERNING EQUATIONS

The current work extends the study on non-rotating internal
hydraulic jump in two-layer flows by Ogden and Helfrich
[8] to investigate the effect of rotation. Ogden and Helfrich
[8] compare the theoretical solution of hydraulic jumps
with upstream shear to numerical results obtained from 2D
and 3D simulations of an imposed hydraulic jump at the
interface of a continuously stratified fluid. The simulations
are three-dimensional and were conducted using the CFD
code Gerris, with an isotropic grid composed of 128 points
in the vertical direction.

Gerris is an open-source CFD tool that combines the use of
quad/octree discretization, a multilevel Poisson solver used for
solid boundaries in combination with a cell-merging technique
for advection schemes, and a projection method used for
uniform grids [16]. This tool was chosen for this work because
it allows the meshing of complex boundaries, such as the
existence of a topography at the bottom of the domain, by
using mixed cells that are cut by the solid boundary [16].
This modelling tool is used to solve the incompressible Navier-
Stokes equations applied to the motion of a thin layer of fluid
on the rotating earth. The Boussinesq approximation is also
used for the density stratification of the fluid. The governing
equations are

∇ · u = 0, (1)

∂u
∂t

+u ·∇u = − 1

ρ0
∇p+ν∇2u+

g(ρ− ρ0)

ρ0
k−2Ω×u, (2)

∂ρ

∂t
+ u · ∇ρ = κ∇ρ, (3)

The velocity vector u is broken into the cartesian
components u in the allong channel direction, v in the
transverse direction, and w in the vertical direction. The
expression g(ρ−ρ0)

ρ0
is the reduced gravity g′ and κ is the

density diffusivity.

The Coriolis force can be expressed in terms of the Coriolis
parameter f as

(2Ω × u)x = −(2Ωsin(θ))v = −fv (4)

(2Ω × u)y = (2Ωsin(θ))u = −fu (5)

(2Ω × u)z = −(2Ωcos(θ))u (6)

with the Coriolis force in the z-direction assumed to be
negligible when compared to the other terms in the right hand
side of the z-momentum equation.

The effects of rotation in the flow are determined by the
rotation parameter f and the width of the channel when
compared to the Rossby radius of rotation, which defines the
width at which rotational effects are relevant when compared
to buoyancy effects. For a continuously stratified medium, the
Rossby radius is given by

LR,n =
NH

nπf0
, (7)

where H is the lengthscale, n is the mode of the jump (with
mode one jumps being the primary focus of this work), and
N is the Brunt-Väisälä, or buoyancy, frequency and is given
by

N2 = − g

ρ0

dρ

dz
, (8)

and it describes the frequency at which a displaced parcel of
fluid would oscillate in the vertical direction in a stratified
fluid.

Considering the flow’s domain, the expression dρ becomes
(ρmax − ρmin), and dz is the height of the domain H . This
leads to the following expressions for the buoyancy frequency
and Rossby radius

N2 = − g
′

H
,LR,n =

Ū

πf0
, (9)

where g′ is the reduced gravity and Ū =
√
g′H is the

velocity scale. When the width of the channel is comparable
or larger than the Rossby radius of deformation, the effects
of rotation are expected to be non-negligible.

III. DOMAIN OF SIMULATION AND COMPUTATIONAL
METHOD

The domain of the simulation is illustrated in figure 1. An
approximately two-layered flow moves into the domain from
the inlet on the left side. A smooth increase in the depth of
the lower layer is initially imposed, which will developed
into a hydraulic jump as the simulation progresses. There is
a topographic bump near the outlet on the right side, which
transitions the flow to supercritical so disturbances do not



reflect off the outlet and propagate back into the domain.
The top of the domain is approximated as a rigid lid because
surface level variations are typically much smaller than the
size of the internal hydraulic jump.

The governing equations are nondimensionalized using the
upstream lower layer depth d1a as the length scale,

√
g′d1a as

the velocity scale, and
√
d1a/g′ as the time scale. The two-

layer Boussinesq limit of the problem can be fully described
by four non-dimensional parameters in the frame of reference
moving with the jump: the upstream lower layer velocity U0,
the upstream velocity difference between layers s, the total
depth of the domain r−1, and the lower layer downstream
depth R [8], and they are nondimensionalized as

U0 =
u1a√
g′d1a

, s =
u1a − u2a√

g′d1a
, r−1 =

D

d1a
, R =

d1b
d1a

.

