Bubble suspension in yield-stress fluids

Emad Chaparian^{1,2*}, Ian Frigaard^{1,2}

¹ Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada ² Department of Mathematics, University of British Columbia, Vancouver, Canada *emad@math.ubc.ca

ABSTRACT

Gas emissions from tailings ponds is one of the environmental challenges of oil sands production. In a stratified pond, the fine fluid tailings (FFT) forms a layer which does not appear to consolidate significantly over timescales of 10-100 years. The bulk rheology of this layer exhibits yield stress [1]. Hence, here we study the conditions for a bubble to be statically buoyant in a yieldstress fluid without any motion. The key parameter is the yield number $Y = \tau_y/(\Delta \rho g l)$, which represents the ratio of the yield stress to the buoyancy stress (*l* is the volumetric radius of the bubble). The goal is to compute the critical yield number Y_c for a single bubble with different shapes for a wide range of surface tensions: if $Y < Y_c$ then the bubble rises and if $Y \ge Y_c$ then the yield stress suppresses the flow and makes the bubble static.

We previously demonstrated that particles which are close enough can form clusters in a yield-stress fluid and move together which can tremendously increase Y_c in a suspension [2]. Here, the aim is to shed light on how the bubbles feel their neighbors and interact, and hence to evaluate Y_c for a suspension (or cloud) of bubbles as a function of volume fraction ϕ . We perform 2D computations in a full periodic box with randomized position of the monodispersed circular bubbles. A large number of realizations are investigated to obtain statistically converged results. The results show that $Y_c(\phi)$ is a linear function for $\phi < 20\%$.

Acknowledgement This research was made possible by funding from NSERC and COSIA/IOSI (project numbers CRDPJ 537806-18 and IOSI Project #2018-10).

[1] Derakhshandeh, Rheol. Acta 55, 749 (2016).

[2] Chaparian et al., Phys. Fluids 30, 033101 (2018).