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Abstract—This paper presents an adaptive weighted 

prediction-based model predictive control using disturbance 
estimation for longitudinal autonomous driving. To reduce the 
negative effect of uncertainties on the control performance of 
model predictive control, the weighting function for linear 
prediction was designed based on an exponential function with 
disturbance estimation. The main role of the weighting function 
proposed in this study is to fade the effect of uncertainties as 
the prediction step increases. The disturbance of the 
longitudinal control model for autonomous driving was 
estimated using a sliding mode observer. The estimated 
disturbance was used to determine the main parameter of the 
weighting function. Performance evaluations were conducted 
using commercial software for reasonable evaluations of the 
control algorithm. Evaluation results show that the weighted 
prediction-based control algorithm can provide accurate 
tracking of desired states compared to the constant prediction-
based control algorithm. 
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I.  INTRODUCTION 

Model predictive control (MPC) algorithm has been widely 
used in various industrial fields for optimal control of multi-
input multi-output systems with input and state constraints. 
Generally, the MPC process is divided into three steps: error 
calculation, derivation of predictive outputs, and optimal input 
calculation through an optimization process. In the second and 
third steps, a relatively accurate mathematical model of the 
system is needed for reasonable prediction and accurate control 
inputs. However, there always exist unpredictable uncertainties 
between the mathematical model and the actual system. The 
uncertainties can be increased or decreased in the prediction 
step of the MPC formulation and this can have a negative 
influence on the control performance of the MPC. Therefore, 
various studies have been conducted to overcome the 
aforementioned limitation of the inherent MPC algorithm. 

Li et al [1] proposed a novel self-triggered MPC algorithm 
for simultaneous triggering and control using the total cost 
function that considers communication cost explicitly. They 
developed theoretical conditions on ensuring feasibility and 
closed-loop stability for constrained nonlinear systems.  Hou 
[2] developed an adaptive MPC algorithm for load torque 
estimation and prediction for the electric ship propulsion 
system that has a challenge of measuring load torque due to 
multi-frequency fluctuations. To evaluate the proposed MPC’s 
effectiveness, an input observer with linear prediction was 
developed for comparative study. In [3], an adaptive MPC 
trajectory tracking system was developed for autonomous 
wheel loaders, which could deal with the impact of curving 
paths on the trajectory tracking performance to improve 
tracking accuracy. Onkol [4] proposed the adaptive MPC 
algorithm to control the fast-varying error state in the inner 
loop for a two-wheeled robot manipulator with varying mass. 
M. Tsao et al. [5] presented a stochastic MPC algorithm that 
can leverage short-term probabilistic forecasts for dispatching 
and rebalancing autonomous mobility-on-demand systems. To 
design this control algorithm, the authors presented the core 
stochastic optimization problem in terms of a time-expanded 
network flow model. Seo et al. [6] developed a motion 
planning algorithm for lane change with a combination of 
probabilistic and deterministic prediction for automated driving 
under complex driving circumstances. A collision probability 
was defined by using a reachable set of uncertainty propagation 
and the lane change risk was monitored using the predicted 
time-to-collision and safety distance to guarantee safety in lane 
change behavior. Moser et al. [7] proposed a stochastic model 
predictive control approach to optimize the vehicle’s fuel 
consumption. The authors developed a conditional linear Gauss 
model and trained it with real measurements to estimate the 
probability distribution of the future velocity. He et al. [8] 
proposed a stochastic MPC of an air conditioning system to 
improve the energy efficiency of electric vehicles. In the study, 
a Markov-chain-based velocity predictor was adopted to 
provide the states of future disturbances over the stochastic 
MPC horizon. Also, three control approaches were compared 



   

in terms of electricity consumption, cabin temperature, and 
comfort fluctuation for reasonable performance evaluation. 

