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Abstract—With the developments in autonomous driving and
the popularity, the subject has gained over the past few years
in the scientific communities, especially considering that most of
the traffic accidents are due to recognition errors and perception
being neglected in the literature, this study aimed to develop
a prediction method and employed it in intersection driving
scenario. Being a data-driven approach, a simulation was set up
in SUMO, and a combination of Dynamic Bayesian Network and
Recurrent Neural Network were tasked to make predictions for
the states of the ego vehicle and that of other traffic participants
for 1, 2, 5, and 10-second horizons. A Kalman filter was used
as a post-processing measure to ensure smooth transitions in the
velocities especially in longer horizons. Results, disclosed for a
random traffic participant pair in the data pool, exhibit valid
predictions and competent accuracy.

Index Terms—Dynamic Bayesian Network, Recurrent Neural
Network, Autonomous Driving, Perception

I. INTRODUCTION

Autonomous driving has become a point of interest among
researchers in many different disciplines as the future of trans-
portation lies heavily upon the discoveries and breakthroughs
made today. Autonomous driving promises affordable long-
range transportation to the public by replacing the human
workforce and minimizing energy consumption; Provides indi-
viduals with disability a means for personal conveyance, min-
imizes harmful byproducts such as exhaust emissions in case
of internal combustion engine-driven vehicles [1] and decrease
power plant waste in case of their electric counterparts. Most
importantly, autonomous vehicles are expected to minimize
traffic accidents and thereupon the property, and tragically in
some cases life and limb, associated with such occurrences. To
emphasize the importance of the concern with traffic accidents,
one must draw their attention to the statistics in this regard.
According to a survey by U.S. National Highway Traffic
Safety Administration (NHTSA) [2], in 2015, out of 2,189,000
accidents, 94% ± 2.2% were caused by human error, and
grievously, 35,092 were fatal [3].

The decision-making process for any autonomous mobile
robotic system starts from the perception of the environment.
These machines often use a battery of sensors to collect

data from the environment and need to process this data to
be able to truly understand their surroundings. For humans,
this process is often done semantically and automatically. A
human driver does not bother with exact spacial measurements
but always has a somewhat accurate sense of the situation.
For machines, especially expert systems, lacking the human
intellect, reason, and judgment, a framework needs to be
introduced that encompasses the innumerable situations a
human driver might find themselves in, which is practically
quite unfeasible. The other approach is to let machines learn,
and develop their judgment. The latter approach has seen a lot
of interest, especially in recent years with the advancement of
computer hardware, Although these techniques, theoretically,
are not new.

The same document by NHTSA [2] recounts that most of
the traffic accidents with human error element, were due to a
recognition error (41% ± 2.2%) followed by decision errors at
33% ± 3.7% and execution errors at 11% ± 2.7%. Besides the
fact that autonomous vehicles will have a gradual placement in
the market and a transition phase is imminent and inevitable,
autonomous vehicles must be able to learn and imitate the
ideals for human drivers which humans fail to deliver. In terms
of execution, machines have always been superior to humans
in accuracy and efficiency. However, recognition and decision
making, as a directly dependent variable, are the spotlight of
research in this area. However, despite most of the traffic acci-
dents being caused by a cognitive mishap, most of the research
in this area is done either on decision making or controls
exclusively, or the efforts for perception and control are done
in conjunction and one module is expected to undertake both
perception and controls. As for studies done on perception,
Zhang et al. [4] studied “chaining neural networks” to make
speed predictions considering V2X (Vehicle to Everything)
communication, using VISSIM (Verkehr In Städten - SIMula-
tionsmodell) data based on Wieldmann’s car-following model.
Moser et al. [5] studied short-term vehicle velocity prediction
considering V2X communication and using DBNs (Dynamic
Bayesian Network). Wang et al. [6] developed a semantic
method to classify driver behaviour based on their physical



and psychological thresholds. Gindele et al. [7] experimented
with DBNs to predict driver behaviour on intersections. Sarkar
et al. [8] combined DBN with random forest to predict the
trajectory of traffic agents in an urban intersection. Given
the large portion of accidents being caused by recognition
errors and the general setting of autonomous driving being
altogether the same as the conventional street network. this
study, expands on [9] and [10] and focuses on developing
a perception strategy for intersection driving. As mentioned
in previous studies, sophisticated prediction strategies can im-
prove the performance of MPCs quite significantly. Most MPC
controllers in the literature make simplifying assumptions for
the development of the states that are not completely reflective
of real-life scenarios. For instance, [11] uses least-square
parameter estimators for velocity prediction, [12] considers
predefined speed profiles which impair the generalization of
the proposed controller, and [13] makes the assumption that
the states of all other traffic participants are fully known
for the NMPC-based multi-lane adaptive cruise controller.
Universally, it is arguable that all of these endeavours would
either produce better results or be at all practical, with a decent
prediction strategy. Although statistically, most of the traffic
accidents are due to recognition and perception errors, it seems
that this crucial aspect of automated driving is being neglected
in the literature. In this study, a novel data-driven prediction
strategy is developed and evaluated for real-time behaviour
prediction in an intersection environment which can also be a
complement to MPCs. In this paper, background is discussed
briefly in section II, followed by proposed methodology in III,
results in IV and finally conclusion and future work in V.

