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Abstract—In this paper, a set of second order sliding mode con-
trollers affected by disturbances with linear and nonlinear growth
is under study. Mechanical systems described using a double in-
tegrator affected by external perturbations are considered in this
work. A preliminary study shows that, using a nonsmooth strict
Lyapunov function, it is possible to ensure finite-time stability and
estimate the convergence time of the closed loop system in spite
of disturbances that grow linearly and nonlinearity with respect
to the state. The performance and robustness properties of the
feedback synthesis are illustrated with numerical experiments
solving the tracking problem for a one-link pendulum as a test
system. Three experiments are carried out: the nominal system,
the system affected by nonvanishing perturbations and the system
affected by linearly and nonlinearity growing perturbations with
respect to the state.

Index Terms—Second-order sliding modes; Lyapunov function;
numerical analysis

I. INTRODUCTION

The implementation of a feedback synthesis on a mechani-
cal system or any process is always affected by external pertur-
bations such as friction, growing uncertainties or physical con-
straints. Single order sliding mode (SOSM) controllers are a
good alternative because of their properties such as finite-time
convergence to the origin in spite of bounded, nonvanishing
external disturbances and parametric uncertainties. Moreover,
a smooth version of the well known “twisting” controller has
been under study considering these properties (see [2], [3],
[8], [9], [11] and references quoted therein). In this paper,
a generalization of the twisting algorithm plus a proportional-
derivative (PD) controller is studied in order to design a robust,
finite-time stabilizing set of feedback controllers.

In [12], nonsmooth strict Lyapunov functions were pre-
sented in order to assess the stability of the well known
“twisting algorithm” plus a PD term. It was possible to show
finite-time stability of the closed loop system in spite of
perturbations that linearly grow with respect to the state.
In [13], a nonsmooth strict Lyapunov function was identified
to show global finite-time stability of the closed loop system
using a family of controllers, in spite of nonlinear growing
perturbations. Moreover, an estimation of the convergence time
of the trajectories of the closed loop systems is obtained.
Moreover, in [13] some particular cases of the same family
of controllers where under study to observe its effect on the

reaching time, the chattering amplitude, and the stationary
state error. On the other hand, there have been no analyses for
nonvanishing perturbations or perturbations that grow linearly
with respect to the state for this set of controllers. In [1], a
nonsmooth weak Lyapunov function was presented to show
global asymptotic stability of the closed loop system using a
set of controllers plus a PD algorithm, in spite of nonlinear
growing perturbations.

Based on this, the main contribution of this paper is two
fold: (a) to provide a sketch of the stability assessment of
the closed-loop system, and (b) to illustrate, using numerical
experiments, the performance of the control design of the dis-
turbed and disturbance-free scenarios. A continuous stabilizing
feedback controller is implemented on a one-link pendulum,
affected by Coulomb friction. Three experiments are under
study: nominal system, system affected by nonvanishing per-
turbations, and a system affected by linearly and nonlinearly
growing perturbations with respect to the state.

The structure of this paper is as follows: basic assump-
tions of the systems under interest and some mathematical
background are given in Section II. In Section III, a sketch
of the stability of the unperturbed and the system affected
by bounded perturbations are analysed. In both cases, finite-
time stability for the origin of the closed loop system is
concluded. In order to support the theoretical results, the
proposed control law is implemented in Section IV, on a one-
link pendulum, affected by external perturbations, as a testbed.
Finally, Section V presents the conclusions of this work.

II. PRELIMINARIES

In what follows, the definitions and mathematical back-
ground, as well as the class of systems considered throughout
the rest of the paper are briefly introduced.

A. Considered systems

The general model of a mechanical system of one degree
of freedom will be considered. It is described by equations of
the form

ẋ = y

ẏ = f(x, y) + g(x, y)τ + δ(x, y, t), (1)



with the smooth function g(x, y) 6= 0 ∀x, y in its domain. The
origin of the unforced/undisturbed system (1) is an equilibrium
point (i.e., f(0, 0) = 0) and x, y ∈ IR are scalar state variables.
The function f(x, y) represents the nominal known part of the
system dynamics, which can be discontinuous, and δ(x, y, t)
represents the uncertainties such as growing perturbations with
respect to the state variables (see [10]).

