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Abstract— A program for generating a geometrical model of 

Tubular Braided Composites is developed in this paper. The 

MATLAB and SolidWorks software packages are combined for 

generating the solid model. The step-by-step process for 

generating different 2D TBC patterns is explained, and the 

relevant models are shown. The program's output is compared 

against commercial software and micro-Computed 

Tomography results. 
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I.  INTRODUCTION 

Composite materials constitute two or more materials with 
different mechanical properties. Combining these materials 
provides improved mechanical properties that none of them can 
provide individually [1]. Braided composites are continuous 
fiber-based reinforced materials used in various industries, from 
aerospace, automotive, petroleum, and building to medical 
treatments, sporting and marine [2]–[4]. They can be used in a 
rope to reinforce hoses and pipes or medical catheters [5]. For 
more than 200 years, braiding has been used to produce textile 
fabrics [2]. Braided composites have significant advantages 
compared to conventional laminate composites, such as better 
out-of-plane stiffness, strength, toughness properties, net-shape 
fabrication, lower fabrication cost, impact and delamination 
resistance, and high performance [6][7]. Because of these 
advantages, the studies in analyzing and manufacturing braided 
composite and their application are increasing significantly. 

There are different types of braided composite; two-
dimensional, three-dimensional, and multidirectional. Each of 
these types can be produced as flat or tubular shapes. In two-
dimensional braided composites, yarns are interlaced only in one 
plane, and the preform can be manufactured either flat or tubular. 
Two-dimensional (2D) braided composites can be produced 
using a Maypole braider. In triaxial two-dimensional braided 
composite, there are additional yarns interwoven between two-
dimensional braids and directed alongside the axial braided 
composite [8]. One way to categorize 2-D braided composites is 
based on the assembly pattern of yarns. Depending on the 
arrangement and movement of carriers, different patterns of 
braided composites will be made. The patterns of the braided 
composites are diamond (one tow passing above and then below 
the other tows, 1/1) Figure 1 a), regular (two tows passing above 
and then below the other tows, 2/2) Figure 1 b), and Hercules 

(three tows passing above and then below the other tows 3/3) 
Figure 1 c).  

a) 

 

b) 

 

c) 

 

 
Figure 1 Different pattern of braided composite (a): 2-D Diamond 

(one by one), (b): 2-D Regular (two by two), (c) 2-D Hercules 

(three by three) 

 

Tubular Braided Composites (TBC) have several variables, 
such as variable geometry, variable constituents, and non-
uniform feature of braided composites. Thus, the 
characterization of braided composites is not an easy and 
straightforward task. However, to optimize the TBC's current 
application and introduce the new applications, knowing the 
mechanical properties is paramount. Also, for obtaining 
mechanical properties of braided composites accurately, more 
accurate geometrical models are needed. Some of the 
geometrical variables of a regular braided composite pattern 
within a unit cell are shown in Figure 2. The shown variables are 



   

braid angle, yarn width, and undulation length. Braid angle is the 
most important geometrical variable that significantly affects the 
mechanical properties of the TBC. Other parameters affect the 
TBC's mechanical properties, such as the radius of the mandrel 
and the number of yarns, which will be introduced in the 
following sections.  

 

 

Figure 2 A unit cell of a regular braided composite pattern showing 

geometrical variables 

 

Several studies have tried to provide more mathematically 
accurate models for tubular braided composites. Liao and 
Adanur [9] developed an external and an internal three-
dimensional circular braid model. They used the Frenet frame 
technique for sweeping the cross-section over the yarn path. 
Rawal and Potluri [10], [11] developed an algorithm to produce 
three-dimensional braided preforms over different mandrel 
cross-sections; cylinder, square prism, cones with a circular and 
elliptical cross-section, and square pyramid. The yarn paths are 
modelled as straight lines, and undulation is ignored in their 
model. Alpyildiz [12] proposed a 3-D geometrical model for 
tubular braids. She considered the braiding yarn's crimp together 
with the tubular curvature of the tubular braid structure in her 
model. The provided model worked with different braid 
structures, braid angle, the number of yarns in a set, yarn, and 
mandrel diameter. Rawal et al. [13] developed geometrical 
models in both cylindrical and conical mandrels with diamond, 
regular and triaxial forms. They used the Virtual Reality 
Modeling Language (VRML) to simulate the model. Finally, the 
model was verified against the results of a virtual experiment. 