II. BACKGROUND

A. Dynamic Bayesian Network

Bayesian Networks are probabilistic graphical models of
dependencies between variables. Manifested in the form of
acyclic directed graphs, Bayesian networks are solid tools that
can be used to find the probability of any variable taking
a specific value, given the conditions of variables which
have direct impact on said variable taking a value (e.g. the
probability of an accident given the driver’s age, psychological
conditions, time of the day, weather circumstances, etc.).
In the case of Dynamic Bayesian networks, some of the
variable nodes in the digraph also relate to another time-slice,
commonly to the slice in the future. As a result, DBNs are
powerful tools to predict the state of a variable for an arbitrary
horizon. A useful mechanism that makes DBNs suitable for
driving applications and turns them into machine learning
techniques is the training procedure commonly referred to
as the EM-algorithm (Expectation-Maximization) in machine
learning domain, which is a direct descendant of the forward-
backward algorithm. In EM-algorithm it is expected that every
variable is a mixture distribution and can be represented as a
set of Gaussian normal curves. EM-algorithm then recursively
identifies the best fit of these bell curves on the dataset. For a
Bayesian network, Y representing a variable and θ being the
setting of its parents, log-likelihood L can be defined as:

L(θ) = logP (Y |θ) = log
∑
X

P (Y,X|θ) (1)

By defining distribution Q as a lower bound on the log-
likelihood L

log
∑
X

P (Y,X|θ) = log
∑
X

Q(X)
P (Y,X|θ)
Q(X)

≥
∑
X

Q(X) log
P (Y,X|θ)
Q(X)

=
∑
X

Q(X) log P (Y,X|θ)

−
∑
X

Q(X) log Q(X)

= F(Q, θ)

(2)

EM algorithm alternates between maximizing F with respect
to Q and θ respectively, holding the other fixed [14].

E Step: Qk+1 ← argmax
Q

F(Q, θk) (3)

M Step: θk+1 ← argmax
θ

F(Qk+1, θ) (4)

Once fully trained, the Bayesian Network can produce a
likelihood for variable Y taking any value, given its parents.
Naturally, the topology of the DBN has to follow a few basic
rules:

• The source nodes (nodes with in-degree of 0) must be
reserved for variables that can be directly measured from
the environment. In other words, source nodes act as
inputs.

• The complexity of the problem, for each node, scales
exponentially with the number of parents and the number
of states each parent can take. Therefore one node must
not have too many parents.

• The child-parent dependency must be conserved. Each
node should have either a direct or an indirect correlation
with its neighbours.

While DBNs are grand instruments for mixture distribu-
tions, it is obvious that they fall short when dealing with
continuous variables that are common in traffic datasets,
especially dynamic variables such as velocity and acceleration.
While they can incorporate such variables semantically as
mentioned before, the exact value cannot be predicted without
the help of an alternative solution.

B. Recurrent Neural Network

One alternative solution for the shortcoming of DBNs in
dealing with continuous variables is using neural networks.
Classically neural networks can be used to find a relationship
between the inputs and outputs of an unknown function and
act as function approximation tool. This task is undertaken
by a network of “primitive functions” [15] that introduce non-
linearity to the sum of their weighted inputs and associate them
with a precisely defined output. Being a data-driven approach,
similar to DBNs, makes them a decent match to go alongside
DBNs.



Fig. 1: Recurrent neural network schematics

Neural networks are plentiful in types, each specialized to
a specific use case. To incorporate time-series and sequences
of data necessary to extend prediction horizons to any desired
value, recurrent neural networks are commonly chosen as the
solution. The recurrent neural network can be fed a sequence
of the history of a variable and be trained to predict the value
of that variable for the next time-slice. After the training
is completed, the neural network can recursively include its
prediction as the ‘current’ state of its inputs and predict the
values for the future time slices.

Fig. 1 illustrates the schematic of such network for two ar-
bitrary variables x and y for a window of d history, predicting
both variables in the next time slice (k + 1). The size of the
history window (d), the length of each time-slice (sampling
frequency), and the specifications of the network itself, such
as the number of layers and number of nodes in each layer are
design choices that need to be optimized for the application,
but the trade-offs are clear.

