
1 
 

Proceedings of the Canadian Society for Mechanical Engineering International Congress 2021 

CSME Congress 2021 

June 27-30, 2021, Charlottetown, PE, Canada 

 

 

Dynamic simulation of a roller bearing by combining finite element and 

lumped parameter models 

Ali Safian1, Nan Wu1, Xihui Liang1* 
1Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada 

*Xihui.Liang@umantioba.ca 
 
 

Abstract— Bearing dynamic modeling is an appropriate 
method for understanding the dynamic behavior of the bearing 
for different purposes such as fault diagnosis. In previous 

studies, the majority of researchers have focused on simulating 
accurate acceleration signals since accelerometer sensors are 
typically used for fault diagnosis in industries. Currently, there 
is a significant trend toward using strain sensors for the 
application of bearing load measurement and fault diagnosis. 
Recent studies have shown that measurement of strain signal 

is less subjected to mechanical noise compared with 
accelerometer sensors. Therefore, in this paper, a bearing 
dynamic model by combining lumped-parameter and finite 
element method is proposed which both accurate acceleration 
and stress/strain distribution can be obtained. Compared with 
previous combined analytical and finite element models, more 

accurate assumptions such as a flexible pedestal, accurate 
contact stress distribution, and defect geometry are included in 
the model which increases the accuracy of the results. In this 
model, a lumped-parameter model is developed for a 
cylindrical roller bearing in MATLAB® R2018. The contact 
forces of the rollers are exported into ANSYS APDL for a 

transient analysis. Due to considering a flexible pedestal for 
the bearing, a more realistic acceleration signal with a lower 
amplitude than the rigid model is achieved through the 
proposed model. Also, accurate surface/subsurface stresses are 
simulated due to considering contact pressures rather than 
concentrated forces. Overall, the proposed finite element 

model is a computationally efficient and accurate method for 

both vibration and stress/strain analysis.  

Keywords-Bearing defect; finite element; condition monitoring; 

lumped parameter model 

I.  INTRODUCTION 

The majority of rotating machinery includes rolling element 
bearings, which play a vital role in controlling the smooth 
rotation of the shaft. Bearings are always prone to defect due to 
contact and friction among their subcomponents, and it is very 
important to identify their defects at the incipient level. This 
provides enough time to take maintenance actions in the early 
stages to prevent fault progression and abrupt failure [1]. To 
have a better understanding of the bearing dynamic at a 

defective and non-defective level, numerous researchers have 
developed and modified bearing dynamic models besides their 
experimental studies. 

Multi-body dynamic is the most common type of 
simulation for bearings that mass, stiffness, and damping of the 
bearing components are considered to create accurate 
interaction among them. In some cases, the components of the 
bearings, such as the inner/outer ring and rolling element, are 
modeled by rigid masses, known as lumped parameter model 
(LPM). Another approach is using finite element method 
(FEM) that the bearing dynamic can be modeled by deformable 
components [2]. As a few examples for bearings LPM, 
Sopanen and Mikkola [3] developed a bearing LPM by 
including various parameters including surface roughness, 
waviness, local fault, distributed fault, and the effect of 
elastohydrodynamic lubrication (EHL). Sawalhi and Randall 
[4] established a 34-DOF combined gear/bearing lumped 
parameter model in which different types of faults on the main 
components of the bearing were modeled, such as inner race, 
outer race, and rollers. 

Generally, LPM is an effective method with a low 
computation time that analytically proves the dynamic of 
bearings. However, the most important output of the bearing 
LPM is the acceleration signal, which means that new findings 
and enhancements are just limited to the situation that 
accelerometer sensors are being used for condition monitoring. 
However, the major disadvantage of accelerometer sensors is 
that they are easily influenced and disturbed by sources of 
mechanical noise and they give a general signal of the system 
[5]. Also, due to the transmission path between the sensor and 
the fault, the propagated wave from the fault loses its energy to 
reach the sensor [6]. In the early stages of the fault, these small 
fault symptoms will be masked by the surrounding noise or 
they lose their energy due to structural damping.  

To overcome this problem, several researchers have 
proposed the measurement of strain signal instead of 
acceleration. As an example, Alien et. al [7] utilized a fiber-
Bragg grating (FBG) sensor to measure strain changes in a 
bearing test system. The results showed that not only strain 
signal has a better signal to noise ratio, but also it is very 
sensitive to the existence of a local defect. Recently, 
measurement of bearing strain is a trending discipline in 
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condition monitoring, both for fault diagnosis and overload 
detection [8]. However, the majority of previous works were 
conducted experimentally and there was not a clear 
understanding of strain changes on the whole bearing 
assembly. Therefore, having a bearing finite element (FE) 
model, where deformable bearing components can be modeled, 
will help the understanding of strain changes in bearings. 