(10)

Fig. 1. Domain of simplified simulations

The domain is a rectangular channel and extends in the
horizontal direction from x = 0 to x = 16r−1, in the vertical
direction from z = 0 to z = r−1, and finally, in the transverse
direction from y = 0 to y = r−1. The topography near the
outlet occurs well after the jump, and is therefore not shown
in plots of the resulting flow. The simulation is initialized
with a smooth transition region that develops into an internal
hydraulic jump. The initial non-dimensionalized velocity field
is given by

u(x, z, t = 0) =
U0

d1(x)
+
∂u(x)

2
(1− tanh[λ(z − d1(x))])

(11)
where d1(x) is the interface location and is given by

d1(x) = 1 +
R− 1

2

(
1 + tanh

[
(x− x0)

L

])
(12)

and ∂u(x) is the velocity jump between the layers, given by

∂u(x) =
U0

d1(x)
− (r−1 − 1)(U0 − s)

r−1 − d1(x)
(13)

with xo marking the initial location of the imposed transition.

The initial density field is given by

b(x, z, t = 0) =
1

2
(1− tanh[λ(z − d1(x))]). (14)

Simulation Name f R r s U0

rotation-b 0.025 3.4 0.1 1 2
rotation-c 0.05 3.4 0.1 1 2
rotation-d 0.1 3.4 0.1 1 2

TABLE I
PARAMETERS OF THREE-DIMENSIONAL SIMULATIONS

The initial vertical velocity has a no penetration boundary
condition at the top and bottom of the domain, which are
considered free-slip surfaces, and it satisfies the continuity
equation within the interior. The inlet boundary conditions
are defined by equations 11 and 14 evaluated at the position
where x = 0. At the outlet of the domain, a Neumann
condition is applied to the density and velocities with the
pressure being hydrostatic. This allows the flow to propagate
out of the domain. The topographic bump near the outlet
transitions the flow back to supercritical, preventing waves
from reflecting off the outlet boundary back into the domain.
The refinement at the outlet of the domain is coarser with 64
cells in the vertical direction in order to diffuse waves ahead
of the open boundary. The size of the time step is selected
such that the CFL number is kept at a value no larger than
0.75 for all simulations. The viscosity ν and diffusivity κ are
not defined explicitly for any of the simulations on the current
work; instead, the code uses an implicit LES method wherein
the numerical error associated with the computational scheme
effectively parameterizes the turbulence.

The initial smooth transition develops into an internal
hydraulic jump. Once the jump is fully developed, the time
average of the flow can be analyzed. The jump front remains
relatively stationary when compared to the simulation results
of [8], but the reference frame is adjusted to account for
movement of the jump, and the jump is analyzed in the frame
of reference moving with the jump.

This work focuses on the results of three simulations with
varying rotation rates, f . The simulations are summarized in
table I, which shows the non-dimensional rotation rate, f ,
and the four non-dimensional parameters that fully describe
a non-rotating internal hydraulic jump mentioned previously.
For each simulation, the parameters other than the rotation
are kept constant so the effect of rotation can be determined.
The results for the 3D simulations are analyzed at different
x−z slices corresponding to different values of y, or positions
across the width of the channel, because the flow is expected
to vary across the transverse direction due to the effects of
rotation.