In this paper, a program for designing and illustrating the 
geometrical model of TBC will be introduced. The developed 
algorithm can be used as a step for generating a comprehensive 
geometrical model for future finite element modeling (FEM). 
Even though the geometrical models are made based on several 
assumptions which will add errors to the simulation results, 
having them will make a good benchmark when comparing 
against other experimental geometrical models like micro-
Computed Tomography (𝜇CT). 

II. GEOMETRICAL EQUATIONS 

While the geometrical equations need to be as accurate as 
possible and easy to implement, they should be realistic enough 
to provide precise models simulating tubular braided 

composite's actual shape and behavior. However, creating a 
geometrical model without making assumptions is not possible. 
For the used geometrical model in this paper, the following 
assumptions have been made [11]: 

- The cross-section of the yarn is assumed to be circular 
with 𝑟 radius 

- The braid paths do not slip and keep the constant 
sinusoidal pattern throughout the braid length 

- There is no compression on the yarns, so the yarn cross-
sections are constant  

- The longitudinal yarn in triaxial braided composites are 
straight 

The assumptions mentioned above are considering TBC's 
overall characteristics; however, they ignore some of the 
specifications, such as the flexible nature of yarn paths and 
variant cross-section shapes. For considering these 
specifications, other methods like 𝜇CT, which can provide an 
actual experimental model, can be used. 

Depending on the braided composite pattern, there would be 
different equations to model them. However, since all the 
patterns follow a uniform helical path along the mandrel, there 
would be no difference in different patterns' helical path 
equations. A left-hand (clockwise from top view)  helix's general 
equations for a yarn path around a cylindrical mandrel are shown 
in (1).  

𝑋𝑐𝑤 = 𝑅 cos 𝜃 
𝑌𝑐𝑤 = 𝑅 sin 𝜃 
𝑍𝑐𝑤 = 𝑅𝜃 cot 𝛼 

(1) 

 

Where 𝑋𝑐𝑤, 𝑌𝑐𝑤, and 𝑍𝑐𝑤 are coordination points in x, y, and 
z directions, R is the helix's radius, 𝜃 is the winding angle, and 
𝛼  is the braid angle. For having the right-hand 
(counterclockwise from top view) helical path, the sign of the Y 
should be changed as shown in (2). 

𝑋𝑐𝑐𝑤 = 𝑅 cos 𝜃 
𝑌𝑐𝑐𝑤 = −𝑅 sin 𝜃 
𝑍𝑐𝑐𝑤 = 𝑅𝜃 cot 𝛼 

(2) 

 

A sample of clockwise and counterclockwise helix path with 
helix radius (R) = 10 mm, braid angle (𝛼) = 45°, and winding 

angle (𝜃) between 0 and 4𝜋, are shown in Figure 3. 

 

Figure 3 A clockwise and counter-clockwise helix with R = 10 mm, 𝛼 = 45°, 

and 0 < 𝜃 ≤ 4𝜋 



   

The helix shown in Figure 3 is for two periods (4𝜋). For 
calculating the height of the helix, one needs to calculate the 
maximum Z, which in this case it would be 10 𝑚𝑚 × 4𝜋 ×
 cot 45° = 125.66 𝑚𝑚. 

On the other hand, each yarn path follows a sinusoidal path 
based on its braiding pattern. The equation relating the number 
of yarns, the radius of the strand, and the winding angle to the 
sinusoidal yarn path is shown in (3) [11]. 

𝑆(𝜃) = 𝑟 sin (
𝑁𝜃

2
) (3) 

Where 𝑟 is the radius of the yarn and 𝑁 is the total number 
of yarns. The undulation path of a sinusoidal path with 𝑟 =
0.5 𝑚𝑚, 𝑁 = 2, and 0 < 𝜃 ≤ 2𝜋 is shown in Figure 4. 