Generally speaking, bearing FE models are computationally 
demanding due to nonlinearity and contact among several 
components [9]. To overcome this difficulty, several 
researchers have suggested combining the analytical solution 
with FEM to simplify the model by removing the components 
in contact. As an example, Kiral and Karagulle [10] combined 
an analytical solution with FEM to simulate a bearing dynamic 
with localized fault. The outer ring and housing of the bearing 
were modeled by FEM, and contact forces from the analytical 
solution were applied to the nodes over time. For simulating 
the local defect, contact forces were manually increased at the 
defect location. In another example, Tadina and Boltezar [11] 
created a bearing outer ring by flexible beam elements, and the 
contact forces at each node were obtained through a bearing 
LPM. However, by using beam elements, the actual geometry 
of the housing/pedestal, and subsequently, realistic boundary 
conditions could not be simulated. Another common problem 
in previous studies was applying concentrated forces on the 
nodes. In fact, during the contact of rolling elements and 
raceways, a contact pressure is generated over a certain contact 
area, according to Hertz’s contact theory [12]. This stress 
distribution cannot be simulated by a single nodal force, and 
instead, accurate area pressure on a contact area with a fine 
mesh must be applied.  

The main purpose of this study is a combined bearing LPM 
and FEM with an accurate stress/strain distribution. However, 
the previously developed models cannot satisfy the requirement 
of this study due to several inaccurate assumptions. To 
illustrate more, a new bearing dynamic model for a cylindrical 
roller bearing is proposed in this study which shortcomings of 
previous studies are addressed. For this model, a roller bearing 
LPM is created in MATLAB®, and contact forces of the rollers 
in healthy and defective conditions are obtained over time. 
Contrary to reference [10] where contact forces of the defective 
bearing were amplified manually, the contact forces of the 
developed model are dependent on the geometry of the fault 
and accurate fluctuations of the contact stiffness. Then, the 
bearing LPM is combined with a FE model developed in 
ANSYS APDL in which actual geometries of the bearing 
housing, pedestal, and outer ring are modeled. This leads to 
applying realistic boundary conditions to the model and not 
over-stiffening the model by a clamped boundary condition. In 
contrast to previous studies, the contact forces from the bearing 
LPM are converted to area pressure by Hertz’s contact theory. 
Therefore, instead of applying concentrated forces on the 
nodes, contact pressures are directly applied to the model 
which creates accurate stress distribution. In the following, the 
details of the proposed model are described. 

II. DYNAMIC MODELING OF A ROLLER BEARING WITH A 

LOCAL DEFECT 

 

A. Lumped Parameter Model of a Roller Bearing 

In this section, a cylindrical roller bearing model SKF N305 
ECP with a split pillow block housing model SKF SNL 506-
605 is modeled by LPM. The 3D CAD model is illustrated in 
Fig 1. The diagram of the bearing LPM is also shown in Fig 2. 
The model includes several masses connected to each other by 
spring and dampers. Basically, the model is based on the given 
formulation in [4] with minor changes that will be described in 
the following. In Fig 2, subscripts x and y refer to the 
horizontal and vertical direction, respectively. Here, Kh, K, and 
Ks indicate the housing stiffness, load-deflection factor, and 
shaft stiffness, respectively. Parameters Ch, Cr, and Cs refer to 
housing damping, viscous contact damping, and shaft damping. 
mho includes the mass of the housing and pedestal together, and 
msi indicates the mass of the shaft and the inner ring both 
together. Also, Fr is the applied vertical load from the shaft to 
the bearing inner ring, and φj illustrates the angular position of 
each roller over time. There are a few assumptions in the 
modeling of this roller bearing such as neglecting slippage, the 
friction of rollers, and the effect of the lubricant film. Besides, 
due to the moderate rotational speed of the shaft, the 
centrifugal force of the rolling elements and corresponding 
deformations are neglected. In this model, the shaft rotates at a 
rotational speed of s. According to the bearing dimensions, 
such as pitch diameter Dp, roller diameter Dr, and contact angle 
of rollers α, the cage speed ωc can be defined as below.  