III. METHODOLOGY

Driving in an intersection, especially in such a chaotic en-
vironment alongside other human drivers, pedestrians, cyclists
and other traffic participants is a rigorous and critical task.
One of the biggest differences between human drivers and
hypothetical fully autonomous vehicles would be the cues
humans can interpret from other traffic participants, coming to
them in the form of hand signals, body language, high beam
lights and occasional activation of hazard lights for gratitude.
It is simply not feasible to teach all of that to a machine, but
the same machine, blinded to all these cues, is expected to
yield better performance than human drivers. This expectation
can be realistic, relying on two basic principles.

1) The machine has more accurate measurements of the
environment

2) The machine can execute control commands with more
precision

Fig. 2: Simulation environment

However, given these two assumptions, the perception for a
vehicle is still a complex challenge and a humongous task. In
this study a simulation was assembled in Simulation of Urban
Mobility (SUMO) [16], to collect the data needed for the data-
driven techniques mentioned in the background section. The
simulation and the data derived from it were then used to train
a combination of DBN and RNN, where the DBN handles
discrete variables and mixture distributions, and the RNN takes
care of continuous variables. Predictions can be made for each
and every variable over an arbitrary horizon, however the DBN
topology is a collocated follower to what is considered an
input and an output. The forthcoming subsections discuss the
properties of each component as well as their combination.

A. Simulation in SUMO

In SUMO, a controlled intersection (i.e. intersection con-
trolled with traffic lights) environment was set up with two
lanes on each side of each arm to incorporate lane changes
as well as every possible traffic scenario, while maintaining
manageable data size and flow densities. A total of 3600
vehicles were deployed in the environment taking random trips
while conserving traffic rules. The traffic light signal schedule
was chosen to be symmetric and simple without advanced left
(as advanced left signal does not have any learning benefits).
Fig. 2 illustrates the SUMO environment.

The data collected from the simulation was then fused with
the map of the environment to create meaningful variables for
the DBN.

B. Dynamic Bayesian Network

Considering the rules mentioned in section II, DBN vari-
ables were established as declared in table I. To create these
variables, the only data collected from the simulation were
position and traffic light signals, to be fed directly to the
DBN, as well as velocity which is a continuous variable and
was aimed to be handled by the RNN. Fig. 3 illustrates the
topology of the proposed DBN. In this topology, the status of
the traffic light, the presence of vehicles in the vicinity, current



ID Variable Set of states

01 StoppedAtLine {True, False}
02 LeftTurnRequiresStop {True, False}
03 PathIntersects {True, False}
04 CarFront {True, False}
05 CarSide {True, False}
06 CarBehind {True, False}
07 ApproachingIntersection {True, False}
08 AccelerationF lag {True, False}
09 Lane {1, 2, Intersection}
10 LanePrime1 {1, 2, Intersection}
11 TrafficLightSignal {Green, Yellow, Red}
12 TrafficSignalPrime {Green, Yellow, Red}
13 CurrentSection {West, North, South,

East, Intersection}
14 SectionPrime {West, North, South,

East, Intersection}

TABLE I: DBN variables

Fig. 3: DBN topology

lane, current section and whether the vehicle is approaching
the intersection or departing from it are considered as inputs.
Practically, these inputs can reliably be extracted from the en-
vironment, especially if V2X communications are considered.

To make predictions for continuous variables, the DBN
outputs can be fed into the RNN, to complement the variable’s
history and add some context. However, was it not for the
motion dynamics variables, the DBN would be sufficient to
predict the states of any traffic participant, but because velocity
is relative and depends on the states of the ego vehicle as well
as the traffic participant, by some means, both of these value
sets must be exposed to the RNN. To achieve that, an interface
must have been designed for this connection. There are three
general ways that this interface can be implemented. The trade-
off between these configurations revolves around the difficulty
to prepare the data for, training time and result reliability. Fig.
4 demonstrates simplified schematics of the architecture. In

1“Prime” denotes a variable in next time slice

this study the leftmost configuration was selected where the
data for the ego vehicle and traffic participants are processed
with the same simple DBN topology in Fig. 3, due to shorter
training times, easier pre-processing for the data and uncom-
plicated implementation.

