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Abstract— Dimensional synthesis of a parallel kinematic
manipulator (PKM) is an optimization exercise wherein the
objective function is composed of desirable kinematic perfor-
mance metrics (e.g., workspace volume, dexterity, stiffness, etc.)
and the parameter space is defined by the geometry of the
PKM. This paper presents a dimensional synthesis exercise
for a 2-PSS/U PKM. To this end, the direct kinematics and
the differential kinematics of the PKM was presented and
the corresponding singularity configurations were discussed.
Finally, a parameter search method was employed to determine
a favorable geometry that was later employed to construct a
fully functioning physical prototype.

I. INTRODUCTION

High speed manipulation of optical detectors and sensors
(e.g., laser projectors, cameras, mirrors) is required for many
optomechatronic applications; examples include laser scan-
ning [1], beam steering [2], image stabilization [3], camera
orientation [4], tracking [5], free space optical communication
[6], etc. Although galvanometer mirrors have been used in
beam steering applications (e.g., [7]), their range of motion
is generally limited. Alternatively, many optomechatronic
applications utilize kinematic mechanisms for orientating
optical payloads (i.e., orientation manipulation).

An orientation manipulator constraints its payload to only
spherical motion [8, p. 28] about a fixed point. In terms
of kinematic topology, such manipulators are characterized
either by a serial architecture or a parallel architecture. The
classic Gimbal mechanism [9], [10] is the most intuitive
and the most common embodiment of a serial orientation
manipulator. In addition, many parallel kinematic architectures
(PKM) featuring three and two rotational degrees of freedom
(DOF) have been reported in the literature [11]–[15]. Since
the moving platform in a parallel architecture is actuated by
multiple kinematic chains as opposed to a single kinematic
chain in a serial architecture, the kinematic structure of a
PKM is generally more conducive to better performance.
Despite the potential advantages of speed, accuracy and
stiffness, the limiting factors that may deter the performance
of a PKM include workspace volume, presence of multiple
singularities in the workspace, limited range of the link
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lengths, range of the available motion of the joints, and
possible link interference [16], [17]. Dimensional synthesis
of a parallel manipulator refers to the systematic determination
of the optimal geometry (e.g., link lengths and positions of
kinematic joints) that minimizes these limitations so that a set
of application relevant kinematic performance characteristics
can be achieved. In this paper dimensional synthesis of a
2-PSS/U PKM is presented.

II. PROBLEM FORMULATION

The exercise of dimensional synthesis of a PKM aims
to optimize its kinematic performance characteristics as a
function of its geometry. In order to formulate the this
optimization exercise for the 2-PSS/U manipulator, the
parameter space is defined by the geometric representation
of the manipulator and the objective function is composed
of desired kinematic performance characteristics.

A. Geometric Parameterization

The kinematic structure of the 2-PSS/U manipulator is
presented in Fig. 1. The universal joint that constraints the
moving platform to the mechanical ground is decomposed
into two revolute joints that are defined by their respective
joint axes ŵi (i = 1, 2). The joint axes ŵi are not constrained
in any way except that they intersect at the mechanism center
O, and they are perpendicular to each other. The link AiBi

is a linearly extensible limb (i.e., prismatic joint), which is
also the actuated joint. Furthermore, the articulation points Bi

and Ci refer to the locations of the spherical joints. The link
C1C2 constitutes the moving platform of the manipulator.

