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Abstract — Machine learning techniques are used to 

understand and predict data trends. The flexibility of machine 

learning approaches such as artificial neural networks (ANN) 

has seen these approaches being used in various applications. 

As experimental methods are costly and time-consuming, 

numerical simulations are often used for their predictive 

capabilities. In this work, ANN framework is proposed to 

predict the stress-strain and texture evolution response under 

simple shear. Stress-strain response from individual crystals 

were trained and validated with the ANN model to predict the 

polycrystalline response.  Results from the ANN model were 

compared to experimental simple shear stress-strain results 

and show good agreement. 
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I.  INTRODUCTION 

Numerical simulations provide a commercially viable 
method to predict material response for engineering design. 
Experimental techniques are the default method to measure the 
material response but due to high experimental cost, designers 
prefer numerical models to simulate material response under 
complex loading conditions. However, as the complexity of 
numerical models increase, these models require costly setups 
and material models which are not available in commercial 
softwares.  

Machine learning approaches such as artificial neural 
networks (ANN) provide a flexible alternative to numerical 
models. ANN models simulate a neuron in the brain that learns 
with training through available data. In addition, the flexibility 
of ANN models does not require implementation of complex or 
unknown physical relationships for predicting the material 
response [1], [2]. Results in literature show that ANN models 
show excellent predictive capabilities when compared to 
experimental results. Bhadeshia [3] has discussed some of the 
applications of ANN models in materials science. In addition, 
several researchers have used ANN for various applications in 
materials science to predict the material response. For example, 
ANN models have been used to predict the flow behavior for 
various steel and aluminum alloys at room and elevated 

temperatures [4]–[7]. ANN models have also been used to 
predict material damage under cyclic loading [8]–[11]. 
Recently, ANN models have also been used to predict local 
strain distributions [12] and forming limit diagrams (FLD’s) 
[13] for various metallic alloys. Even though ANN models 
have been used for various applications, literature lacks works 
in predicting texture dependent stress-strain response. In 
addition to the predictive capabilities, ANN models offer a 
computationally efficient solution. Compared to numerical 
models, ANN models provide huge time savings over 
commonly used simulation techniques.  

 It is well known that texture and more specifically, 
microstructure plays an important role in material stress-strain 
response. Therefore, prediction of flow behavior should be 
dependent on the material microstructure. Researchers have 
used ANN models to predict microstructure related properties 
of materials such as grain size [14], rolling textures [15], steel 
phases [16] etc. In addition, ANN models have also been used 
to find optimum microstructures for desirable properties [17]. 
Results from these works show the flexibility of ANN models 
to adapt to predict complex physical systems and provide 
accurate predictions for various materials. However, literature 
lacks prediction of texture dependent flow behavior using ANN 
models. 

In this work, an ANN framework is used to predict the 
stress-strain response of AA6063-T6 under simple shear. The 
stress-response is dependent on the initial texture of the 
material. The ANN model is created based on commonly found 
single crystal textures to predict the polycrystalline response. 
The single crystal data set for the ANN models is obtained 
from a Taylor based in-house crystal plasticity model [18], 
[19]. ANN predictions for the polycrystalline response are 
compared to experimental stress-strain results and show good 
agreement. The computational efficiency of ANN models is 
also compared to crystal plasticity simulations. Results shown 
in the work highlight the importance of ANN models for 
accurate and timely material behavior predictions. 



   

II. MATERIAL CHARACTERIZATION 

Commercially available aluminum alloy (AA6063-T6) used 
in this study had a nominal thickness of 1.8 mm. Simple shear 
tests were performed using a modified ASTM B831-14 sample 
geometry [20], [21]. The tests were performed using an MTS 
Landmark 370 Servo-hydraulic tensile machine with a load cell 
of 100 KN at 1.0 mm/min. Strain evolution during the test was 
captured using a digital image correlation (DIC) system 
(ARAMIS™) at 1 fps. The shear angles θ were averaged to 

find the shear strain’s γ using . To capture the initial 
microstructure, Electron Backscatter Diffraction (EBSD) was 
performed using a field-emission Nova NanoSEM™ equipped 
with a TSL EBSD camera with a step size of 0.5 μm [19].  