 

Figure 4 General sinusoidal path of yarn path with 𝑟 = 0.5 𝑚𝑚, 𝑁 = 2, and 

0 < 𝜃 ≤ 2𝜋 

For a complete set of tubular braided composite, two series 
of sinusoidal equations are required for counterclockwise and 
clockwise directions (𝑆1(𝜃) and 𝑆2(𝜃)). For doing so, a 𝜋 phase 
shift should be considered for the equations. 

For having the complete yarn path of braided composite, 
with helix shape and including the undulations, equations (1) and 
(2) should be mixed with the relevant version of equations (3). 
By doing so, equations (5) and (6) are created for 
counterclockwise and clockwise yarn paths, respectively. 

𝑋𝑖 = (𝑅 + 𝑆1(𝜃)) cos(𝜃 + (𝑖 − 1)𝛽) 𝑖 = 1,2 … 𝑛 

(5) 𝑌𝑖 =  (𝑅 + 𝑆1(𝜃)) sin(𝜃 + (𝑖 − 1)𝛽) 𝑖 = 1,2 … 𝑛 

𝑍𝑖 = 𝑅𝜃 tan 𝛼 𝑖 = 1,2 … 𝑛 

   

𝑋𝑖 = (𝑅 + 𝑆2(𝜃)) cos(𝜃 + (𝑖 − 1)𝛽) 𝑖 = 1,2 … 𝑛 

(6) 𝑌𝑖 = − (𝑅 + 𝑆2(𝜃)) sin(𝜃 + (𝑖 − 1)𝛽) 𝑖 = 1,2 … 𝑛 

𝑍𝑖 = 𝑅𝜃 tan 𝛼 𝑖 = 1,2 … 𝑛 

 

Where 𝑛 is the total number of yarns at each direction (i.e., 
𝑛 = 𝑁/2) and 𝛽 is the shift angle and is calculated as the angle 
between each two strands (i.e., 𝛽 = 2𝜋/𝑛). These equations are 
the same for all patterns of TBC. The only factor making the 
difference between yarn patterns are 𝑆1(𝜃)  and 𝑆2(𝜃)  which 
will be discussed in the next sections. 

A. Diamond pattern 

The diamond pattern is the most straightforward pattern of 
the tubular braided composite because the whole path is 
sinusoidal, and no flat section is incorporated into the path. The 
𝑆1(𝜃) and 𝑆2(𝜃) which are representing counter-clockwise and 
clockwise sinusoidal paths are as follows: 

𝑆1(𝜃) = 𝑟 sin (
𝑁𝜃

2
+

𝜋

2
) (7) 

𝑆2(𝜃) = 𝑟 sin (
𝑁𝜃

2
+

3𝜋

2
) (8) 

 

A sample of the sinusoidal path of diamond pattern with 𝑟 =
0.5 𝑚𝑚, 𝑁 = 2, and 0 < 𝜃 ≤ 2𝜋 is shown in Figure 5. 

 

Figure 5 counterclockwise (red) and clockwise (blue) undulation path of 

diamond pattern 

A sample of diamond braided composite yarn path 
(counterclockwise and clockwise) with pattern and 𝑁 = 32 , 
𝑅 = 10 𝑚𝑚, 𝑟 = 0.5 𝑚𝑚, and 𝛼 = 45° is shown in Figure 6 
(only one of the yarn at each direction is shown for more clarity). 

  

Figure 6 Clockwise (blue) and counterclockwise (red) yarn path of diamond 

patterns with 𝑁 = 32, 𝑅 = 10 𝑚𝑚, 𝑟 = 0.5 𝑚𝑚, and 𝛼 = 45° 

 

B. Regular pattern 

The shape of the regular pattern is based on the diamond 
pattern. In the regular pattern, each yarn passes over two yarns 
moving in the other direction and under two others. Because of 
that, they involved a flat section for the distance between yarns. 
The transient area-going from the top of two yarns to the under 
the two next and vice versa- is still covered by the sinusoidal 
equations shown in the previous section. A sample of regular 
yarn path with 𝑟 = 0.5 𝑚𝑚, 𝑁 = 2, and 0 < 𝜃 ≤ 4𝜋 is shown 
in Figure 7. 