The geometry of the PKM is defined in the following
manner. When the two identical prismatic actuators are at mid-
stroke, the manipulator is defined to be at its home position.
In addition, both actuators are constrained to operate in the
vertical direction. At the home position, points A1 and A2

lie in a horizontal plane. The moving platform articulation
points C1 and C2 also lie in a different horizontal plane at the
home position. The revolute joint axis ŵ2 lies in the plane
defined by the points A1, B1 and C1 at the home position.
Correspondingly, the axis ŵ1 is coplanar with the plane
defined by the points A2, B2 and C2 at the home position.
Finally, each of the point pairs (C1, C2) and (A1, A2) are
constrained to be equidistant from the mechanism center O.
Under these constraints, the geometry of the manipulator
can be defined by four parameters (r,R, h,H). At the home
position, r and R are the horizontal distances between the
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Fig. 1. Kinematic structure of the 2-PSS/U parallel orientation manipulator.

points O and Ci and Bi respectively. In addition, h and H
are the vertical distances between the points O and Ci and
Bi respectively. It should be noted that the aforementioned
geometric configuration does not allow decoupling of the two
degrees of freedom.

B. Objective Function

PKM performance characteristics that are commonly stud-
ied in the related literature include workspace volume [18],
dexterity [19], accuracy [20], stiffness [21], etc. In this paper,
workspace volume and dexterity have been selected as the
two desirable kinematic performance metrics. Tilt & Torsion
(T&T) angles [22] provide a convenient parametrization of
the 2D workspace volume. Since the 2-PSS/U manipulator is
characterized as torsion-restricted, the tilt and the azimuth an-
gles can sufficiently define the 2D workspace. The reachable
workspace is defined as all the tilt angles that the manipulator
can reach with some azimuth angle, and the regular workspace
is defined as all the tilt angles that the manipulator can reach
with any azimuth angle. The maximum tilt angle θT is chosen
to represent the volume of the regular workspace in this paper.

A frequently cited dexterity index is the reciprocal of the
Euclidean norm condition number of the inverse Jacobian
matrix (e.g., [16]), which measures only the local dexterity
of the point at which the inverse Jacobian is evaluated. The
quality of the entire workspace can be quantified by the global
conditioning index (GCI) [23], which is an integral of the
local dexterity index over the entire workspace. Although GCI
provides an aggregated measure of the dexterity characteristics
of a workspace, one of the drawbacks arises from its inability
to indicate any poor local behavior [24]. However, this
limitation is mitigated by considering the minimum local
dexterity index of a workspace as an additional kinematic
performance metric.

The GCI, the minimum dexterity dm and the maximum
tilt angle θT provide a multi-dimensional objective function
for the dimensional synthesis problem in this paper.

III. KINEMATIC ANALYSIS

The kinematic model of the 2-PSS/U architecture has
been analyzed in [15], [25]. It should be mentioned that
the inverse model is very similar to that of the 3-PSS/S
architecture. However, a closed-form solution to the direct
kinematics of the 2-PSS/U architecture is not found in the

literature. The iterative solution to the direct kinematics
problem provided in [15] numerically estimates one of the
two workspace coordinates, and the remaining coordinate is
analytically determined in a subsequent step. In contrast, this
paper formulates the direct kinematics problem as an exactly
defined system of nonlinear equations, which is iteratively
solved to obtain both workspace coordinates simultaneously.
In order to facilitate the formulation of the direct kinematics
problem, two coordinate frames are established first. Let the
coordinate frame A be fixed in space (i.e., inertial frame) and
the coordinate frame B (i.e., body-fixed frame) be embedded
in the moving platform. The origins of these two coordinate
frames are coincident at the mechanism center O. Since
the position vectors of the articulation points (i.e., terminal
points of the links) can be defined with respect to either
coordinate frame, it is necessary to unambiguously specify
the coordinate frame in which a vector is referenced. To this
end, a preceding superscript is used to denote the coordinate
frame in which a vector is expressed; e.g., xa denotes the
vector a expressed in the X coordinate frame. The rotation
matrix that defines the relative orientation of the Y coordinate
frame with respect to the X coordinate frame is denoted by
xRy. If a vector is denoted by xa and ya with respect to two
separate coordinate frames, the rotation matrix xRy provides
the following transformation: xa = xRy × ya.