The stress-strain and microstructure of AA6063-T6 is 
shown in Figure 1. The stress-strain response shows a typical 
simple shear behavior observed in several aluminum alloys. 
The final inverse pole figure (IPF) map is also shown in Figure 
1 with an average grain size of 65 µm. The <111> pole figure 
is shown in Figure 1 and shows a predominantly Cube and 
Goss texture.  As Cube and Goss are the predominant textures, 
these textures will be used to train the proposed ANN model.  
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Figure 1: (a) Inverse pole figure (IPF) map for as-received 

material (b) Corresponding <111> pole figure (c) Simple shear 

stress-strain curve  

III. CRYSTAL PLASTICITY FRAMEWORK 

Phenomenological models are the most commonly used 
material models for capturing the material stress-strain 
behavior [22], [23]. However, they cannot capture the 
microstructure evolution during deformation. In addition, 
incorporating microstructure dependent flow behavior is 
challenging. Crystal plasticity formulations offer a viable 
solution as they use crystallographic slip to predict the material 
behavior and therefore can account for the microstructure. 
These formulations have been used by several researchers to 
predict the flow behavior under various loading conditions 
[24]–[26]. 

The Taylor based rate-dependent crystal plasticity 
formulation used in this work accounts for the plastic 
deformation on 12 <110> and <111> slip systems [27] and is 
given by: 

  

where  is the Jaumann rate of Cauchy stress,  is the 
strain-rate tensor,  is the elastic stress tensor and is the 
viscoplastic type stress state.  

Slip rates for each slip system  are given as:  

 

 



where  is the reference shear rate, is the resolved shear 
stress,  is the strain-rate sensitivity index and  is the slip 
system hardness.  

Similarly, work hardening is given as:  

 

 



where  are the hardening moduli such as: 

 
 (no sum on ) 

where  defines the latent hardening behavior of the 

crystal and  is the single crystal hardening [28] and is given 

as: 

 

 



where  and  are the hardening rates and  is the 
saturation shear stress, if . 

IV. ARTIFICIAL NEURAL NETWORK MODEL 

In this work, an ANN model is used to predict the stress-
strain response from single crystals. Other machine learning 
models such as ReLu could also be used but ANN was used 
due to its flexibility and success with various engineering 
related problems. The starting microstructure and strain-rate in 
the proposed ANN model are used as inputs to the ANN 
framework while the complete stress-strain response from 
crystal plasticity single crystal numerical simulations are used 
as outputs from the ANN framework.  

A typical ANN model consists of Input and Output layers 
with single or multiple neurons in each layer as shown in 
Figure 2. A feed forward back propagation ANN is used in this 
work to provide a flexible model [30]. In this model, the 
outputs and inputs are connected by a function  which is 
found by minimizing the cost function . The cost function is 
taken as an average of the individual cost functions  and is 
given as: 

 

 

 



   

 

 

 

Figure 2: Artificial neural network visualization 
Similarly, the neurons which are part of a particular layer 

are given as: 

 

 


where  and  are the weights and bias of the -th input in 
the ANN model,  is the number of inputs in the input vector, 

, and  is the activation function. The interconnected layers 
dictate that the output from one layer acts as an input to the 
next layer. For example, Figure 2 shows an ANN model with 4 
outputs and inputs with 6 neurons. The inputs and outputs are 
implemented as: 

   for 

 and  

 

   

where  is the number of layers,  are the activation 
vectors for each neuron in layer  and  are the model 
parameters.  

The weight matrices  , the vectors of biases  
  and model parameters are learned from the input 

data set  for the optimal function . A backpropagation 
algorithm is used to find the cost function gradients as it is one 
of the most commonly used approach [32]. Efficiency of the 
backpropagation algorithm is measured using an average 
square error between the outputs  and target values  
[33]. 