 ωc =
ωs

2
 1 −

Dr cos α 

Dp
  

 

(1) 

The major role of the bearing cage is creating equal angles 
between rollers. Based on these equal angles and the initial 
position of the rollers φ0, the angular position of rollers φj can 
be obtained for the time increment t during the rotation as 
below: 

 φj(t) =
2πj

Z
+ ωct + φ0 ,      j =  1 to z 

 
(2) 

where j and Z refer to the roller number and the total number of 
rollers, respectively. The applied radial force to bearing leads 
to radial displacement of the inner ring/shaft and the housing. 
Subsequently, contact deformation can be calculated by Eq. (3) 
which is dependent on the radial clearance of the bearing C, the 
angular position of each roller, and in case of having a local 
defect, the depth of the fault Cd. The term j is switch function 

and is equal to 1 when a roller enters the defective area, and it 
is zero for rollers in the healthy areas. In Eq. (4), φd indicates 

 

Figure 1.  3D CAD assembly of the bearing and split pillow housing.  
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Figure 2.  Diagram of the roller bearing LPM.  

the starting angular position of the defect and ∆φd refers to the 
angular distance that is covered by the local defect. 

 δj  =  Xsi − Xho  cosφj +  Ysi − Yho   sin φj − C − βjCd 
 

(3) 

 βj =  
1        if     φd < φj < ∆φd + φd

0                                       otherwise
 

 
(4) 

Based on the defined equations and parameters, a 4-DOF 
non-linear equation of motion is presented as below: 

 
msi X si + CsX si + KsXsi +  αjCrδj

 cosφj +  αjK δj 
n

Z

j=1

Z

j=1

cosφj = 0 

 

(5) 

 
msi Y si + CsY si + KsYsi +  αjCrδj

 sinφj +  αjK δj 
n

Z

j=1

Z

j=1

sinφj = −Fr  

 

(6) 

 
mho X ho + ChxX ho + KhxXho − αjCrδj

 cosφj −   αjK δj 
n

Z

j=1

Z

j=1

cosφj = 0 

 

(7) 

 
mho Y ho + Chy Y ho + KhyYho − αjCrδj

 sinφj −   αjK δj 
n

Z

j=1

Z

j=1

sinφj = 0 

 

(8) 

According to Hertz's contact theory, for a cylindrical roller 
bearing (line contact), the exponent n is equal to 10/9. The term 
j refers to the bearing load zone parameter which is equal to 

zero once j is equal/less than zero which means the roller is 

not positioned in the load zone of the bearing and its contact 
forces will not be considered. Once the roller enters the load 
zone, j  will be greater than zero and j will be equal to 1 in 

order to include its contact forces. j  is defined as below [12]: 

  
αj =  

1        if    δj > 0

0        if    δj ≤ 0
                     

 
(9) 

 The contact forces in the horizontal and vertical direction 
can be calculated as follows:  

  

 
Fx

Fy
 =

 
 
 
 
 
 
 αjCrδj

 cosφj +  αjK δj 
n

Z

j=1

Z

j=1

cosφj

 αjCrδj
 sinφj +  αjK δj 

n
Z

j=1

Z

j=1

sinφj

 
 
 
 
 
 

  

 

(10) 

The load-deflection factor K is the summation of contact 
stiffness of a roller with the inner raceway and outer raceway 
as shown in Eq. (11). For each raceway, the contact stiffness 
Kin/out is obtained by Eq. (12) [12]. 

  

K =

 
 
 
 
 

1

 
1

Kin
 

1
n

 +   
1

Kout
 

1
n

 
 
 
 
 

 n

 

 

(11) 

  
Kin /out =  

le

8
9

0.39
10
9  

4(1 − υ1
2)

E1
 +  

4(1 − υ2
2)

E2
 

 

 

(12) 

where le refers to the effective length of the line contact, υ is 
the Poisson's ratio, E is Young’s modulus, and subscripts 1 and 
2 indicate two different material properties. The model 
parameters of the bearing LPM are estimated by FEM and their 
values with other constant parameters in this modeling are 
presented in Table I.    