 

Figure 7 counterclockwise (red) and clockwise (blue) undulation path of 

regular pattern with 𝑟 = 0.5 𝑚𝑚, 𝑁 = 2, and 0 < 𝜃 ≤ 4𝜋 



   

The counter-clockwise and clockwise equations for the 
undulation path of the regular pattern are shown in (9) and (10), 
respectively. 

 

𝑆1(𝜃𝑗) = 

𝑟 ; 0 ≤ 𝜃𝑗 < 𝛽/2 

(9) 
−𝑟 sin (

𝑁𝜃𝑗

2
+

𝜋

2
)           ; 𝛽/2 ≤ 𝜃𝑗 < 𝛽 

−𝑟 ; 𝛽 ≤ 𝜃𝑗 < 3𝛽/2 

𝑟 sin (
𝑁𝜃𝑗

2
+

𝜋

2
) ; 3𝛽/2 ≤ 𝜃𝑗 < 2𝛽 

    

𝑆2(𝜃𝑗) = 

−𝑟 ; 0 ≤ 𝜃𝑗 < 𝛽/2 

(10) 
−𝑟 sin (

𝑁𝜃𝑗

2
+

3𝜋

2
)           ; 𝛽/2 ≤ 𝜃𝑗 < 𝛽 

𝑟 ; 𝛽 ≤ 𝜃𝑗 < 3𝛽/2 

𝑟 sin (
𝑁𝜃𝑗

2
+

3𝜋

2
)   ; 3𝛽/2 ≤ 𝜃𝑗 < 2𝛽 

 

Where 𝑗 = 0,1,2, … 𝑙𝑒𝑛𝑔𝑡ℎ(𝜃). 

By combining equations (9) and (10) by equations (5) and 
(6), the yarn path of the regular pattern will be achieved. A 
sample of braid yarn with a regular pattern, with 𝑁 = 16, 𝛼 =
30°, 𝑅 = 10 𝑚𝑚, and 𝑟 = 0.5 𝑚𝑚 is shown in Figure 8 (only 
one of the yarn at each direction is shown for more clarity). 

  

Figure 8 One clockwise (blue) and one counter-clockwise (red) yarn of a 

designed regular braid with 𝑁 = 16, 𝛼 = 30°, 𝑅 = 10 𝑚𝑚, and 𝑟 = 0.5 𝑚𝑚 

C. Hercules pattern 

Hercules pattern is similar to regular and diamond pattern in 
terms of the sinusoidal and flat section. However, since in the 
Hercules pattern, a yarn passes above three yarns and then goes 
under the next three yarns, the straight section is two times 
longer than the regular pattern. A sample of counterclockwise 
and clockwise undulation path of Hercules pattern with 𝑟 =
0.5 𝑚𝑚, 𝑁 = 2, and 0 < 𝜃 ≤ 6𝜋 is shown in Figure 9. As one 
can see, the flat sections are twice longer than the regular pattern. 
The sinusoidal undulations are the same as regular and diamond 
patterns. 

 

 
Figure 9 counterclockwise (red) and clockwise (blue) undulation path of 

Hercules pattern with r=0.5 mm, N=2, and 0<θ≤6π 

 

The counterclockwise and clockwise equations for the 
Hercules pattern's undulation path are shown in (11) and (12), 
respectively. 

 

𝑆1(𝜃𝑗) = 

𝑟 ; 0 ≤ 𝜃𝑗 < 𝛽/2 

(11) 

𝑟 ; 𝛽/2 ≤ 𝜃𝑗 < 𝛽 

𝑟 sin (
𝑁𝜃𝑗

2
+

𝜋

2
)           ; 𝛽 ≤ 𝜃𝑗 < 3𝛽/2 

−𝑟 ; 3𝛽/2 ≤ 𝜃𝑗 < 2𝛽 

−𝑟 ; 2𝛽 ≤ 𝜃𝑗 < 5𝛽/2 

𝑟 sin (
𝑁𝜃𝑗

2
+

𝜋

2
) ; 5𝛽/2 ≤ 𝜃𝑗 < 3𝛽 

    

𝑆2(𝜃𝑗) = 

−𝑟 ; 0 ≤ 𝜃𝑗 < 𝛽/2 

(12) 