IV. RESULTS AND DISCUSSION

A. Interface Height

As noted, the flow in each simulation is analyzed at three
distinct locations across the length of the domain: y = 2,
y = 5, and y = 8. These points correspond to locations near
the side boundaries and at the centre of the channel because



previous work by Pratt [9] and Pratt et al [10] have shown
that the behaviour of the flow varies across the width of the
channel, and the properties of the hydraulic jump are expected
to vary in the same direction due to the influence of rotation.
The selected slices are chosen to represent the behaviour
across the entire channel, which extends from 0 ≤ y ≤ 10.
However, a three-dimensional representation of the jump is
also provided in Fig 2, which shows an isopycnal surface
colored by the downstream flow velocity. The height of the
downstream interface for a fully developed jump, R̃(x), is
used to conduct a qualitative analysis of the jump structure.
The interface location is defined as

R̃(x) =

∫ r−1

o

ρ(x, z)− ρmin
ρmax − ρmin

dz. (15)

Fig. 2. 3D instantaneous hydraulic jump for rotation d (with f = 0.1)
at t = 200 (at the end of the averagving period). An isopycnal surface of
T = ρ−ρmin

ρmax−ρmin
is plotted, colored by the horizontal component of velocity,

u.
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Fig. 3. Averaged interface heights along the channel for each of three positions
across the channel width for a) rotation-b; b) rotation-c; c) rotation-d;

When analyzing the interface at the selected y positions,
it is apparent that the flow banks towards the right side of

the channel (for an observer looking in the direction of the
flow), as expected for a flow in the northern hemisphere. The
cross-channel variation in the lower layer depth upstream of
the jump increases with the value of the rotation parameter
f , with little change for the simulation with f = 0.025,
and increasing variation as f increases to 0.05 and then
0.1. The height of the interface downstream of the jump
also varies across the width of channel more significantly
at higher rates of rotation, as shown in Fig 3. By taking an
average of the interface height downstream of the jump for
each cross-channel position, the difference in jump height
across the width of the channel can be calculated (very
small for rotation b (f = 0.025), 0.610 for rotation c
(f = 0.05), and 0.894 for rotation d (f = 0.1)). This
difference in jump height variation across the width of the
channel can be attributed solely to the increasing value
of rotation since no other parameters have been changed
in the simulations illustrated in Fig 3. Increasing the
value of rotation results in more variation in the depth of
the denser fluid upstream of the jump (and therefore in
the lower layer upstream velocity as well), which results in
a wider range of jumps heights across the width of the domain.

B. Qualitative Types of jumps

Ogden and Helfrich [8] identified four different qualitative
types of jumps that may developed from flows with positive
shear (s > 0; the expanding layer moves faster than the
contracting layer), namely Undular Bores (UB), Smooth
Front Turbulent Jumps (SFTJ), Fully Turbulent Jumps (FTJ),
and Conjugate-state transitions (CS). The main characteristic
of UBs is a train of solitary-like waves which decrease in
amplitude until a uniform lower layer depth, which is larger
than the upstream depth, is achieved; these jumps are also
characterized by small amounts of mixing. The SFTJ presents
as a smooth wave-like front with a small counter-clockwise
recirculation region just downstream of the bore front, and
a moderate amount of mixing is associated with these jump
types. The FTJ features an overturning leading edge, and
as in the case of the SFTJ, the region downstream of the
bore front is fully turbulent with considerable amounts of
mixing. CS transitions are smooth wave-like transitions which
conserve energy across the jump.

In addition to the differences in the interface height across
the width of the channel, the simulations in this work present
several of these hydraulic jump structures. Distinct qualitative
jump types may form at different positions across the width
of the channel, within a single jump. The jump types are
apparent in the time averaged density fields at different x− z
slice, shown in Fig 4. In rotation b (f = 0.025), a SFTJ
forms at y = 2, but the jump structure transitions to CS
jump followed by a fully turbulent secondary jump by y = 5;
this structure persists at y = 8. An UB with some shear
instabilities at the interface forms along the right-most slice
of the channel (y = 2) in rotation c (f = 0.05); the jump
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Fig. 4. Averaged density fields in x-z slice of domain. (a-) rotation b (f =
0.025) averaged from t = 300 − 351; (b-) rotation c (f = 0.05) averaged
from t = 300−350; (c-) rotation d (f = 0.1) averaged from t = 100−200.
(-1) at y = 2; (-2) at y = 8.