In addition to the macro connection scheme, DBN variables
need to be singled out and selected to meet the RNN, as brute-
forcing everything into the RNN will cause jagged behaviour
in the output. This jagged behaviour is because of the digital
nature of the DBN outputs, especially when the distribution
of states is not uniform across all the settings. The variables
selected in this study are:

• PathIntersection
• ApproachingIntersection
• AccelerationF lag
• TrafficLightSignalPrime
• SectionPrime
• LanePrime

C. Recurrent Neural Network

In this study, the RNN is tasked with finding the velocity
of a random traffic participant. While the DBN can quickly
learn from very large datasets (in this study the DBN was
trained with 480,000 sample points in a matter of seconds),
the RNN takes much longer to train with the back-propagation
algorithm, therefore only a small part of the data was chosen
for training. This selection was based on data size and events
(such as maximum and minimum velocities and maximum
and minimum accelerations) as well as random entries. The
network structure is conical with 4 layers in total, with the
number of nodes computed in each layer using (5), where N
is a constant for its subscript and n is a counter. The history
window (d) is chosen to be 6 seconds and sampled at 1Hz.
The activation functions are sigmoid.

Nnodes in layer = (Nins +Nouts)

∗ (Nhidden layers − ncurrent layer + 1)
(5)

D. Kalman Smoothing

To minimize the jagged behaviour in the output from the
digital nature of the DBN, a Kalman filter was introduced
to smooth out the velocity predictions. Based on the basic
discrete kinematic model (6), the state-space model (7) was
created.

v(k + ∆k) = v(k) + a(k)∆k (6)[
v(k + ∆k)
a(k + ∆k)

]
=

[
1 ∆k
0 0

] [
v(k)
a(k)

]
+

[
0 0
0 1

] [
uv(k)
ua(k)

]
(7a)

Y (k) =

[
1 0
0 0

] [
v(k)
a(k)

]
(7b)

To find ua(k) or the acceleration input, (8) was used, where
∆k is the prediction horizon.

ua(k) =
v(horizon+ k + ∆k)− v(horizon+ k)

∆k
(8)



Fig. 4: DBN-RNN interface

Given that, the sensitivity of the Kalman filter to new inputs
can be adjusted with the Q matrix. As the coefficient of
the Q matrix increases, new inputs are trusted less and are
not registered as valid right away. This gives Kalman filter
the means to introduce inertia to the velocity changes which
are physically in place but the neural network misses in the
process. In this study the Q matrix coefficients were chosen
as:

Q =


0.02 for 1s prediction

0.10 for 2s prediction

0.60 for 5s prediction

4.00 for 10s prediction

× I2

IV. RESULTS

Velocity predictions for random vehicle pairs were estab-
lished for 1, 2, 5, and 10-second horizons. A sample result
is illustrated in Fig. 5 without and in Fig. 6 with Kalman
filtering engaged. This specific drive-cycle is for a vehicle
pair that coexisted in the simulation for a long period. This
extended coincidence, alongside the multitude of full stops,
signifies high traffic flow and multiple stops behind the traffic
light. It is apparent that the prediction horizon has an inverse
relationship with the prediction accuracy, and as the horizon
extends, the errors become larger too. Fig. 5 also exhibits
error spikes in larger horizons which are legacy of the digital
DBN inputs, these spikes are recognized to be mitigated by
the Kalman filter in Fig. 6. Results in Fig. 6 appear to be
following the trend of speed variations very well, however
at some points, especially in the sudden peaks in the actual
speed profile, such as the peak at 300 seconds, the scaling
seems to be not quite exact, which can be attributed to the
nature of neural networks. Compared to the results previously
declared in [10], for highway merging where the velocities in
the drive cycles are more gradually changing and have fewer
stops, these results do not exhibit the same level of accuracy,
however, this does not point to a futile fate for this approach
in this application either. It is critical to keep in mind that
intersection driving is by far and undoubtedly more complex
than highway merging, and besides that, there are multiple
amends for this issue. For instance, replacing the RNN with a

Fig. 5: Prediction results for random vehicle pair

more sophisticated method such as Long Short-Term Memory
networks (LSTMs) could be a proper adjustment to this
approach. Furthermore, Model Predictive Controllers (MPC),
which are the prime target end-users for these predictions, tend
to rely on 2-3 second prediction horizons which are adequately
accurate.

V. CONCLUSION AND FUTURE WORK

In this endeavour, DBN was studied as a method of real-
time microscopic traffic participant motion prediction in an
urban intersection environment. It is understood that DBN is
not sufficient for continuous variable processing, therefore a
recurrent neural network was utilized to compensate for this
shortcoming of the DBN. Moreover, a Kalman filter was used



Fig. 6: Prediction results for random vehicle pair with Kalman
Filtering

as a post-processing measure to ensure the velocity predictions
do not suffer from radical and sudden peaks. It was argued
that these predictions can help MPCs yield better results. The
combination of the proposed prediction strategy with MPCs
or other controllers that can make use of them should be an
interesting investigation for the future. Moreover, other DBN
network topologies and other methods for continuous variable
prediction can be investigated and compared with the results of
this study. Altogether, the envisioned future of transportation
relies on the progress of methods and techniques such as this
and the benefits of autonomous driving make it worthwhile.
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