# Structural Evolutions of Small Aromatic Mixtures Under Extreme Temperature Conditions: Insights from ReaxFF Molecular Dynamics Investigations 

Cuiying Jian ${ }^{1,2^{*}}$, Jeffrey Grossman ${ }^{2}$<br>${ }^{1}$ Department of Mechanical Engineering, York University, Toronto, ON, Canada<br>${ }^{2}$ Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA<br>*cuiying.jian@lassonde.yorku.ca


#### Abstract

Conversion mechanisms of carbonaceous materials during controlled pyrolysis under high temperature currently rely on empirical understanding, rather than a detailed atomistic description of the underlying chemical evolution. In this work, a series of molecular dynamics simulations, based on reactive force field, were performed to probe the structural evolutions of small aromatic (number of aromatic rings $\leqslant 4$ ) mixtures under extreme conditions (temperature $3000-4000 \mathrm{~K}$ ). For any temperature studied and independent of the presence of alkane radicals, three major gas-phase byproducts, $\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{4}$, were found in bulk treated by rapid heating. Temperatures as well as alkane addition can affect the production/consumption rates and fractionation of these gas species. Compared to alkane radicals, temperatures also play important roles in modulating the initial growth pathways of solid carbon clusters. At 3000 K , aromatic carbon cluster formation is mainly initiated through the direct combination of aryl radicals. Conversely, at 4000 K , carbon cluster formation is initiated by the assembly of chained radicals, since substantial polyacetylenic chains were produced. Through cross comparison on different simulation models/methods, as well as with experiments and literature works, the effect of processing conditions on carbonaceous materials conversion was revealed, and underlying mechanisms responsible for the observed phenomena are proposed.