−𝑟 ; 𝛽/2 ≤ 𝜃𝑗 < 𝛽 

𝑟 sin (
𝑁𝜃𝑗

2
+

3𝜋

2
)           ; 𝛽 ≤ 𝜃𝑗 < 3𝛽/2 

𝑟 ; 3𝛽/2 ≤ 𝜃𝑗 < 2𝛽 

𝑟 ; 2𝛽 ≤ 𝜃𝑗 < 5𝛽/2 

𝑟 sin (
𝑁𝜃𝑗

2
+

3𝜋

2
)   ; 5𝛽/2 ≤ 𝜃𝑗 < 3𝛽 

 

Similar to regular pattern equations, by combining equations 
(11) and (12) by equations (5) and (6), the equations for the 
Hercules pattern will be achieved. A sample of Hercules pattern 
with 𝑁 = 8, 𝛼 = 60°, 𝑅 = 10 𝑚𝑚, and 𝑟 = 0.5 𝑚𝑚 is shown 
in Figure 10 (only one of the yarn at each direction is shown for 
more clarity). 

 

Figure 10 One clockwise (blue) and one counter-clockwise (red) of a designed 

Hercules braid yarn path with 𝑁 = 8, 𝛼 = 60°, 𝑅 = 10 𝑚𝑚, and 𝑟 = 0.5 𝑚𝑚 

D. MATLAB algorithms used for generating yarn patterns 

The algorithm needed for generating diamond pattern is 
straight forward. However, special considerations should be 
taken into account for generating regular and Hercules patterns. 



   

For generating all of the different patterns discussed in the 
previous sections, a program is designed in the MATLAB 
software package (R2020B, The MathWorks Inc, Natick, Ma, 
USA). The program's designed user interface is shown in Figure 
11 (a). 

The designed program needs five input geometrical variables 
to design the yarn path. Number of yarns, braid angle (in degree), 
the diameter of the mandrel in mm (inner diameter of the tubular 
braid, it should also be considered that the diameter of the 
mandrel is 2(𝑅 − 𝑟)), the diameter of the strand (2𝑟) in mm, and 
the number of turns or height of the tubular braid in mm (only 
one of these two variables is required to be inputted, the other 
variable will be calculated based on the inputted value). This 
program can produce all three yarn patterns, i.e. Diamond, 
Regular, and Hercules. The user can select to see the single path 
of clockwise or counterclockwise yarn or both at the same time. 
As the user changes the parameters, the updated path will 
automatically be displayed in the plot section. The complete 
TBC path is displayed in a separated window, as shown in Figure 
11 (b). Finally, the XYZ center points of the designed yarn path 
for counterclockwise and clockwise directions, and a properties 
file including the input parameters, the designed pattern, and 
date and time, can be exported as three separated text files by 
clicking on "Write to .txt file" button. Created clockwise or 
counterclockwise yarn paths can be uploaded and displayed in 
the program's display window. The XYZ values are also 
displayed in the program for control purposes. Alternatively, the 
generated properties file can be uploaded as well. By uploading 
the properties file, the program will scan and read the parameters 
and the pattern of the TBC path and change the program's setting 
accordingly.  

a) 

 

b) 

 
 Figure 11 The interface of the developed software for generating yarn 

path (a), The complete set of clockwise and counterclockwise yarn 

path (b) 

 