Despite using bearing LPM, for a defect-free roller bearing 
with certain clearance, the radial contact forces for different 
positions of the rollers can be properly estimated by the 
Stribeck formula as follows [12]: 

  

   

(13) 

where Qmax is the maximum radial load applied to a roller, and 
load distribution factor ϵ is equal to 0.5 for zero clearance, for 
positive clearance in the range of 0 < ϵ < 0.5, and for negative 
clearance 0.5 < ϵ < 1. By using Eq. (13), the accuracy of the 
contact forces from the developed LPM can be validated in a 
healthy condition. Also, the maximum value of the contact 
forces (Qmax) for zero clearance can be calculated as follows 
[12]: 

  
Qmax =

4.08 Fr

Z cos α 
 

 

(14) 

The dynamic model of this cylindrical bearing is modeled 
in MATLAB® based on the aforementioned equations and 
constant parameters in Table 1. By using ordinary differential 
equations solver (ODE45) which is based on the Runga-Kutta 
method, the equations of motion (5) to (8) have been solved. A 
vertical displacement of 1×10-6 m is considered for the shaft as 
the initial condition which has a rotational speed of 1000 rpm. 
Moreover, contact forces in the vertical and horizontal 
directions are calculated according to Eq. (10) in two separate 
matrices that rows represent the number of rollers through 1 to 
11, and each column refers to the value of contact forces in 
each time increment.  

B. Description of the Proposed Finite Element Model 

According to the Hertz contact theory, the area generated 
and contact pressure distribution of ball bearings and 
cylindrical rollers bearing can be calculated. In deep groove 
ball bearings, the contact area has an elliptical shape and for 
cylindrical roller bearings, the generated area is similar to a 
narrow rectangular band as shown in Fig. 3. The width of the 
contact is shown by 2a and le indicates the length of the 
rectangular band. Half of the contact width and the contact 
pressure are calculated by Eqs. (15) and (16), respectively [12]. 

Qjr = Qmax  1−
1 − cos(φj )

2ϵ
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TABLE I.  ESTIMATED MODEL PARAMETERS OF THE BEARING LPM.  

Model Parameter 
Details of Model Parameters 

Sign Value unit 

Roller diameter 

Effective length of contact 

Bearing pitch diameter 

Bearing outer raceway diameter 

Number of rollers 

Bearing clearance 

Load deflection factor 

Viscous contact damping 

Housing vertical stiffness 

Housing horizontal stiffness 

Housing vertical damping 

Housing horizontal damping 

Mass of the housing and outer ring 

Shaft stiffness 

Shaft damping 

Mass of the shaft and inner ring 

Young’s modulus of the components 

Poisson’s ratio of the components 

Defect depth 
 

Dr 

le 

Dp 

Dout 

Z 

ϵ 

K 

Cb 

Khy 

Khx 

Chy 

Chx 

mho 

Ks 

Cs 

msi 

E 

υ 

Cd 

10 

10.2 

44 

54 

11 

0 

618.02 

3800 

88.9 

412.1 

600 

2110 

18.165 

0.201 

380 

3.8 

200 

0.3 

0.2 

mm 

mm 

mm 

mm 

- 

- 

MN/m1.11 

N.s/m 

MN/m 

MN/m 

N.s/m 

N.s/m 

Kg 

MN/m 

N.s/m 

Kg 

GPa 

- 

mm 

  

a =  
4F  

1 − υ1
2

E1
 + 

1 − υ2
2

E2
 

πle  
1

R1
 −  

1
R2

 
  

 

(15) 

  
P =  

2F

πale
 1 −

x2

a2 

1

2 
    

 

(16) 

where F refers to the radial load applied on a roller, R1 and R2 
indicate the radius of the roller and outer raceway, respectively. 
By substituting x=0 in Eq. (16), the maximum contact pressure 
is calculated.  

The geometry of the proposed bearing FEM is dependent 
on the housing dimension, outer/inner ring diameter, and the 
contact width in Eq. (15). Since rollers are only under radial 
forces, and it is assumed that the cross-section is constant in the 
normal direction, this FEM can be modeled as plane strain with 
2D elements with neglecting normal strain changes.  

The matrix of contact forces obtained from Eq. (10) is 
converted into equivalent normal forces to the raceway because 
the matrix represents forces in x and y directions. Also, by 
substituting the equivalent contact forces into Eq (15), the 
contact width of each roller is obtained over time.  

