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Abstract— The key purpose of this paper is to propose a 

mono-slip dependent continuum dislocation method to 

MDCS (matrix dominated composite structure) analysis. The 

methodology focused on the dissipation energy theories using 

CDM (continuum dislocations method) integrated with the 

kinematics of small strain. The mathematical modeling of 

CDM comprises active mono-slip system formulations, 

thermodynamic dislocation analysis (TDA), energy 

dissipation analysis on the free form, and the progressions of 

dislocations. Furthermore, the dissipation energy analysis due 

to dislocation progression could be formulated in zero and 

non-zero principle by using an energy minimization 

technique with variational calculus. The numerical analysis 

performed by Wolfram Mathematica©, presented in zero and 

non-zero energy dissipation forms. The outcomes indicate 

that the formulated approach could be well-qualified to find 

optimal analysis results for MDC (matrix dominated 

composite) materials for the mono-slip system. Generally, 

this approach confirms its ability to investigate MDCS by 

including inclusions inside the UC.  

Keywords:  Mono-slip; MDCS; CDM; Distortion; active 

slip; TDA;  

I.  INTRODUCTION  

Composites are broadly applied in structural 

components due to their capabilities of revealing designated 

in-plane stiffness, bending stiffness, ultimate strength, or 

thermal expansion coefficient during deformation[1, 2]. In a 

micro-mechanical approach, irreversible deformation is 

expressed by dislocation nucleation and motion of 

dislocations; which means crystallographic irregularities 

within the periodic crystal framework. For instance, 

dislocations are nucleated and gathered to decrease the 

crystal’s energy. The preparation of the dislocation is mainly 

led by the crystal’s energy. Plastic flow breaks up into motion 

of dislocations, which dissipates energy. Thus, all 

microstructural analyses related to irreversible deformation 

need to follow the rules of thermodynamics, which can, in 

turn, be applied to simulate these analyses related to the 

multifaceted dislocation distribution. Experimental suggestion 

indicates that dislocations in a strained crystal do not act in a 

fully random arrangement nor does the deformed crystal 

exhibit a homogeneous dislocation density throughout its 

interior [3-5]. 

In the micromechanics approach, discrete dislocation 

analysis is sufficient to describe the individual or small 

numbers of dislocations. This study focuses on a problem to 

define strains along the dislocation line inside the dislocation 

core [6]. Similarly, at the macro level, distinctive features of 

materials are extensively studied by continuum mechanics. 

Having this concept in mind, the Continuum mechanics 

approach which is aiming to incorporate the size dependence 

of dislocation plasticity by extending classical, local 

continuum descriptions with nonlocal or strain gradient terms 
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based on a huge number of dislocation in continuum fashion. 

Accordingly, there is a huge gap between micro and macro 

scale, which demands an appropriate meso-model to connect 

the two extremes named as continuum dislocation 

formulations. Continuum dislocation formulations include a 

material length scale and thus permit size effects to be 

modeled. The scaled length of the material in a deformed 

body becomes substantial in the mechanics of the material. 

This research addresses an important concept that shows, 

when, and how macroscopic overall mechanical properties 

like strength, hardness, etc., depending on a natural internal 

length scale related to the characteristic size of the 

microstructures in the material.  

II.  CONTINUUM SLIP FORMULATION 

 

              Here in this section we can specify the side boundary in 

free form and clamped micro-boundary conditions of the upper and 

lower part of the region analyzed. In the plastic theories, the 

gradient of the total displacement field ‘u’ represents the 

Compatible total displacement field. If there is one dislocation loop 

lying on the slip plane with the Burgers’ vector pointing in the slip 

direction, then the inverse plastic distortion associated with this 

loop (- ij )is given by 

( ) ( )1- ij i jbn s =  

 

Fig-1: Diagram of problem formulation for simple shear of an elastic-plastic 

layer of thickness ξ with one active slip system 

 

Where, 
ib  denotes Burgers’ vector, ‘nj’ is the normal vector 

and ( )s is plane of slip. 

 

This inverse plastic distortion describes the creation of 

dislocation by cutting the perfect crystal along the surface ‘S’ and 

shifting the structure under this surface on one Burgers’ vector [7]. 

In general, the sum of the reversible and the irreversible distortion 

fields gives the total irreversible distortion, 

    ( )pe 2= +  

Where e pand   shows the reversible and irreversible 

distortion components of the material, respectively. Due to the 

existence of lines of dislocation, both phases are incompatibly 

represented by the GND (geometrically necessary dislocations) 

[8]. For a huge amount of loops pass through the slip planes with 

the average demission among them being considerably smaller 

than the material characteristic scale size of the standard piece; 

we go one step further and propose a unique formulation of total 

plastic distortions  created by this slip system is expressed as 

( )( ) 3ij i jx s m =   

Where ‘mi’ stands for normal vector indicating towards the 

direction of slip and ‘si ‘denotes slip direction.  

III. THERMODYNAMIC PRINCIPLES 

 

To analyze the UCs, we need to use one of the energy 

principles, named as the principle of Free energy. The GND 

energy stems custom two facts: the network of dislocation 

energy is directly proportional to the DOD (density of 

dislocation) when the dislocation is small, and there exists an 

SDD (Saturated dislocation density) which characterizes the 

closest packing of dislocations of equal signs admissible in the 

unit cell. Assume that the material is isotropic and contains 

inclusions, for elastically deformed. Analyzing the variational 

derivative of the yield condition consider the first 

case, / 4  (see fig-1). 