In the previous studies, it is found that disturbance 
estimation and prediction methods have been usually used to 
design an adaptive MPC with the observer-based estimation 
and stochastic approach. The estimated value of the current 
disturbance can be obtained by applying several types of 
observers or filtering methods. However, accurate prediction of 
future (potential) disturbances is difficult due to unpredictable 
changes in internal dynamics and environmental factors. To 
tackle the problem of inaccurate prediction of disturbance that 
degrades the MPC control performance, this study proposes an 
adaptive MPC algorithm for longitudinal autonomous driving 
by the application of the weighted prediction method using an 
exponential function. For the weighted prediction of the MPC, 
the decreasing exponential function was designed to determine 
the weighting factors at each prediction step. The time constant 
as a main parameter in the decreasing exponential function was 
determined using the time-varied disturbance. The proposed 
MPC was designed such that the time constant decreases to 
lessen the effect of the predicted far future states when the 
magnitude of the disturbance change rate is increased. Also, the 
disturbance of the system model used for the MPC formulation 
was estimated using a sliding mode observer under finite 
stability conditions. The algorithm was constructed in 
Matlab/Simulink environment and its performance evaluation 
was conducted using the commercial software (CarMaker). 

The rest of the paper is organized as follows. Section 2 
describes the adaptive weighted prediction-based MPC 
algorithm for longitudinal autonomous driving. Section 3 
presents the evaluation results. Finally, concluding remarks are 
provided in Section 4 with future works. 

II. ADAPTIVE WEIGHTED PREDICTION-BASED MPC USING 

DISTURBANCE ESTIMATION 

A. Weighted prediction-based MPC 

Figure 1 shows an overall model schematics of the adaptive 
weighted prediction-based MPC designed in the study. 

 

Figure 1.  Overall model schematics of the designed MPC algorithm. 

In the first step of the MPC process, error states are 
calculated using the system states and target values defined for 
tracking control. Then, the predictive outputs are derived using 
the computed error states and system model during the second 
step in which the adaptive weighting factors are derived based 
on the estimated disturbance to compute the predictive outputs. 
In the final step, optimal control inputs are computed with 
input/state constraints. The MPC controller was designed based 

on a longitudinal kinematic model that represents the kinematic 
relationship between the subject and preceding vehicles. Figure 
2 shows a driving scenario that the subject vehicle is driving 
with the preceding vehicle. 

 

Figure 2.  Driving scenario: subject vehicle’s driving with the preceding 

vehicle 

In Fig. 2, 
1x  and 

2x  represents the relative states such as 

clearance and relative velocity between the subject and 
preceding vehicles. Using the relative states, the state-space 
kinematic model can be derived as follows.  
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where 
1e  and 

2e  represent errors such as clearance error and 

relative velocity between the subject and preceding vehicles. 

sa  and pa  are each longitudinal acceleration of the subject and 

preceding vehicles. The longitudinal acceleration of the 
preceding vehicle was regarded as a disturbance and estimated 
using a sliding mode observer. The longitudinal acceleration of 
the subject vehicle is an optimal control input derived from the 

MPC to minimize the magnitude of error states 
1e  and 

2e .  

For the computation of the optimal longitudinal acceleration, 
the discretized state-space equation was derived and predictive 
error y  was calculated using the weighting matrix C  and Eq. 

(1). The following equations are the discretized state-space 
equation, output, and predictive output vector Y, respectively.    


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
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where U  is the optimal input vector and the predictive output 

vector Y  contains N predicted output errors. The matrices ,G  

,H  ,F  ,M  ,W and K  were derived using the discretized 

matrices dA , dB , dF , and output matrix C  [9]. Based on the 

predictive output and the defined parameters that include the 
input weighting factor r , output matrix C , and difference 

matrix D , the cost function J  was designed with the adaptive 

weighting function wQ . Equation (5) presents the designed cost 

function for the MPC input. 
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The adaptive weighting function in the cost function was 
designed using an exponential function with a negative 
exponent and a finite convergence condition. The following 

equation ,w iQ  is the adaptive weighting function designed in 

this study, which was used to identify diagonal elements of the 

weighting matrix 
wQ . 


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where t  and   are the discretized time and time constant, 

respectively. The value of the weighting function varies with 

the time constant and it has the range of (0,1] . In this study, the 

time constant was designed using the disturbance (i.e., 

longitudinal acceleration of the preceding vehicle pa  in Eq. 

(1)) to reduce its negative effect on control performance. Also, 
in our design, the time constant value is decreased to reduce the 
value of the weighting factor if the magnitude of the 
disturbance’s change rate is increased as the prediction step 
increase. This relationship between the time constant and the 
disturbance’s change rate is shown in Fig. 3. 