By considering zero clearance for the bearing, it is observed  

 

Figure 3.  Contact width and pressure distribution of a roller during contact 

that the load zone of the bearing is at the bottom half of the 
outer raceway and there is not any contact with the upper 
section. Therefore, the bottom half of the FE model is 
considered for applying contact forces. The raceway is divided 
into equally spaced contact points, and for each point, a line 
proportional to the contact width by Eq. (15) is considered. 
These small lines are named contact lines in this paper. 
Obviously, by having a higher number of contact points, the 
number of contact lines will be increased, and meanwhile, the 
sampling frequency of the model is increased. After creating 
the geometry of the outer ring, other parts of the bearing and 
housing geometry are created by simple straight lines and arcs. 
The outer ring, housing, and pedestal are glued to each other at 
the contact location. Also, Equivalent radial forces are changed 
to contact pressures over time by Eq. (16) and finally, they are 
applied to contact lines. By using fine mesh on the outer 
raceway, and gradually increasing the element size to the outer 
ring surface, the meshing process is done, and a transient 
analysis can be started. The meshed geometry with a magnified 
view of the local defect is illustrated in Fig. 4.  

III. COMPARISON OF NORMAL STRESS DISTRIBUTION  

In this section, prior to analyzing the dynamic response of 
the model, the accuracy of the stress distribution is 
investigated. For this comparison, a static analysis including 
the proposed FE model and a 3D contact model is performed. 
A radial load (Fr) of 500 N is considered for the model. By 
substituting this value in Eq. (14), the maximum value of 
contact force is equal to 185.45 N. Similarly, the maximum 
contact force obtained from the bearing LPM is equal to 184.4 
N. This 0.56% difference indicates the accuracy of the 
developed bearing LPM in generating contact forces of the 
rollers. By using Hertz’s theory and substituting the maximum 
contact force in Eqs. (15) and (16), half of the contact width 
and the maximum contact pressure are equal to 0.036 mm and 
321 MPa, respectively. For comparison of the stress 
distribution, a bearing 3D model is created in ANSYS as 
shown in Fig. 5. Since the geometry of this model is symmetric 
in the YZ plane, a symmetric boundary condition is applied to 
the YZ plane (Ux=0). Also, the axial displacement of the 
components in the z-direction is constrained. These boundary 
conditions reduce the computation time and rigid body motion 
as well. Due to considering symmetric boundary condition in 
the YZ plane, half of the maximum contact force is applied to  

 

Figure 4.  The meshing of the bearing assembly in ANSYS APDL with a 

magnified view of the defect.  
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the roller upper surface (92.73 N). Since Hertz’s theory is 
based on frictionless contact [12], a frictionless contact is 
applied between the roller and outer ring. By applying fine 
mesh at the contact location and solving the model, the normal 
stress distribution and the contact pressure are obtained on the 
outer ring. Besides, the contact pressure of 321 MPa is applied 
to the corresponding contact line in the proposed bearing FE 
model in a static analysis. The generated stress distribution of 
the proposed FE model and 3D contact model is compared in 
Fig. 6. It must be cautioned that due to applying load on the 
roller in -y-direction, the minimum value of stress with a 
negative sign indicates the maximum generated stress.  

Comparing the contact stress in the 3D FE model vs the 
value obtained by Hertz’s theory (321 MPa) reveals that the 
created 3D model generates the same contact stress as Hertz’s 
theory. In Fig. 6, the maximum contact stress of the 3D model 
is equal to 320.45 MPa and the difference with Hertz’s theory 
is about 0.45%. However, the maximum stress of the proposed 
FE model is about 15% higher than the theoretical value (321 
MPa). Since in the proposed FE model, uniform pressure is 
applied to the contact line, two stress concentrations happen at 
the starting and ending point of the contact line, which 
increases the maximum generated stress. This stress 
concentration is shown by “Max” in Fig. 6. Nevertheless, the 
average stress on the nodes of the contact line is equal to 
329.33 MPa and the estimated error compared with Hertz’s 
theory is 2.92%. Therefore, comparatively accurate contact 
stress has been simulated through the proposed FE model. Last 
but not least, the subsurface stress of the proposed FE model 
and the 3D model can be investigated in Fig. 6. Obviously, the 
stress bulb in the proposed FE model is comparatively similar 
to the 3D model, and it can be concluded that the proposed FE 
model is accurate both in creating surface and subsurface 
stresses.  

IV. RESULTS AND DISCUSSION  

After comparing the stress distribution in the proposed 
model, the dynamic behavior of the proposed FE model is 
investigated through a transient analysis in this section. 

 

Figure 5.  3D FE model of the roller in contact with the outer ring. 

 

Figure 6.  Stress distribution of the 3D contact model vs proposed FEM. 