structure transitions to a FTJ by y = 5, persisting at y = 8.
In rotation d (f = 0.1), an UB forms at y = 2, whereas the
jump structure is a SFTJ at y = 5 and y = 8. The change in
jump structure across the width of the jump can be explained
by the variation in the upstream conditions across the width of
the jump. Due to the changing upstream conditions, the jump
height increases toward the left side of the channel (when
looking in the direction of the flow), and the jump structure
changes accordingly as described in the classification of jump

structures by Ogden and Helfrich [8].
The shock joining theories discussed in [8] are used here to

predict the jump height of the hydraulic jump at each position
across the width of the domain. For each x− z slice, the four
non-dimensional parameters that describe the jump, r, s, U0,
and R are calculated and compared to the theoretical solution
curve for specified r and s, which shows how the jump height
R is expected to depend on the upstream lower layer velocity,
U0. Curves for each of three theories are shown; the theories
differ by the layer in which energy is assumed to be dissipated.
The simulation results are in reasonable agreement with the
theories as presented for jumps with upstream shear by Ogden
and Helfrich; for low values of shear (including all simulations
discussed in detail here), larger jumps (R̄ > 3) were better
predicted by the KRS theory (Fig 5).

a)
1 1.5 2 2.5 3

U0

2

4

6

8

10

R
b)

1 1.5 2 2.5 3
U0

2

4

6

8

10

R

Fig. 5. Theoretical solution space and numerical simulation results at r = 0.1:
a) rotation c; b) rotation d. − ·−KRS;−V S;−−WS. Figures shows
the jump analysed at y = 2.

C. Mixing

Identifying how the mixing of an internal hydraulic jump
is affected by Earth’s rotation is one of the main goals of
this work. Turbulent mixing is one of the most important
consequences of an internal hydraulic jump and it is respon-
sible for dissipating energy in the flow and redistributing
the fluid properties across the layers. The total amount of
mixing is quantified here using the cumulative integral of the
vertical component of the scalar variance production term in
the turbulent scalar variance equation [7]:

P =

∫ x

0

∫ r−1

0

wT
∂T

∂z
dz dx (16)

where T = ρ−ρmin

ρmax−ρmin
is the turbulent fluctuation of the scaler

(in this case density) and u is the turbulent velocity fluctuation.

This expression is used to calculate the amount of vertical
mixing at each position across the width of the domain for
each simulation. The cumulative integral of scalar variance
production for different positions across the width of the
domain is given on Fig 6. The cumulative integral of scalar
variance is averaged in a region downstream of the jump to
calculate a value representing the total mixing across the jump.
This region is indicated with a grey bar in Fig 6. The values
of P and the variation with position across the domain and
with rotation rate are summarized on Fig 7, which shows that
mixing increases to the left (when looking in the direction of
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Fig. 6. Cumulative integral of the vertical component of scalar variance
production, wT ∂T

∂z
. (a-) rotation b (f = 0.025); (b-) rotation c (f = 0.05);

(c-) rotation d (f = 0.1), all for at y = 8. The gray bar indicates the values
that are averaged to calculate the total mixing for the jump.

flow), and mixing decreases with increasing rotation. This is
consistent with the smaller jumps and lower turbulence jump
structures (UB vs. SFTJ or SFTJ vs. FTJ) that form closer to
the right wall of the channel.
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Fig. 7. Scalar Variance Production for different rotation parameters at different
y values. On the x-axis: rotation b (f = 0.025); rotation c (f = 0.05);
rotation d (f = 0.1).

V. CONCLUSION

The effects of Earth’s rotation on an internal hydraulic jump
can be analyzed by considering the qualitative structure of the
jump, how well the jump compares to existing two-layered
theories, and how the mixing varies across the jump. The flow

in the rectangular channel banks to the right with the difference
in upstream lower layer depth across the width of the channel,
which occurs and increases with rotation rate, resulting in
different jump structures forming across the width of the
channel. The amount of mixing varies across the width of
the channel according to the qualitative jump type, with more
turbulent jump structures producing more mixing. However,
increasing the rotation rate reduces the amount of mixing.
More simulations covering a wider range of values of rotation
would help solidify these observations. The jump that forms
at a specified position across the width of the channel (a
specified y value) can be analyzed and compared to existing
two-layered theories for jumps without rotation; however, it is
important to understand how the jump’s structure and mixing
vary across the width of the channel. These results could be
used to interpret observations that are frequently made along
a single section (y value) of a channel.
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