A. Direct Kinematics

Without loss of any generality, let the x axis of the inertial
frame A point along ŵ1 and the y axis point along ŵ2 at the
home position of the manipulator. The z axis of the inertial
frame A is determined by the right hand rule. In order to
define the orientation of the body-fixed frame B, it is assumed
that frames A and B coincide initially. The final orientation
of the frame B is reached by rotating the body-fixed frame
about the x axis of the inertial frame A by an angle ψ in a
first rotation. A second rotation of the body-fixed frame about
the rotated y axis (i.e., ŵ2 axis) of the frame B by an angle
φ provides the final orientation of frame B. Following the
aforementioned Euler angles convention, the rotation matrix
aRb is provided by,

aRb =

 cosφ 0 sinφ
sinψ sinφ cosψ − sinψ cosφ
− cosψ sinφ sinψ cosψ cosφ

 . (1)

Geometry of the moving platform provides the position
vectors of points Ci with respect to the body-fixed frame B;
i.e.,

bci =
[
ciu civ ciw

]T
.

In order to obtain aci,

aci =
aRb × bci. (2)

Expanding (2) yields (3).

aci=

 cosφ ciu + sinφ ciw
sinψ sinφ ciu + cosψ civ − sinψ cosφ ciw
− cosψ sinφ ciu + sinψ civ + cosψ cosφ ciw

 (3)



Let, BiCi = xi, ‖xi‖ = xi, ‖bi‖ = bi, and ‖ci‖ = ci.
Since xi = bi − ci, it can be written that ‖bi − ci‖2 = x2i .
The eqaution in (4) can be written by expressing the vectors
in coordinate frame A.

fi := ‖abi − aci‖2 − x2i = 0 (4)

Writing (4) for i = 1, 2 provides a system of two nonlinear
equations; i.e.,

F :=

[
‖ab1 − ac1‖2 − x21
‖ab2 − ac2‖2 − x22

]
=

[
0
0

]
. (5)

Since abi is known in a direct kinematics problem, and
aci can be obtained from (3), F in (5) becomes a system of
equations in two unknowns [ψ φ]

T . Solving (5) iteratively
for the unknowns ψ and φ provides the solution for the direct
kinematics problem. A nonlinear least squares analysis can
be employed to this end. The corresponding Jacobian matrix
can be conveniently obtained from a computer algebra system
(CAS).

B. Differential Kinematics

In order to facilitate the study of the differential kinematics,
the angular velocity of the link BiCi is denoted by ωi and
the angular velocity of the moving body is denoted by ωc. In
addition, the angular displacements about the axes ŵ1 and
ŵ2 are denoted by ψ and φ respectively. The linear velocity
of point Ci is provided by,

vci = ωc × ci. (6)

In terms of the the velocity of the actuated joints (i.e., ḋi),
vci can also be calculated as,

vci = ḋin̂i + ωi × xi. (7)

Equating (6) and (7) provides,

ωc × ci = ḋin̂i + ωi × xi. (8)

Dot multiplying both sides of (8) by xi and subsequent
rearranging using the vector triple product rule yields,

(ci × xi) · ωc = (n̂i · xi)ḋi. (9)

Writing (9) for i = 1, 2 provides two scalar equations that
can be arranged in matrix format as,[

(c1 × x1)
T

(c2 × x2)
T

]
×ωc =

[
(n̂1 · x1) 0

0 (n̂2 · x2)

]
×
[
ḋ1
ḋ2

]
(10)

The angular velocity vector ωc can be written as,

ωc = ψ̇ŵ1 + φ̇ŵ2

=
[
ŵ1 ŵ2

]
×
[
ψ̇

φ̇

]
.

(11)

Substituting (11) into (10) and subsequent rearranging pro-
vides,[

(c1 × x1) · ŵ1 (c1 × x1) · ŵ2

(c2 × x2) · ŵ1 (c2 × x2) · ŵ2

]
×
[
ψ̇

φ̇

]
=

[
(n̂1 · x1) 0

0 (n̂2 · x2)

]
×
[
ḋ1
ḋ2

]
. (12)

Equation (12) can be rewritten as,

Jx ×
[
ψ̇ φ̇

]T
= Jq ×

[
ḋ1 ḋ2

]T
. (13)

The orientation manipulator is said to be in a singular
configuration when at least one of the two matrices Jx and
Jq is singular.

