
   

Proceedings of the Canadian Society for Mechanical Engineering International Congress 2021 

CSME Congress 2021 

June 27-30, 2021, Charlottetown, PE, Canada 

 

 

Realistic Representative Volume Element Generation for Sintered Solids    
Part 1: Algorithm for Volume Computation and Geometry Creation 

D. Frank Thomas*, A .Y. Elruby, Sam Nakhla 

Faculty of Engineering and Applied Science (Mechanical) 

Memorial University of Newfoundland 

*dft135@mun.ca 

 

 

Abstract—The following work presents an algorithm for the 

generation of geometric models which function as realistic and 

accurate portrayals of powder-based porous sintered solids in 

both form and function. The code base was developed in Python 

for use in ABAQUS finite element software. The development 

of key modules such as the smart compaction, particle settling, 

and rapid volume computation processes are described in detail. 

Geometric models were evaluated for accuracy, computational 

efficiency, and physical characteristics at various porosities. 

Part 2 of this work investigates the finite element analysis 

results of these models compared to experimental data. 

Keywords: microstructure modelling, porous sintered solid, finite 

element analysis, representative volume element 

I.  INTRODUCTION 

The presence of voids is known to have a significant effect 
on mechanical behavior [1]. Though these voids are generally 
thought of as defects to be minimized, applications with a very 
limited range of viable materials stand to benefit from the ability 
to tailor a material’s mechanical properties by inducing 
uniformly distributed voids, i.e. inducing porosity in the micro- 
or meso-structure. Recent developments in the field of particle-
based additive manufacturing have popularized near-net shape 
fabrication methods whose structure closely resembles that of 
sintered compacts from powder metallurgy [2] [3] [4].The voids 
observed in sintered materials are characteristically distinct from 
the voids observed in traditional materials, having segmented 
and bulging surfaces rather than continuous ellipsoidal shapes 
[5]. Minimal research has been conducted specifically to 
investigate the effect of porosity on the mechanical behavior of 
sintered materials, and the abnormal characteristics of void 
defects in powder-based materials eliminate the type of uniform 
void models used to simulate the behavior of traditional porous 
materials [6]. The algorithm presented in this work produces 
realistic powder-based microstructure models of a specific 
porosity from randomly placed particles using novel compaction 
and rapid volume computation processes. 

II. ALGORITHM 

A. Inputs & Population 

The realistic model generation algorithm requires two 

fundamental pieces of information: the target porosity of the 

final specimen and a description of the particles to be used. The 

porosity term denotes the fractional volumetric porosity of the 

representative volume element as seen in (1). In this expression, 

𝑉𝑇 represents the volume enclosed by the RVE and 𝑉𝑀 is the 

total volume of the intersecting geometric entities.  

𝑃 =
1

𝑉𝑇

(𝑉𝑇 − 𝑉𝑀) (1) 

A description of the base particles may be provided in the 

form of an upper and lower bound on particle diameter, a 

normal distribution, or alternatively as a probability or 

cumulative distribution function. The population algorithm 

produces a set of randomly placed non-intersecting particles 

whose centers reside within a bounding box of a specified side 

length 𝐿 . Particle coordinates and diameters are randomly 

generated in accordance with the particle size description. Once 

generated, a prospective particle is evaluated against all 

previously placed particles to detect particle-particle 

intersection; if none are detected the particle characteristics are 

appended to the set, otherwise the particle is rejected. This 

process loops until the number of consecutive rejections 

exceeds some specified limit. The final particle configuration is 

returned and passed to the compaction module. 

B. Smart Compaction Algorithm 

Given three known values (boundary length, particle volume, 

and target porosity) the compaction module will begin to alter 

particle positions, drawing each particle center proportionally 

toward the RVE center until the void fraction is determined to 

be within an acceptable margin of the target porosity. This 

numerical root finding method uses linear extrapolation to 

suggest compaction levels such that the RVE porosity 

approaches the target porosity with precision and efficiency. 

The rapid root-finding algorithm first queries the total volume 
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(𝑉𝑜) of particles enclosed by the bounding box by passing the 

newly populated particle configuration to the volume 

computation module. An initial compaction multiplier of 5% is 

applied to the coordinates of each particle, drawing them 

uniformly toward the origin – see (2).  
[𝑋1 𝑌1 𝑍1] = 𝑐1[𝑋0 𝑌0 𝑍0] (2) 

Where 𝑐1 = (1 − 0.05)  is the first attempted compaction 

multiplier. Since the populated configuration is not compacted 

whatsoever the initial compaction is 𝑐0 = 1. The volume of the 

compacted configuration is evaluated and returns 𝑉1. Porosities 

𝑝0  and 𝑝1  are calculated from 𝑉0  and 𝑉1  respectively per 

equation 1. A new compaction multiplier is predicted from 

these two data points as seen below.  