 

Figure 3.   Relationship between the time constant and the disturbance’s 

change rate  

Eqs. (7), (8), and (9) are the designed time constant 
function and its max and min limits, respectively according to 
the range of disturbance’s change rate. 
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where min , max , and maxw  are the minimum and maximum 

time constant, and the maximum magnitude of disturbance 
change rate as a design parameter for the time constant 

function.. kw  is the current magnitude of the system’s 

disturbance change rate in Eq. (2).  

In this study, the disturbance pa  was estimated using a 

sliding mode observer and its change rate was also used for the 
time constant calculation. The next subsection describes the 

disturbance estimation algorithm using a sliding mode 
observer. 

B. Sliding mode observer-based disturbance estimation 

The sliding mode observer was designed to estimate the 

disturbance pa . For this design, the observer dynamic model in 

Eq. (10) was used to derive an error model with the linear 
transformation. The output y  and transformation matrix T  

used for state transformation are shown in Eq. (11) and (12). 
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where 
tA  and 

tB  are the matrices for the linearly transformed 

system and input. C  and 
nG  are the output and injection 

distribution matrices for continuous error dynamics. ê  and v  

are the estimated error and injection term. The matrices C  and 

nG  are defined as  1 1  and  1 2

T
L L . L  is the design 

parameter and I  is the identity matrix. The transformation 
matrix contains the output matrix and its nullspace for the 
separation of error states into two states (new error and output 
error). Using Eqs. (1) and (10), the error dynamics for the 

observer can be derived with the error state, ˆe e e   as 

follows. 

 t ne A e G v   

Based on the linear transformation using ,T  the error 

dynamics can be partitioned into the new transformed error 
state and output error. The injection term, v  was designed for 

error convergence of the error dynamics in Eq. (13) using the 
output error and the magnitude   of injection term designed 

for observer stability. 

  sign yv e   

With the assumption that the absolute value of the total 
right side of output error dynamics, Eq. (13) except for the term 

that contains the injection v is bounded by value 
bL ,  was 

designed for error convergence using the Lyapunov direct 
method with eta-reachability conditions [10] as shown in Eq. 
(15). 

 , 0bL      

where   is the design parameter that has a strictly positive 

value to ensure stability margin of the designed sliding mode 
observer.  
 

 The values of 1L  and 2L  of the matrix nG  were 

determined by multiplying the transformation matrix and 
disturbance matrix in Eq. (1) for estimation of the disturbance 
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after the output error is converged to zero. After the output 
error terms in Eq. (13) are considered as zero, the eigenvalue of 
error dynamics in Eq. (13) for the new state error has a 
negative value based on the determined L1 and L2. Therefore, 
the error dynamics is asymptotically stable and the equivalent 

injection term eqv  can be approximated to the disturbance 

pa after all errors of the sliding mode observer converge to 

near zero. The equivalent injection term was derived by 
multiplying the first order delay function with the time constant 
and injection term as follows. 


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1
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v

a v v
s

 


 

where 
v  is the time constant for the derivation of the 

equivalent injection term and s  is the complex variable of the 

Laplace transform. The magnitude of the estimated 
disturbance’s change rate was used to compute the time 
constant for the adaptive weighting function. The next section 
describes the performance evaluation results obtained using the 
commercial software CarMaker. 

III. PERFORMANCE EVALUATION 

Figure 4 shows a detailed model schematic for performance 
evaluation of the MPC algorithm with the proposed adaptive 
weighting function. 

 

Figure 4.  Model schematics of performance evaluations 

The commercial software CarMaker was used for the 
performance evaluation of the proposed algorithm described in 
Fig. 4. To obtain the clearance and relative velocity between 
the preceding and subject vehicles, the velocity profile obtained 
by HILS (Human in the Loop system) was used as the 
longitudinal velocity of the preceding vehicle for performance 
evaluation. The HILS consists of the software (CarMaker) and 
hardware parts that are equipped with steering wheels and 
pedals for acceleration/braking to receive the driver’s inputs. 

In the velocity profile, there are two deceleration regions 
having -3 m/s2 and -4 m/s2 as a deceleration value. The throttle 
and brake inputs for desired acceleration tracking were 
controlled using a PID (proportional-integral-derivative) 
controller. The evaluation results from the adaptive weighted 
prediction-based MPC were compared to the ones from the 
MPC without the adaptive weighted prediction component (i.e., 
constant prediction). Figs. 5-10 show the evaluation results of 
the vehicle dynamic behaviors (velocity, clearance), control 

input (desired acceleration), estimated disturbance, error states 
of clearance and velocity, and time constant. 