C. Inverse Kinematic Singularities

Since Jq is a diagonal matrix, it is singular only when
at least one of the diagonal entries is zero; i.e., n̂i · xi =
0 or n̂i ⊥ xi. Therefore, when the passive link BiCi is
perpendicular with the axis of the prismatic joint AiBi, the
mechanism is in an inverse kinematic singular configuration.
When Jq is singular and its null space is not empty, there
exist some non-zero ḋi for which [ψ̇ φ̇]T is zero; i.e., certain
infinitesimal motion of the moving platform at the singular
configuration (i.e., AiBi ⊥ BiCi) cannot be achieved despite
the application of actuation forces.

D. Direct Kinematic Singularities

When Jx is singular, there exists some non-zero [ψ̇ φ̇]T

that yields zero ḋi; i.e., even though the actuators are fixed, the
moving platform of the mechanism can exhibit infinitesimal
motion in some directions.

Case 1: When one of the rows of Jx vanishes, it becomes
singular. This occurs when (ci × xi) lies in the same plane
defined by ŵ1 × ŵ2. Physically, when points Bi and Ci

(i = 1, 2) coincides with the plane ŵ1 × ŵ2 this direct
kinematic singularity occur.

Case 2: The Jacobian matrix Jx becomes deficient in
column rank when the four articulation points C1, C2, B1

and B2 are coplanar with either ŵ1 or ŵ2.
Case 3: Each row of the Jacobian matrix Jx defines a

vector in a plane defined by the universal joint axes ŵ1 and
ŵ2. When the two row vectors coincide, Jx becomes singular.
In geometric terms, when the planes defined by (c1 × x1),
(c2 × x2) and (ŵ1 × ŵ2) intersect on a single line, the
mechanism is at a direct kinematic singularity configuration.

IV. DIMENSIONAL SYNTHESIS

Since the coupling between the two kinematic loops of
the manipulator was observed to be insignificantly small, the
motion of each loop can be approximated as an independent
spatial slider-crank mechanism of trivial complexity. In
order to synthesize the dimensions of this manipulator, two
such models must be optimized for kinematic performance.
However, application of a sophisticated optimization method
was considered to be unnecessary because interaction between
the two models was practically nonexistent. As an alternative,
the parameter space was explored under a Latin hypercube
sampling scheme, and the kinematic performances estimated
at these sample points were employed to choose the preferred
dimensions of the manipulator. Subsequently, the design that
was chosen for its high kinematic performance is characterized
by the following geometric parameters: r = 1.1, R = 1.6,
h = 0.2, and H = 4.0. For the sake of computational
convenience, the values of these parameters were normalized
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Fig. 2. Kinematic performance of the torsion-restricted POM.

Fig. 3. Prototype implementation of a 2-PSS/U manipulator employing the
synthesized geometry.

with respect to the stroke of the actuator. The kinematic
performance metrics corresponding to the selected design are
graphically presented in Fig. 2. Specifically, these metrics
were estimated as GCI = 0.9183, dm = 0.6592, and θT =
26.0156◦. The physical prototype developed employing the
synthesized geometry is shown in Fig. 3.

V. CONCLUSION

This paper presents a new solution methodology for the
direct kinematics problem for the 2-PSS/U PKM. The iterative
solution enabled the estimation of kinematic performance
metrics such as the GCI, workspace volume and local dexterity
as a function of the PKM’s geometry. The parameter space
defined by the PKM’s geometry was explored under a Latin
Hypercube sampling scheme to quantify the objective function.
Although the direct and the differential kinematics are analytic
in nature, the dimensional synthesis problem was solved
numerically.
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