Since the right-hand side of the Equation (1) has
discontinuous terms, their solutions are understood in the
Filippov sense (see [7]). It is assumed that the full vector state
of the dynamic system (1) is available for measurement; note
that this assumption is not restrictive because there are several
works in the literature about observers and differentiators
design (see [4], [5], [6], [10], [14], and references quoted
therein).

For system (1) the following controller design is proposed

τ =
1

g(x, y)
(U − f(x, y)) , (2)

where U ∈ IR is a new control input given by

U = −k1|x|
α

2−α sgn(x)− k2|y|αsgn(y) + ρx+ σy, (3)

with k1, k2, ρ, and σ as positive constants and 0 ≤ α < 1.
Let us consider an external bounded perturbation δ(x, y, t)

given by

|δ(x, y, t)| ≤ µx|x|
α

2−α + µy|y|α + µρx+ µσy, (4)

where µy, µx, µρ, µσ ∈ IR+ are positive constants. Therefore,
system (1) can be reduced to the disturbed double integrator:

ẋ = y

ẏ = −k1|x|
α

2−α sgn(x)− k2|y|αsgn(y)
− ρx− σy + δ(x, y, t). (5)

The mathematical background and previous results for the
considered systems will be state in the next section.

B. Mathematical Background

Some contributions, fundamental for the rest of this work,
are now recalled. The notation of some theorems was modified
for readability.

The disturbed double integrator, described by equations of
the form

ẋ = y,

ẏ = −k1|x|
α

2−α sgn(x)− k2|y|αsgn(y) + δ(x, y, t), (6)

was under study in [13].
Theorem 1: [13] Let

V (x, y) =
2− α
2

(k1 − µxsgn(x))2|x|
4

2−α

+ (k1 − µxsgn(x))|x|
2

2−α y2 + |x|
3

2−α sgn(x)y

+
1

2(2− α)y
4 (7)

System (6) has finite-time convergence to the point (x, y) =
(0, 0) with

treach ≤
1

ζminp
γ

3+α
4

maxV
1−α
4 (x(0), y(0)), (8)

as an estimation of the convergence time of the trajectories of
the closed loop system (5), with

ζminp = min

{
ηxηy −

3

2

1 + α

2− α,
1

2− α

(
ηy −

3

2
(1− α)

)
,

ηx − ηy
1

1 + α
, ηx −

α

1 + α

}
,

γmax = max

{
λmax (P2) ,

1

2(2− α)

}
,

and

P2 =

(
2−α
2

(k1 − µxsgn(x))2 1
2

1
2

2−α
2

(k1 − µxsgn(x))

)
,

k1 > µx +
1

1 + α
max

{
ηy, α,

1 + α

(2− α) 2
3

}
,

k2 > µy +
3

2
(1− α),

ηxηy >
3

2

(
1 + α

2− α

)
, ηx = k1 − µx, ηy = k2 − µy,

for 0 ≤ α < 1 and asymptotic stability for α = 1.
In this work, numerical results of a generalization of the

set of control laws in [13] are obtained using a one-link
pendulum as a testbed. A PD control law is added to the set
of controllers (6) in order to compensate external disturbances
described by Equation (4). A sketch of the main results of this
paper will be developed in the following sections.

III. MAIN RESULTS

A. The Unperturbed System

Consider the unperturbed system (5) given by

ẋ = y

ẏ = −k1|x|
α

2−α sgn(x)− k2|y|αsgn(y) + ρx+ σy, (9)

where k1, k2, rho, σ are positive constants and 0 ≤ α < 1 .
Theorem 2: Let

V (x, y)=
2− α
2

k21|x|
4

2−α + k1|x|
2

2−α y2 + |x|
3

2−α (10)

+
1

2(2− α)
y4 +

(
2− α
3− α

+ sgn(x)
)
k1ρ|x|

2(3−α)
2−α

+
2− α
5− α

σ|x|
5−α
2−α +

1

2− α
ρx2y2 +

1

2(2− α)
ρ2x4

a strict nonsmooth Lyapunov function for the system (9) , with
γ > 0. Then, the system (9) has finite-time convergence to the
point (x, y) = (0, 0) with

treach ≤ γV
1−α
4 (x(0), y(0)), (11)



as an estimation of the convergence time, with γ as a function
of the controller gains and bounded disturbances.

