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Abstract— In the era of Industry 4.0, manufacturing systems 

are becoming more and more efficient. Indeed, decision making 

for operations and production enables companies to maximize 

their profits and be more competitive. However, some 

industries are behind in their integration of Industry 4.0 

technologies. This is the case of foundries, which, with their 

traditional manufacturing processes, do not perceive the 

potential benefits of Industry 4.0. In particular, this industry 

relies on digital technologies to connect production systems 

throughout the supply chain with smart factories. The 

manufacturing industry must rely on Industry 4.0 to produce 

more personalized products while remaining economically 

competitive. Hence, this study seeks to optimize the 

manufacturing process of a titanium recycling and foundry 

company, Metalliage Inc., with a program that selects the raw 

materials to be melted in order to minimize costs and meet order 

constraints.  A model is developed to simulate the production 

as a mixed integer linear programming problem. The conducted 

study shows a potential gain of 20% that could be achieved with 

production supported by Industry 4.0 technologies. A possible 

integration of these technologies will be proposed in the context 

of a metal recycling plant. 

Keywords- Industry 4.0; Foundry 4.0; Smart Factory; Titanium 

recycling; Circular Manufacturing; Metal scrap 

I.  INTRODUCTION 

A. Context 

Ferrotitanium is usually produced by induction melting of 

titanium scrap with iron or steel [1]. However, it is also 

produced directly from titanium mineral concentrates. The 

standard grades of ferrotitanium are 30% and 70% titanium 

(Ti). During steelmaking, titanium is introduced as 

ferrotitanium because of its lower melting temperature and 

higher density compared to those of titanium scrap. Producers 

of interstitial-free, stainless, and high-strength low-alloy steels 

are the major consumers of titanium within the steel industry 

[2]. The main source for titanium recycling is currently titanium 

scrap produced by smelting and manufacturing processes 

instead of pure Ti products [3]. The main impurities in Ti scrap 

are oxygen (O) and iron (Fe). Ti scrap with low concentrations 

of O and Fe are remelted to obtain Ti and its alloys. On the other 

hand, Ti scrap with a high content of O and Fe is used as 

ferrotitanium. Given the increase in demand for Ti, the amount 

of low-grade Ti scrap generated will exceed the demand for 

ferrotitanium. Therefore, there is a need to improve the removal 

of O & Fe for the efficient use of Ti [4].  

At the start of the 21st century, the recession forced many 

companies to cut production costs and better understand 

customer demand. Lean Manufacturing has shown itself to be a 

response to its new problems by manufacturers by reducing 

waste and actions without added value. Lean manufacturing is 

regularly defined as a complete set of techniques that help to 

constantly identify and eliminate waste (muda), improve quality 

and production and reduce time and costs. These include 

continuous process improvement (kaizen) and error protection 

(poka-yoke) [5]. Lean manufacturing has brought many tools, 

methodologies, concepts allowing an optimal production 

process. By following a Lean direction, any business in any 

industry of any size or type can continuously improve their 

business over the long term [6]. The Value Stream Mapping 

(VSM) methodology is a Lean manufacturing method used to 

improve the capacity of a production line. VSM can be used as 

a data-driven decision-making tool to identify constraints in the 

current state, to identify waste and to propose an optimized 

future state of production [7]. Lead times are reduced, the 

added-value ratio is significantly increased and cycle time is 

improved by minimizing handling time. For a long time, VSM 

was the tool to use to reveal all the data, problems, processes 

and operations to manufacture products [8].  

Today, the industry is going through a period of technological 

progress, coined as Industry 4.0 [9], as a result of new digital 

industrial technologies. In Industry 4.0, sensors, machines, parts 

and computer systems will be connected along the entire value 

chain (e.g. deploying Internet-of-Things (IoT) [10]). These 

connected systems can interact with each other and analyse data 

to predict failure and adapt to change. In addition, plant 

operators can use IoT enabled devices to be better informed on 

process flows, operation and foundry process progress. Industry 
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4.0 will enable data collection and analysis, improving speed 

and flexibility to produce higher quality goods at reduced costs. 