𝑐𝑖+1 = 𝑐𝑖 + (𝑐𝑖−1 − 𝑐𝑖) (
𝑃 − 𝑝𝑖

𝑝𝑖−1 − 𝑝𝑖

) (3) 

The first computed compaction multiplier is then applied to 

the initial particle configuration per (2). Unlike the previous 

iteration, the new particle coordinates are individually re-

arranged to emulate the natural settling behavior of free 

particles. The volume of the settled configuration is computed 

and used to determine the next porosity 𝑝2 . This process of 

compaction, settling, volume computation, and comparison is 

repeated until the achieved porosity falls within an acceptable 

margin of the target porosity. 

C. Particle Arrangement 

The particle arrangement function evaluates each individual 

particle, compiling information about each of the surrounding  

Figure 1. Particles Pre-Arrangement 

Figure 2. Arranged (Settled) Particles 

Figure 3. Inclusion-Exclusion Principle 

intersecting particles. A separation vector 𝑉𝐴𝐵  is calculated 

from the coordinates and radii of two overlapping particles 𝐴 

and 𝐵 such that translation of particle 𝐴 by 𝑉𝐴𝐵  separates the 

particles from each other. In the case of 𝐴 being intersected by 

two or more particles, a single relocation vector is constructed 

from the individual separation vectors. 

𝑅𝐴 = 𝑉𝐴𝐵 + 𝑉𝐴𝐶 + 𝑉𝐴𝐷 ⋯ (4) 

The new coordinates of particle 𝐴  are updated prior to 

evaluating the next particle for rearrangement. The resulting 

configuration presents a more realistic model of particle 

compaction than scalar multiplication alone.  

III. RAPID VOLUME COMPUTATION 

A. Principle 

The volume computation module evaluates the volume of 

intersecting hard spheres algebraically by decomposing 

particles into regions of nth degree overlap. These regions are 

then tallied according to the inclusion-exclusion principle such 

that the volume of every region is counted once. In general, the 

total volume of any union of intersecting hard spheres is found 

by subtracting the sum of the volume of even-degree overlap 

regions from the total volume of odd-degree overlap regions.  

B. 2D Cases 

1) Excluded Regions 

A particle that is intersected by another particle in 2D will 

form two points of intersection that describe a line of 

intersection some normal distance 𝐷 from the center of each 

particle. If the distance between the centers of each particle is 

𝐴𝐵 then the distance from point 𝐴 to the intersection line is  

Figure 4. Two-Boundary Overlap 

 



   

calculated per (5). 

𝐷𝐴 =
𝑟𝐴

2 − 𝑟𝐵
2 + 𝐴𝐵

2

2𝐴𝐵
(5) 

The following relationship also applies: 

𝐷𝐵 = 𝐴𝐵 − 𝐷𝐴 (6) 

The area exterior to the intersection line is now calculated per 

(7). This equation is also used to calculate the area of a particle 

exterior to a boundary, where the distance term is simply the 

normal distance from the particle center to the boundary line. 

𝑨𝑨,𝑩 = 𝑟𝐴 (𝑟𝐴 acos (
𝐷𝐴

𝑟𝐴
) − 𝐷𝐴√1 − (

𝐷𝐴

𝑟𝐴
)
2

) (7) 

2) Included Regions 

The 1st degree region of inclusion is of course equal to the 

area of a circle radius 𝑟𝐴. Regions of 3rd degree overlap include 

the portion of a particle exterior to two boundary lines, the 

portion of a particle-particle overlap exterior to one boundary, 

and any area common to three particles. In the first case the 

region exterior to a set of perpendicular boundary lines is found 

by decomposing the particle into familiar cases. The figure 

below features two 2nd degree regions at distances 𝐴̅ and 𝐵̅ 

from their respective boundaries. To find the area of the region 

common to both caps we combine one-half the sum of the area 

of these regions, add the area of the rectangle 𝐴 ∗ 𝐵 and subtract 

one-quarter the area of the circle. 

𝑟𝐴
2

[𝑟𝐴 (acos
𝐴

𝑟𝐴
+ acos

𝐵

𝑟𝐴
) − 𝐴∗ − 𝐵∗] + 𝐴𝐵 −

𝜋𝑟𝐴
2

4
(8) 

Figure 5. Two-Particle Overlap at Boundary 

Figure 6. Three-Particle Overlap 

Where 𝐴∗ = 𝐴√1 − (
𝐴

𝑟𝐴
)
2

 and 𝐵∗ = 𝐵√1 − (
𝐴

𝑟𝐴
)
2

.  

The case of particle-particle intersection at a boundary 

requires the circular segment DAE from Figure 5 to be 

decomposed into triangular regions ADF and AEF to isolate the 

area of the circular wedge formed by line segments DF and EF. 

Given coordinates of points 𝐴, 𝐷, 𝐸, & 𝐹  this is easily 

accomplished. We have chosen Heron’s semiperimeter 

formulation to calculate the area of the triangles [7]. 