Simply, the isotropic elastic property of the cell; 

both the matrix and the reinforcement material are taken to be 

isotropic[9]. The elastic moduli, ( ) for the matrix can be 

written as in the form 

( )122 ' 4
1 2

G




 
 =  −    

− 
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Where 12G   is the shear modulus,   is the poison’s ratio, 

and I and I’ are the second and fourth-order identity tensors, 

respectively. 

IV. FORMULATIONS  

 

To simplify the energy functional equation some 

dimensionless quantities are introduced. Continuum 

dislocation formulations in a single slip require key 

equations: a balance and an evolution. Both have a common 

number of material and geometry parameters. We aim for a 

formulation that displays the characteristic features of the 

model-independent from a particular choice of material 

parameters.  

To this end, we pursue a dimensionless analysis of 

the two frameworks to study how certain combinations of 

parameters influence the response predicted by this approach. 

Dimensionless quantities indicated as the height of the unit 

cell is considered relative to a domain height characterized by 

2
x and the length characterized by ‘w’.The newly introduced 

variable varies on the range. By using the newly introduced 

variables
2

x  the energy functional ( )0,  formulated as: 

( ) ( )2 s s2

1

s 12E= ,x =x bρ ,ξ=ξbρbρ wLG 5
−

  

Where 
s

 saturated dislocation density is the parametric 

length. Dislocation appears in crystals to reduce their energy. 

Energy dissipation analysis is more accurate than any other 

method to describe the plasticity behavior of materials. The 

displacement in relations with elastic-plastic responses of the 

materials generally associated with the continuum dislocation 

accumulation. 

The methods will be implemented to calculate the 

hysteresis energy, triggered by the inclusions that create 

resistance in the unit cell. If the dislocation motion resistance 

cannot vanish, the plastic distortion may evolve if and only if 

the yield condition =    is fulfilled[7]. Where  small 

scale shear strain. And also dislocation-evolution in 

composite materials is very sensitive to the interaction of 

reinforcements and matrices in the interface regions. If 

    then    is frozen, the density of the dislocation 

assumed to be fixed and the UCs   

( )

( )

2 2 2

2
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2 2 2

,22

- sin 2 sin 2 - cos 2

sin 2 cos 2

sin cos 2

6

ave

ave

s

k K G

k b

   

 

  

 +  

+  + =

 + 

 

V. NUMERICAL EXPRESSION AND DISCUSSION 

 

It has been seen that in the unit cell of the composite 

material model; the continuum dislocation is a complicated 

function of various parameters, such as the dislocation evolution, 

the material characteristic length ( l ), and properties of the 

fiber/particle and the matrix. As a result, it becomes difficult to 

determine the equilibrium position of dislocations. In this study, 

only edge dislocations on a one active slip system are 

considered, taking a plane of slip is in x2-direction and x1-is the 

slip direction. 

When the UCs are subjected to simple shear, there 

should be a dislocation in the veins of the matrix. During this 

process the dislocation entangled by the inclusion and the 

number of dislocation density increases, i.e., it creates a 

Harding. The shear stress due to dislocation termed as micro 

shear stress and the shear stress at the hardening point is referred 

to as critical shear stress. The equilibrium equation from this 

analysis is obtained as follows 

( )0 7cr microstress  − − =  

This nucleation strength corresponds to a nucleation 

distance of 125
nuc

l b= . The 2  (height) of the unit cell, is stated 

based on the material characteristic length l  which is assumed to 

be 4000l b= . The influence of inclusion size is analyzed by 

changing the ratio l [10]. 

For material parameters, representative of the Al 

matrix is used for all the computational experiments, for which 

we make the arbitrary choice explained by different 

researchers[9]. The other material parameters used are isotropic 

elastic constants of the material, E = 62.78 Gpa, v= 0.33, where 

E is Young’s modulus and v is Poisson’s ratio. 
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Figure 2- Comparison of −  for material (I) and (II). 

VI.  SUMMARY 

 
In this paper, continuum dislocation theory is discussed 

to analyze matrix dominated composites in a UCs form. The 

theory is based on energy characteristics of dislocations 

combined with typical small-strain continuum dislocation 

kinematics. The derivations of the continuum dislocation 

constitute slip formulation, thermodynamic concepts, free 

energy determinations, threshold value, and evolution of 

dislocation. Besides, the dissipation and non-dissipation energy 

forms of the analysis are derived using the variational method 

and solved by an energy minimization approach. And the 

outcomes are verified by comparing the existing discrete and 

non-local dislocation results with the newly formulated 

continuum dislocation theory results of the same problem.  

Furthermore, the effects of material parametric length 

found in the Continuum dislocation theory analysis are 

reasonable and consistent with the existing discrete and nonlocal 

dislocation forecast. Also, this newly formulated theory is fit to 

the discrete and nonlocal dislocation result of a given similar 

geometry and size. The capability of the proposed approach is 

demonstrated by homogenizing composite with a constitute 

exhibiting various mechanical behaviors.  

The proposed method is found to be capable of to 

handle the elastoplastic phenomenon of composite material and 

more advanced micromechanics models can be implemented in 

the proposed approach. Finally, the following conclusions can be 

drawn, single slip continuum dislocation is modeled, self-stress 

conditions are involved, two types of material model (Material 

(i) and Material (ii)) can be incorporated into the proposed 

approach. 
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