This will increase productivity and support industrial growth 

consequently [9]. Companies have to start preparing for this 

fourth industrial revolution in order to remain competitive with 

competitors around the world. For example, production control 

systems using material consumption data could be deployed, 

forecasting the need for consumables by informing the relevant 

personnel in the company at any time. Foundries 4.0 is the 

integration of Industry 4.0 principles into traditional foundries. 

There are many issues at stake: the casting process is known to 

be one of the most energy-intensive processes. Integrated 

sensors in an IoT architecture can be an effective way to reduce 

energy consumption in this industry resulting in a more 

sustainable manufacturing process. These technologies can 

enable better control of casting processes by measuring casting 

parameters in real time. Hence, we can easily understand how 

Industry 4.0 technologies can improve the metalworking 

industry [10]. However, the integration of digital technologies 

towards intelligent foundries is not yet well defined and 

explored to its full extent. There are many unknown aspects of 

this digital integration. It is therefore necessary to identify these 

stages in order to acquire an understanding of all the challenges 

and to ensure a smooth transition from foundries to Smart 

Foundries or Foundries 4.0 [11]. Knowledge gained during the 

project on these smart approaches in this field can easily be 

transferred to other companies in the same field (e.g. metallic 

scrap recyclers, foundries, titanium alloy producers and metal 

industries as a whole), therefore contributing to increase 

competitiveness of the Canadian metal industry. 

 

B. Case study: Metalliage Inc. 

Metalliage is a company operating since 1998 in the Greater 

Montreal area with the objective of producing the highest 

quality titanium alloys in  the market by recycling titanium 

scrap materials. Today, Metalliage supplies nearly four 

continents and twelve countries with these products. Metalliage 

Inc., as a major producer of ferrotitanium in North America, 

aims to develop a knowledge-based approach in their process 

improvement strategy. The company has developed valuable in-

house expertise in controlling the casting process parameters, 

based on practiced standards, for various families of 

ferrotitanium grades. However, it is lacking specific expertise 

on automatization and operation research for plant and process-

flow optimization and improvement in the context of Industry 

4.0. In order to strengthen the leadership position of the 

company several research and development projects are 

envisioned enabling an increase of its efficiency and its market 

share. In this context, the presented study on Industry 4.0 

technology integration towards a more sustainable and efficient 

foundry process flow was developed to optimize the production 

plant and its process flows.  

The processes at Metalliage can be sub-divided in five 

divisions, listed as follows: 1) the material division, 2) the 

washing line., 3) the furnace, 4) the crushing and 5) the bagging.  

Titanium arrives at the plant as machining chips or scrap and 

passes through each of these departments. However, the flow of 

products between these divisions requires improvements, e.g. 

the location of the different machines and the location of stocks 

should be optimized for more efficient plant operation. The 

company plans have also evolved over the years and no updated 

data is available. Finally, the metallurgy industry is lagging 

behind Industry 4.0. The approach to moving towards smart 

factories in the case of foundries is still poorly researched and 

needs to be more concretely defined in order to remain 

competitive and efficient  within the industry. A major research 

gap is a framework for integration of smart digital technologies 

towards intelligent foundries, which is not yet well defined and 

explored. Metalliage wishes to improve its production line in 

order to increase its market share, diversify its production and 

prepare its entry into a smarter approach, making use of modern 

automation, monitoring, tracking (communication) and 

controlling technology.  

 

C. Objectives 

The main objective of this research project is to investigate and 

propose solutions for the transition towards Industry 4.0 in the 

metallurgical industry. This includes optimization of the 

process flow and the manufacturing process for high value 

metal alloy production by scrap recycling through an Industry 

4.0 approach using smart communication.  

A preliminary study of the Metalliage production line with a 

VSM highlighted the foundry as the bottleneck station of the 

Metalliage production line. It is also the primary station because 

it is the stage that gives the most added-value to Metalliage 

products: it is the stage that transforms waste into a high-quality 

material that can be used again in industry.  

The objective of this research is to propose a solution to 

optimize this key stage by automating the selection of raw 

materials in order to optimize the manufacturing cost. A 

decision-making tool will be created in mixed integer linear 

programming for this purpose. In a first step, the flows of the 

foundry station will be modeled, then a numerical example will 

validate this model. Finally, the impact of such an optimization 

tool will be calculated for real orders. Based on the results 

obtained, proposals will be made to achieve these efficiencies 

in practice and to justify investments to optimize the process 

with digital technologies. This work therefore presents an 

approach to realize the first steps towards Foundry 4.0 by 

proposing a method of process optimization using smart 

technologies. 