For readability, the sketch of this theorem is not included.
However, in the next section, a sketch of the proof and a
stability assessment of the perturbed system will be treated
considering external bounded perturbation that grows nonlin-
early and linearly with respect to the state.

B. The Perturbed System

In this section a new strict nonsmooth Lyapunov function
is proposed to show finite-time convergence of the trajectories
of the perturbed system (5) to the point (x, y) = (0, 0) in spite
of external perturbations bounded by inequality (4).

Theorem 3: Let

V (x, y) =
2− α
2

(k1 − µxsgn(x))2|x|
4

2−α

+(k1 − µxsgn(x))|x|
2

2−α y2 + |x|
3

2−α sgn(x)y

+

(
2− α
3− α + sgn(x)

)
(k1 − µxsgn(x))(ρ− µρ)|x|

2(3−α)
2−α

+
2− α
5− α (σ − µσ)|x|

5−α
2−α +

1

2− α (ρ− µρ)x2y2

+
1

2(2− α) (ρ− µρ)
2x4 +

1

2(2− α)y
4 (12)

a strict nonsmooth Lyapunov function of the system (5). Then, the
system (5) has finite-time convergence to the point (x, y) = (0, 0)
with

treach ≤ γpV
1−α
4 (x(0), y(0)), (13)

as an estimation of the convergence time of the trajectories of the
closed loop system (5), with γp as a function of the controller gains
and bounded disturbances.

Sketch of the proof: The proof is very similar to the
disturbance-free scenario. The disturbed nonsmooth dynam-
ics (5) is analyzed using a nonsmooth strict Lyapunov func-
tion (12). Finite-time convergence of the trajectories of the
closed loop system (5) is shown by demonstrating that the
time derivative of the Lyapunov function (12) is negative
definite. It is possible to rewrite the time derivative of the
nonsmooth Lyapunov function in terms of the same Lyapunov
function, and by means of a comparison system, obtain an
estimation of the time convergence of the trajectories to the
point (x, y) = (0, 0) in spite of the bounded perturbations (4).

In the next section, in order to support theoretical results,
a numerical experiment is under study using an one link
pendulum system as testbed.

IV. NUMERICAL EXPERIMENTS

The tracking problem of the one-link pendulum system,
affected by Coulomb friction and external perturbations is
considered to illustrate the controller performance. Figure 1
shows the considered test equipment, a simple pendulum,
modelled by

(ml2 + J)q̈ = mgl sin(q)− F (q̇) + τ + δ(t, q, q̇). (14)

The friction force F is described by

F (q̇) = ρv q̇ + ρcsign(q̇), (15)

Fig. 1: Pendulum system.

where q is the angle of the pendulum with respect to the
vertical, g is the gravity acceleration and τ is the control
torque. The control objective is to drive the one-link pendulum
to a known trajectory r(t) in exact finite-time, i.e., to find a
suitable control input τ(t) of the form (2)-(3) for system (1)
such that the trajectory tracking error

e(t) = x(t)− r(t), (16)

satisfies
limt→∞e(t) = 0,

even in the presence of an admissible external disturbance
δ(x, y, t) of the form of equation (4).

The state-space representation of (14) is

ẋ = y

ẏ =
1

(ml2 + J)

(
mglsin(x)− ρvy − ρcsign(y)

+ τ + δ(t, x, y)
)
. (17)

Lets consider the following reference trajectory for the
experiments

r(t) = 0.25 sin
(
2πt+

π

4

)
(18)

even in the presence of an admissible external disturbance (4).
The desired trajectory allows to have an initial deviation of
π
4 rad at the initial time t0.

The error dynamics (16), using equations (17) and (18) is
described by

(ml2 + J)ë = mglsin(x)− ρvy − ρcsign(y)
+ τ + δ(x, y, t)− (ml2 + J)r̈. (19)

The control law is set in the form of equations (2)-(3) as

τ =
(
ml2 + J

)
r̈ −mglsin(x) + ρvy + U,

U = −k1|e|
α

2−α sign(e)− k2|ė|αsign(ė)− ρe− σė, (20)

with α = 0.5.
In this work, three experiments were considered to show

the performance of the closed-loop scheme:



N1) A nominal system. The pendulum was controlled to track
a given sinusoidal trajectory without disturbances (see
Figures 2 through 5).