The case of three-particle overlap is calculated as follows: 

𝑇𝐴𝐵𝐶 +
1

2
(𝐴𝐴𝐵 + 𝐴𝐴𝐶 + 𝐴𝐵𝐶) −

1

2
(𝛼𝑟𝐴

2 + 𝛽𝑟𝐵
2 + 𝛾𝑟𝐶

2) (9) 

Where 𝑇𝐴𝐵𝐶  is the area of triangle 𝐴𝐵𝐶, 𝐴𝐴𝐵 is the area of the 

region common to particles 𝐴 and 𝐵, and the angles 𝛼, 𝛽, 𝛾 are 

noted in Figure 6 [8]. 

C. 3D Cases 

1) Spherical Cap 

The 3D case follows the same principles as the 2D case with 

notably more unique region overlap configurations. The 

intersection of spheres 𝐴 & 𝐵 defines a circle situated on a plane 

of intersection with a unit normal in the direction of 𝐴𝐵⃗⃗⃗⃗  ⃗. The 

normal distance from point 𝐴 to this plane is calculated again 

using (5). The region of a sphere exterior to an intersecting 

plane is known as a spherical cap and the volume is calculated 

from (10).  

𝑉𝐴,𝐵 =
𝜋

3
(𝑟𝐴 − 𝐷𝐴)

2(2𝑟𝐴 + 𝐷𝐴) (10) 

 

2) Spherical Wedge 

When a sphere is intersected by two non-parallel planes 

whose line of intersection passes through the surface of the 

sphere, a 2nd order overlap region is formed. This region is 

common to both spherical caps and can be decomposed into two 

spherical wedges separated by the plane defined by the sphere 

center and the line of plane-plane intersection. Each of the 

resultant spherical wedges is described by a unique normal 

distance and wedge angle – see (11) [9]. 

 

𝑉𝑤𝐴 =
1

3
𝑟𝐴

3 [𝜋 − 2 asin (
𝑟𝐴 sin 𝛼

√𝑟𝐴
2 − 𝐴2

)] (11) 

 

3) Spherical Tetrahedron 

The 3rd degree overlap region of a sphere occurs when three 

intersecting planes meet at a point that lies within the sphere. 

The resultant shape resembles a tetrahedron with three straight 

lines, three curved lines, three flat faces and one curved face. 

The volume of the region is constructed from the regular 

tetrahedron described by the four aforementioned points, the 

volume of a spherical cap contained by a spherical triangle, and 

three wedges which compensate for the missing edge portions 

of the cap section. 

 



   

Figure 7. Spherical Wedge Deconstruction  

Figure 8. Isolation of Spherical Tetrahedron 

Figure 9. Decomposition of Spherical Tetrahedron 

 

 

 

 

Figure 10. Spherical Wedge Correction 

TABLE 1. GEOMETRIC MODEL ACCURACY 

Porosity 
Measured Volume % Difference 

2D 3D 2D 3D 

20% 79.944% 79.979% 0.07% 0.03% 

15% 84.977% 84.916% 0.03% 0.10% 

10% 89.949% 89.987% 0.06% 0.01% 

5% 94.922% 94.938% 0.08% 0.07% 

4% 95.894% 95.941% 0.11% 0.06% 

3% 96.974% 96.876% 0.03% 0.13% 

 

IV. RESULTS 

A. Accuracy & Efficiency 

Table 1 shows the accuracy achieved by the model 

generation algorithm at various target porosities. Each model  

was generated as a CAD model and measured using onboard 

geometry tools. The measurements provided by the CAD 

software are the result of mesh-element volume computation. 

Each of the measured volumes is slightly less than the target 

volume, likely due to the entirely positive curvature of each 

models surface – a mesh element will neglect miniscule caps 

when approximating the volume of elements on a positively 

curved surface. Given the discretization error inherent in this 

measurement process and the low percent difference between 

the theoretical and measured volumes we conclude that both the 

rapid volume computation and particle compaction modules are 

functioning as intended. 

Figures 11 and 12 demonstrate the efficacy of the smart 

compaction algorithm in 2D and 3D respectively. In both cases 

the target porosity was set to 5% with a margin of 10−12. In 

both cases the algorithm appears to converge on the target 

porosity by iteration 5. The time elapsed during these 

computations was arbitrarily short. We observe that the 

compaction algorithm as a whole is highly effective, precise, 

and computationally efficient. 

 



   

 

Figure 11. 2D Compaction Plot 

 

Figure 12. 3D Compaction Plot 

B. Realistic Structure Generation 

Figures 13 through 16 show the compaction process from 

population to final compaction in 2D and 3D. We observe that 

in both cases particles settle and compact in a seemingly natural 

manner. Voids appear uniformly distributed and no two 

particles appear to intersect disproportionately. The void 

characteristics in these specimens resemble those observed in 

sintered compact microstructures.  

 

 

Figure 13. Initial Population - 2D 

 

 

Figure 14. Sintered Particle Model  - 2D 

 

 

Figure 15. Initial Population - 3D 

 

 

Figure 16. Sintered Particle Model - 3D 
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