 

II. FOUNDRY OPTIMIZATION 

A. Modelization 

In order to improve the production line and more precisely the 

foundry station, it is necessary to model the material flows that 

describe this production. Ferrotitanium ingots of around 70% 

titanium correspond to the output of the system. As shown in 

Fig. 1, at the input, raw materials have different compositions 

and different shapes.  



   

 

Figure 1. Production principle at Metalliage 

 

  

 

Figure 2. Developed model of the production line at Metalliage 

TABLE I.  INDICES, PARAMETERS AND VARIABLES 

 

 

More precisely, we select from the stock of raw materials 

available in quantity 𝑆𝑗 , the quantities 𝑌𝑗  that we need to 

manufacture an order. These 𝑌𝑗  quantities are in boxes. The 

contents of these boxes will then be put in bins for the foundry. 

Each bin contains one type of raw material for the production 

of 1 ingot. The quantity of raw material in the bins  is noted 

𝑋𝑛,𝑗.  The mixing of the 𝑋𝑛,𝑗 allows to obtain ingots respecting 

the atomic composition required by the customer of the order. 

This modeling is illustrated in Fig. 2. Table I shows the 

meanings of the different indices, variables and parameters in 

the model. Currently, the selection of raw materials and the 

composition of ingots is done manually thanks to the experience 

of the company’s engineers. However, considering all the cost 

and composition parameters in order to determine the most 

optimal raw material choice is humanly impossible. The idea is 

n Ingot indice (n = 1...N)

j Raw materials indice (j = 1…J)

a Atom indice (a = 1…A)

Sj Quantity of raw materials j in stock

Yj Quantity of raw materials j used for manufacture

Xnj Quantity of raw materials j used for the ingot n 

Cja Composition of the raw material j in atom a

ICna Composition of the ingot n in atom a

DCna Composition required by the customer in atom a

aj 1 if the raw material j has been used for the order, 0 otherwise

bnj 1 if the raw material j has been used for an ingot, 0 otherwise

rmcj Raw material cost j /lbs

M Ingot mass

m Maximum amount of raw material j  boxes per order 

p Maximum amount of bins per ingot in the furnace



   

to automate the selection of raw materials. Section II. B. will 

detail the equations that will govern this optimization program. 

 

B. Constraints 

After formulating the problem, we need to write the constraints 

that will drive the model. First, the composition 𝐼𝐶𝑛,𝑎of each 

ingot n in atom a is given by the raw materials 𝑋𝑛,𝑗 that were 

used to make this ingot. 

 

𝐼𝐶𝑛,𝑎 =∑∑𝑋𝑛,𝑗 . 𝐶𝑗,𝑎
𝑗𝑎

 (1) 

The raw materials 𝑋𝑛,𝑗 put in the ingot come from the boxes of 

raw materials 𝑌𝑗 taken from stocks. 

.𝑌𝑗 = ∑ 𝑋𝑛,𝑗𝑛 , ∀𝑗 (2) 

 

From a quality point of view, all ingots must comply with the 

order. Table 2 is an example of the requested composition. It 

composes threshold values 𝐷𝐶𝑛,𝑎 which must not be exceeded. 

Thus, the compositions in atoms a of the ingots j of the ingots 

𝐼𝐶𝑛,𝑎 must respect the following equations: 

 

𝐼𝐶𝑛,𝑇𝑖 ≥ 𝐷𝐶𝑛,𝑇𝑖 , ∀𝑛 (3) 

 

𝐼𝐶𝑛,𝑎 ≤ 𝐷𝐶𝑛,𝑎, ∀𝑛, ∀𝑎 ≥ 1 (4) 

The quantity of material j picked from stocks 𝑌𝑗must not exceed 

the available quantity: 

𝑌𝑗 ≤ 𝑆𝑗 , ∀𝑗 (5) 

For logistical reasons, the number of boxes of raw materials 
collected should not be too large. A maximum amount m of 
boxes per order from stock is fixed for this purpose: 

∑ 𝑎𝑗𝑗 ≤ 𝑚 (6) 

 