N2) A disturbed system affected by a perturbation bounded
by a positive constant, i.e., δ(x, y, t) = 2 at t = 10s (see
Figures 6 through 9).

N3) A disturbed system affected by disturbances that grow
linearly and nonlinearly with respect to the state as
in inequality (4) (see Figures 10 through 13) with the
following parameters.

The initial conditions for the pendulum were fixed as x(0) =
0 rad and y(0) = 0 rad/sec. The controller gains are set to
the values k1 = 3, k2 = 1, µx = 1, µy = 1. The numerical
experiments below were performed using the following system
values: m = 1, k = 1, l = 1, g = 9.81, J = 1. The simulations
were done in Matlab/Simulink, using a Runge-Kutta solving
method, with 0.0001ms time step.

First, an experiment N1 with a set of controllers, with
α = {0.1, 0.3, 0.5, 0.7, 0.9} considering no disturbance is
under study, i.e., δ(x, y, t) = 0. The position and velocity are
shown in Figures 2 and 3. Figure 4 shows the tracking error of
the closed loop system, and Figure 5 shows the control input.
It is possible to see that changing the value of α the robustness
of the system also changes. A value of α closer to zero, the
controller behaves as an ideal sliding mode controller. A value
of α closer to one, a PD-like performance is obtained.

Fig. 2: Time history of the angular position in rad.

Fig. 3: Time history of the angular velocity in rad/s.

In the second set of the experiments, an external pertur-
bation N2, bounded by a positive constant, is added, i.e.,

Fig. 4: Time history of the position error in rad.

Fig. 5: Time history of the control input in Nm.

δ(x, y, t) = 2 at t = 10s. The position and velocity are shown
in Figures 6 and 7. Figure 8 shows the tracking error of the
closed loop system, and Figure 9 shows the control input.
A similar conclusion is visualized: Setting α closer to zero,
the controller behaves more like a sliding mode controller,
then the controller is robust against nonvanishing perturbations
with known upper bound. A value of α closer to one, a PD-
like performance is obtained, therefore the controller loose
robustness against this kind of perturbations. This performance
was expected since the robustness of sliding mode and PD
controllers are well known.

Figures 10 to 13 depict the numerical results of the closed-
loop pendulum system for scenario (S3). In this set of
experiments, an external perturbation bounded by nonlinear
and linear functions with respect to the state are added as
Equation (4), i.e., δ(x, y, t) = 2|x|

α
2−α + 2|y|α + 2x + 2y at

t = 10s. The position and velocity are shown in Figures 10
and 11. Figure 12 shows the tracking error of the closed loop
system, and Figure 13 shows the control input. The conclusion
of these numerical experiments is as follows: Setting α closer
to zero, the controller looses robustness against perturbations
with linear/nonlinear growth with respect to the state. A value
of α closer to one, PD-like performance, the controller does
not loose robustness against these perturbations. This effect
was also expected: for sliding mode controller is hard to fix the
gain controller when the perturbations do not have a constant
as an upper bound. However, the PD-like controllers can be
robust against this kind of perturbations.



Fig. 6: Time history of the angular position in rad.

Fig. 7: Time history of the angular velocity in rad/s.

V. CONCLUSIONS

A generalization of a second-order sliding mode controller
“Twisting” plus a PD algorithm is presented. A draft of two
nonsmooth strict Lyapunov functions is shown in order to
assess global finite-time convergence in spite of nonlinearly
and linearly growing perturbations. The proposed nonsmooth
strict Lyapunov functions allow an estimation of the upper
bound of the convergence time. A robustness analysis of
the proposed algorithm was shown through numerical experi-
ments. The tracking control problem of a one-link pendulum in
spite of perturbations with linear/nonlinear growth with respect
to the state and parametric perturbations was considered as
a testbed. The closed loop mechanical system showed to be
robust and provide nice performance in spite of perturbations
that grow with respect to the state, which is not the case for
the closed loop system affected by nonvanishing perturbations.
For future work, this result can be easily generalized for
multidimensional case. Moreover, it can be extended when
a state variable is not available for measurement, then an
observer could be implemented.
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