The activation function for each neuron can be specified by 
various functions [34], [35]. However, the hyperbolic tangent 
sigmoid function is most commonly used and is given as: 

 

 

 

Finally, the ANN model is broken down into training 
(70%), validation (70%) and test (70%) sets. The training and 
validation datasets are used to make the ANN model while the 
test set is new data that is used to validate and measure the 
effectiveness of the model. In this work, the input strain  and 
initial microstructure  is taken as the input to the ANN 
model while the corresponding stress  is taken as the model 
output for single crystal. The polycrystalline stress-strain 
behavior of the model is predicted based on the single crystal 
results.  

V. RESULTS AND DISCUSSION 

A. Crystal plasticity results 

Rate-dependent crystal plasticity model described earlier 
was used to model the texture dependent stress-strain behavior 
of AA6063-T6 under simple shear. The simulation parameters 
used for the crystal plasticity simulations is shown in Table 1. 

Table 1: Crystal plasticity simulation parameters  

      

0.02 1.0 2.08 0.14 1.18 61.0 

The corresponding texture results are shown in Figure 3. It 
should be noted that as Cube (0, 0, 0) and Goss (0, 45, 0) 
constitute the majority of the texture components in AA6063-
T6, only these texture components were modeled using the 
crystal plasticity simulations. 

 

Figure 3: Single crystal Goss and Cube stress-strain results 
under simple shear. 

B. Artificial neural network results 

The crystal plasticity single crystal stress-strain results were 
used as inputs to the ANN model. Both texture components 
were trained together so incorporate the interdependency 
between texture components. The corresponding results from 
the crystal plasticity (XP) simulations and artificial neural 
network (ANN) results are shown in Figure 4. Results show an 
excellent match with both the Cube and Goss component 
stress-strain results. The stress-strain results are able to capture 
both the elastic and plastic response of the single crystal 
results. The average MSE error was also calculated for the 
Cube and Goss ANN predictions (Table 2). Results show an 
MSE error in the order of 10-5 thus showing the high level of 
accuracy achievable by ANN models. 

 



   

Figure 4: Crystal plasticity (XP) and artificial neural 
network (ANN) Single crystal Goss and Cube stress-strain 
results under simple shear. 

The validation of the ANN model with single crystal results 
enables the use of the ANN model to be used for 
polycrystalline predictions. Therefore, the ANN model was 
used to predict the polycrystalline AA6063-T6 behavior using 
the ANN predictions. It should be noted that as the ANN model 
was not trained on all possible texture components, a higher 
error should be expected. Figure 5 shows the comparison 
between experimental (EXP) and artificial neural network 
(ANN) predictions on the polycrystalline stress-strain response 
of AA6063-T6 under simple shear. Comparison between the 
experimental and ANN predictions also serves as a validation 
for this work. The MSE for the polycrystalline ANN 
predictions was calculated as 1.74 x 10-3 (Table 2). ANN 
predictions show an excellent agreement with experimental 
results with high accuracy. A little discrepancy is noted near 
the yield point and at 20% shear strain. In addition, compared 
to single crystal results, polycrystalline show a relatively high 
error. These differences are due to the limited texture 
components used in training the ANN model.  

 

Figure 5: Comparison between experimental (EXP) and 
artificial neural network (ANN) polycrystalline simple shear 

response. 

Table 2: Mean squared errors from ANN model results 

 Error 

Cube  4.0 x 10-5 

Goss  3.95 x 10-5 

Polycrystal 1.74 x 10-3 

 

VI. CONCLUSIONS 

In this work, an artificial neural network (ANN) framework 
was proposed to simulate texture dependent stress-strain 
behavior. The proposed methodology was applied on AA6063-
T6 under simple shear. Crystal plasticity single crystal 
simulations were conducted on the major texture components 
found in the as-received material. The output from crystal 
plasticity simulations was used as input to the ANN model. 
Single crystal ANN predictions showed excellent results with a 
MSE of 10-5. Validated ANN model was then used to predict 
the polycrystalline AA6063-T6 response under simple shear. 
The ANN model showed excellent agreement with 

experimental results. The framework proposed in this work 
shows the strength and flexibility of ANN models for fast and 
accurate prediction of material behaviors under various initial 
and loading conditions. 
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