Similarly, for logistical reasons, the number of bins of raw 

materials poured into the oven for each ingot should not be too 

large. A maximum amount p of bins per ingot in the furnace is 

defined for each ingot: 

 
∑ 𝑏𝑛,𝑗𝑗 ≤ 𝑝, ∀𝑛 (7) 

TABLE II.  ORDER EXAMPLE 

 
 

 

The ingots have a mass of 1 ton, or approximately M = 2200 

lbs: 

 

∑ 𝑋𝑛,𝑗𝑗 = 𝑀,∀𝑛 (8) 

 

 

C. Objective Function 

 

With the constraints of our model defined, we seek to minimize 

the production costs of ferrotitanium ingots. The main 

production cost comes from the raw material used to 

manufacture the orders. The raw material cost RMC is defined 

by the sum of the costs of the different raw materials 𝑌𝑗 used: 

 

𝑅𝑀𝐶 = ∑ 𝑟𝑚𝑐𝑗 . 𝑌𝑗𝑗  (9) 

 

The objective function is defined as: 

 

𝑀𝐼𝑁 = 𝑅𝑀𝐶 (10) 

 

D. Numerical example 

 

A first test is performed with J = 30 raw materials from stock, 

i.e. a small part of the stock available at Metalliage. The 

program is asked for the raw materials to be taken from and 

poured into the furnace in order to obtain N = 2 ingots for the 

order in Table II. The resolution of the model is done with 

LINGO. The compositions of the ingots obtained are given in 

Table III. The program returns the values of 𝑌𝑗 and 𝑋𝑛,𝑗 in Table 

IV. These compositions comply well with the requirements of 

the order. The raw material cost is $2,667 for these two ingots. 

In comparison, when these two ingots were manufactured by 

choosing the raw material without optimization, the raw 

material cost was $3,012. The cost of raw material is therefore 

lowered to satisfy the order, the model is therefore verified and 

helps the manufacturer to choose the raw materials optimally. 

 

TABLE III.  INGOT COMPOSITIONS (IN %) 

 

 
 

 

 

n=1 n=2

Ti 66.77 65.64

Al 2.41 2.91

V 1.11 1.20

N 0.86E-2 0.91E-02

C 0.93E-01 0.99e-01

Si 0.82E-01 0.82-e01

Sn 0.36 0.45

P 0.11E-01 0.11E-01

S 0.11E-02 0.11E-02

Fe 27.10 27.09



   

TABLE IV.  RAW MATERIALS SELECTED FROM STOCKS AND CONTENTS OF 

FOUNDRY BINS (IN HUNDRED OF LBS) 

 
 

III. RESULTS 

The objective now is to see the gain possible with this tool in 

conditions similar to the manufacturing reality with a real 

control. Here an order of N = 20 ingots will be taken. For the 

order of Table 2, the production obtained in reality had the 

composition shown in Table V. 

The cost of this production was $33,664. The composition 

obtained from the optimization program and the production 

price are now being examined. J = 167 different raw materials 

that were available in Metalliage's inventory at the time the 

order was actually produced. There is also a maximum number 

of boxes of raw materials at m = 10. The composition is given 

in Table VI: the customer's restrictions are respected.  

 

 

 

 

 

 

 

 

TABLE V.  AVERAGE COMPOSITIONS OF INGOTS MANUFACTURED (IN %) 

 

 

TABLE VI.  AVERAGE COMPOSITIONS OF THE INGOTS OBTAINED WITH 

THE OPTIMIZATION PROGRAM (IN %) 

 
 

 

Figure 3. Evolution of the production cost for different amounts of used 

distinct raw materials 

 