E. Generating the solid geometrical model 

For creating the geometrical model by adding a cross-section 
to the designed yarn path in the previous section, the SolidWorks 
software (version 2020, Dassault Systèmes SOLIDWORKS 
Corp., Massachusetts, USA) is used. One clockwise and one 
counterclockwise yarn path generated in MATLAB is imported 
into SolidWorks. The generated text file in the developed 
MATLAB program is imported into the SolidWorks as the 
"Curve though XYZ Points…" function. After importing both of 
the yarn paths, two separate circular cross-sections are sketched 
in the XY plan while the center of the circle coincides with the 
yarn path. By using the "Sweep" function, the cross-section 
sweeps the designed path and creates the yarn solid geometrical 
model. Finally, by using the "Circular Pattern," 𝑛  number of 
yarns are patterned around the TBC's axis for each of the 
counter-clockwise and clockwise directions. A sample TBC 
solid geometrical model from each pattern is shown in Figure 
12. A diamond TBC with 𝑁 = 32, 𝑟 = 0.5 𝑚𝑚, 𝑅 = 10 𝑚𝑚, 
and 𝛼 = 45° is shown in Figure 12 a),  a regular pattern TBC 
with 𝑁 = 36, 𝑟 = 1 𝑚𝑚, 𝑅 = 15 𝑚𝑚, and 𝛼 = 45° is shown 
in Figure 12 b); and a Hercules TBC with 𝑁 = 64, 𝑟 = 0.5 𝑚𝑚, 
𝑅 = 10 𝑚𝑚, and 𝛼 = 60° is shown in Figure 12 c) 

a) 

 

b) 

 

c) 

 

Figure 12 3-D solid model of a TBC, a) Diamond pattern with 𝑁 = 32, 

𝑟 = 0.5 𝑚𝑚, 𝑅 = 10 𝑚𝑚, and 𝛼 = 45°, b) Regualr with 𝑁 = 16, 𝑟 =
0.5 𝑚𝑚, 𝑅 = 10 𝑚𝑚, and 𝛼 = 30°, and c) Hercules with 𝑁 = 64, 𝑟 =

0.5 𝑚𝑚, 𝑅 = 10 𝑚𝑚, and 𝛼 = 60° 



   

For validation of the developed model in this paper, a regular 
TBC with 16 yarns, braid angle = 35°, mandrel radius 10 mm, 
strand radius = 0.5 mm, and length of the TBC = 98.7 mm is 
designed in both the developed model in this paper and a 
commercial software package, TexMind Braided software  [14]. 
The output results of the two software are shown in Figure 13. 
The visual comparison between the two models shows a good 
agreement between two models. 

a) 

 

b) 

 

Figure 13 Comparing the result of the generated geometrical TBC model 

designed by the algorithm developed in this paper a), with the results of the 

same TBC designed in TexMind Braided software commercial software b). 

(𝑁 =  16, 𝛼 = 35°, 𝑅 = 10.5 mm, 𝑟 = 0.5 mm, and the length of the TBC = 

98.7 mm) 

 
An actual TBC with the regular pattern is scanned with 𝜇CT, 

and the obtained image is shown in Figure 14 a). The parameters 
of this TBC are 𝑁 = 48, 𝑟 = 0.44 𝑚𝑚, 𝑅 = 10 𝑚𝑚, and 𝛼 =
40.53°. These parameters are used to create the geometrical 
model of the TBC by using the developed program in this paper, 
and the resulted image is shown in Figure 14 b). While the 
braid's overall shape is the same, as seen from the  𝜇CT imag in 
Figure 14 b), some of the yans are not located at their ideal path, 
and they are distorted significantly. Other assumptions made in 
generating geometrical equations are adding more errors to it. 
For quantitative comparison between two models and the 
amount of error added because of the geometrical model's 
assumptions, further analysis and required. 

 

 

  

a) b) 
Figure 14 Comparison of the actual and simulation model of a regular 

TBC. a) 𝜇𝐶𝑇 image of a regular TBC with b) its geometrical model with 

𝑁 = 48, 𝑟 = 0.44 𝑚𝑚, 𝑅 = 10 𝑚𝑚, and 𝛼 = 40.53° 

 

I. CONCLUSION 

A program for generating TBC's geometrical model was 
developed in this paper. The MATLAB and SolidWorks were 
used for generating the geometrical model. The results of this 
program were compared with the result of another software. 
Both results were in good accordance. Also, the result of the 
program was compared against the result of an 𝜇𝐶𝑇 image of an 
actual TBC. The error caused by the assumptions made during 
developing equations was obvious when comparing them. 

The generated geometrical model can help the researchers 
and the industry to have a better understanding of the TBC. This 
geometrical model can also be used (partially or entirely) to 
generate Finite Element Models (FEM) to study TBC's 
behaviour in different conditions. By developing such a 
simulation model, new applications for TBC will be introduced, 
and the current applications can be optimized. 
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