 

Figure 5.  Results: velocity of the preceding and subject vehicles 

 

Figure 6.  Results: clearance 

 

Figure 7.  Results: desired acceleration 
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Figure 8.  Results: estimated disturbance (longitudinal acceleration, pa ) 

 

(a) Clearance error 

 

(b) Velocity error 

Figure 9.  Results: error states (clearance and velocity) 

 

Figure 10.  Results: time constant 

As shown in Figs. 5 and 6, the subject vehicle can track the 
desired velocity (preceding vehicle velocity) reasonably within 
the clearance of 10 m - 40 m for all cases (both constant 
prediction and adaptive weighted prediction). In Fig. 7, the 
weighted prediction-based MPC shows a larger desired 
acceleration than the MPC with constant prediction. Figure 8 
presents that the estimated disturbance (longitudinal 
acceleration of the preceding vehicle) obtained using the 
designed sliding mode observer falls within a small range of 
error (i.e., ± 0.05 between actual and estimated signals) except 
for the regions of convergence (0-5 sec) and two decelerating 
edges (around 30 sec and 60 sec). This result means that the 
equivalent injection term can represent the actual longitudinal 

acceleration of the preceding vehicle. Figure 9 shows the 
clearance and velocity errors. In the case of the weighted 
prediction-based MPC, the clearance error approached zero 
faster compared to the case of constant prediction-based MPC 
(0-5 sec) due to a larger deceleration value. After 30 sec, there 
is no significant difference in clearance between the two cases. 
The magnitude of velocity errors in the case of weighted 
prediction-based MPC is a bit larger than that with a constant 
prediction-based MPC around 30 sec and 60 sec due to its 
relatively higher acceleration. Therefore, the weighting 
function needs to be improved by considering the error states, 
which enables to ameliorate the control performance in any 
driving conditions. The time constant that was computed using 
the proposed rule in Eqs. (7)-(9) is shown in Fig. 10. When the 
preceding vehicle decelerates at 30 sec and 60 sec, the time 
constant value was decreased due to the sudden change of the 
estimated longitudinal acceleration (i.e., increase in the 
magnitude of its change rate). The decrease of the time 
constant value results in reducing the weighting function value 
and thus increasing the desired longitudinal acceleration of the 
subject vehicle as the prediction step increases. 

IV. CONCLUSION 

This study proposes the MPC algorithm with adaptive 
weighted prediction and disturbance estimation for longitudinal 
autonomous driving. The longitudinal acceleration of the 
preceding vehicle considered as a disturbance was estimated 
using a sliding mode observer. The estimated disturbance was 
utilized to compute the time constant for the weighting function 
designed by a decreasing exponential function. To reduce the 
negative effect of uncertainties on the control performance of 
the MPC, the weighting function was designed to adjust the 
individual cost value on the predicted states in the total cost 
function. The performance evaluation was conducted using 
CarMaker software. Evaluation results indicate that the 
adaptive weighted prediction-based MPC has a good capability 
for target tracking control with a large desired acceleration 
when the disturbance is changed dramatically. However, 
decreasing cost values for the predicted states in the MPC 
process does not always have a positive influence on control 
performance under unexpected and unpredictable disturbances. 
Therefore, the development of an adaptation algorithm for 
weighting values in a cost function of the MPC is considered as 
future work. Since some parameters such as minimum and 
maximum time constant values were determined for only one 
autonomous driving scenario, the control performance can be 
improved through parameter optimization or parameter 
adaptation algorithms under various scenarios. Therefore, this 
theme can be considered as a topic for future work. The 
methodology development for online self-tuning of the 
parameters using states and inputs can be another future 
extension since it can contribute to the enhancement of control 
robustness by dealing with various driving conditions. Finally, 
parameter optimization of finite-time stability conditions can 
be an extended work to enhance the estimation performance of 
a sliding mode observer. From successful findings from this 
study, it is expected that the proposed control algorithm can be 
extensively applicable to multivariable model predictive 
controllers as an adaptation approach. 
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