The cost of such production was $30,034, an 11% decrease in 

production cost. We then look at the evolution of the cost by 

allowing ourselves to use more different raw materials. This 

evolution (cost reduction) is visible in Fig. 3, which presents the 

ratio of optimized cost over the current costs versus the amount 

of raw material boxes. The results for a larger number of boxes 

of raw materials are not studied because the intention is to stay 

in ranges feasible for the operators.  More raw materials would 

further reduce production costs. Indeed, more boxes of raw 

materials would reduce production costs by up to 19% because 

Yj n=1 n=2

J=1 12 6 6

J=2 0 0 0

J=3 8 4 4

J=4 0 0 0

J=5 0 0 0

J=6 0 0 0

J=7 9 4 5

J=8 0 0 0

J=9 0 0 0

J=10 0 0 0

J=11 6 5 1

J=12 0 0 0

J=13 0 0 0

J=14 0 0 0

J=15 0 0 0

J=16 0 0 0

J=17 0 0 0

J=18 0 0 0

J=19 0 0 0

J=20 0 0 0

J=21 0 0 0

J=22 0 0 0

J=23 0 0 0

J=24 0 0 0

J=25 0 0 0

J=26 0 0 0

J=27 9 3 6

J=28 0 0 0

J=29 0 0 0

J=30 0 0 0

Xn,j TI 69.83

AL 2.70

V 1.49

N 0.25

C 0.12

SI 0.12

SN 0.06

P 0.02

S 0.02

FE 24.50

TI 65.09

AL 1.36

V 0.71

N 0.01

C 0.09

SI 0.09

SN 0.00

P 0.01

S 0.01

FE 29.94



   

smaller batch stocks could be used to adjust blends. It would be 

essential to enable operators, especially forklift drivers, to 

increase their speed of execution in picking up boxes of raw 

materials from stock and preparing the bins for the foundry. The 

addition of floor markings, an inventory storage and labelling 

system would therefore be of considerable value in increasing 

productivity. A better communication of the actions and raw 

materials to be picked up would also improve this rate. The 

implementation of such an automation system would require 

additional precision in the composition of the raw materials 

poured into the furnace. It would therefore be interesting to find 

a system to identify the composition precisely at the time of 

receipt and to automatically update this composition in the 

inventory if there is a discrepancy indicated with the 

composition given by the supplier. A system that would allow 

checking the homogeneity of the composition of a batch of raw 

materials received would also be useful. 

 

IV. CONCLUSION AND OUTLOOK 

The study of the Metalliage production line revealed a lack of 

automation in the production of ingots in order to limit the cost 

of raw materials. This lack of automation is above all at the level 

of decision making in the choice of raw materials. Indeed, this 

is done manually and this is not the best choice for a production 

that optimizes profit. To fill this lack, a mixed integer linear 

programming tool has been developed to improve the selection 

of raw materials. It would be possible to reduce raw material 

costs by almost 19% thanks to an optimal selection of raw 

materials. In order to achieve these productivity and cost gains, 

several projects should be done in the future to achieve the 

transition to Foundry 4.0 and the Smart Factory:  

 

First, automate raw material selection to reduce production 

costs, for both raw materials and manufacturing, and to increase 

productivity. To achieve this goal, an optimization program that 

would propose raw material mixtures in an acceptable time 

frame (using an Artificial Intelligence algorithm requiring 

training data) should be proposed. A collection of data 

concerning the manufacture of ferrotitanium ingots at the 

foundry level, and more precisely at the level of the foundry 

time and the compositions obtained would also be necessary. 

Indeed, the shape of the raw materials swells during the casting 

time. This correlation could be done by analyzing the foundry 

data. 

 

This optimization in the selection of raw materials and in the 

preparation of the blends requires an increase in the activity of 

the forklift drivers. An accurate determination of the 

composition of the raw materials received would also be 

important. In order to achieve these objectives, it would be 

interesting to rethink the inventory storage system to allow 

drivers to quickly access all the raw materials in the inventory. 

Implementing a 5S system in the warehouse would be helpful: 

floor markings would help keep workers safe and the workspace 

organized. It would be important to tidy the warehouse and 

remove all unused items from the work areas. This tidying 

should also take place in the offices, not just the shop floor. A 

labeling system that accommodates the variety of packaging of 

incoming raw materials would make it easy to identify raw 

materials for retrieval and avoid errors. An application could be 

developed that would indicate on a screen the raw materials to 

be taken from the stock, the contents of the foundry bins to be 

prepared, etc. In addition, a system that would alert smelters and 

forklift drivers when an ingot has finished melting would 

optimize the use of the furnace by minimizing ingot transition 

time.  Finally, the increase in furnace filling speed would be 

important. Several solutions are possible. The furnace ramp 

could be designed to accommodate more of the different raw 

materials, or a crusher that would make the raw materials more 

uniform in shape could be considered. 
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