The geometry of the housing and outer ring was shown in 
Fig. 4. The rotational speed of the shaft is 1000 rpm, and the 
radial applied load is equal to 500 N. The ball pass frequency 
on the outer ring (BPFO) can be calculated as follows [12]: 

   BPFO =
z

2
 ωs  1 −

Dr

Dp
     

 

(17) 

Therefore, for the shaft speed of 1000 rpm, the BPFO is 
equal to 70.8 Hz. In order to accurately capture the roller entry 
and exit on the fault, a higher sampling frequency than the 
BPFO is considered in this model. As an example, by 
considering a sampling frequency 36 times higher than the 
BPFO, a sampling frequency around 2500 Hz is obtained for 
the transient analysis. This means the outer ring has to be 
divided into 1136 = 396 contact locations where 11 refers to 
the number of rollers. Therefore, by dividing the outer ring into 
396 contact locations (contact lines), the angular distance 
between each two contact locations is 0.01586 rad. By 
considering a rotational speed of 1000 rpm (104.71 rad/s), the 
time increment from one contact location to the next one is 
equal to 0.000392156 s. Hence, the sampling frequency of the 
simulation is equal to 1/0.000392156 ≈ 2550 Hz. The time-step 
of the LPM can be much smaller than the FEM since it does 
not require a large computation time. The time step of the 
bearing LPM is selected to be 300 times lower than the FE 
model, which is equal to 1.307×10-6 s. After running the 
bearing LPM, time-dependent contact pressures are sampled 
every 300 steps to be used as the input of the transient analysis. 
By running the simulation for a defective bearing, the time 
domain acceleration signals of the proposed FE model and 
LPM are shown in Fig. 7. The local defect is located at 289° 
(φd), has a 0.19 mm depth (Cd), and 1.8° spall width (∆φd). 
According to Fig. 7, the amplitude of the acceleration signal is 
modulated by several resonances due to the impact between 
rollers and the local fault.  

The time interval between resonant peaks of the raw 
vibration signal is equal to 1/70.8 ≈ 0.0141 s, which are 
accurately shown in Fig. 7. The amplitude range of the 
acceleration signal from the proposed FE model is lower than 
the LPM. This difference is one advantage of the proposed 
model where a flexible pedestal is modeled for the bearing. 
Also, the envelope spectrum of the acceleration signal is shown 
in Fig. 8 in the frequency domain.  The BPFO (around 70.8 Hz) 
and its harmonics are accurately shown in the frequency-  
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Figure 7.  Simulated acceleration by a) bearing LPM b) proposed FEM. 

domain which shows the efficiency of the proposed FE model 
in generating vibration signal and frequency components of the 
system. Overall, the proposed model is an efficient option for 
the dynamic analysis of roller bearings, especially, if the focus 
is simulating dynamic stress/strain changes. Through the 
proposed FE model, stress distribution and strain signal can be 
obtained by a reasonable computation time. For future work, a 
thin layer of a piezoelectric patch will be glued on the bearing 
outer ring surface to measure the strain changes. The measured 
strain signal will be compared with the simulated strain signal 
through the proposed FE model. This technique will be used 
for fault diagnosis in bearings through strain signals.   

CONCLUSION 

In this paper, a combined bearing LPM and FE model was 
proposed to simulate the dynamic behavior of a roller bearing 
with a local fault. Contrary to previous combined analytical and 
FE models that the main purpose was simulating acceleration 
signal, this study focuses on generating both accurate 
acceleration and stress/strain distribution. At the first stage, a 4-
DOF bearing LPM was created in MATLAB® and solved with 
an ordinary differential equations solver (ODE45). The contact 
forces were converted to contact pressures by Hertz’s contact 
theory to be exported to the FE model. In the second stage, a 
flexible bearing assembly was modeled in ANSYS APDL and 
time-dependent contact pressures were applied to the bearing 
outer ring through transient analysis. The accuracy of the stress 
distribution was investigated in a static model, and the result 
agreed with Hertz’s theory and a 3D FE model. After this 
validation, the dynamic response of the proposed model was 
investigated. A reasonable acceleration signal in the time and 
frequency domain was simulated through the proposed FE 
model which accurately demonstrates the fault symptoms. In 
this paper, due to considering flexible components, the 
acceleration signal had a lower amplitude than the LPM model, 
since LPM is based on the interaction of rigid components. For 
future work, this model will be used for the application of 
embedded strain sensors for fault diagnosis. 

 

Figure 8.  Envelope spectrum of the acceleration signal from the bearing 

LPM and the proposed FE model. 
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