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Abstract—Mesh adaptation relies on an error estimation pro-
cess. Error estimators should properly take into consideration the
contribution from both numerical and modeling related errors.
Numerical dissipation plays an important contribution to the
effective modeled turbulent kinetic energy (TKE), and must be
accounted for. In the present paper, a novel approach is proposed
for the estimation of numerical TKE. Several error estimators
for LES are implemented and assessed for grid adaptation. The
validation of the periodic hill test case was carried out for
the coarse, the fine and the adapted grids. Numerical results
are validated through a comparison against reference LES and
experimental data. We employ and demonstrate the use of various
error estimators for mesh adaptation.

Index Terms—mesh adaptation, large eddy simulation, error
estimator

I. INTRODUCTION

The application of Large Eddy Simulation (LES) usually
demands exorbitant computational cost. Mesh adaptation pro-
vides an ability to efficiently and strategically use computa-
tional resources. The process is typically based on a quality
assessment process or an error estimator. LES intends to
resolve the large scales while models the small via a Subgrid-
Scale (SGS) model. From an error analysis point of view, both
the numerical and modeling errors contribute towards the total
error [1], [2]. The distinction of the two sources of error is
artificial and in practice the two interact and act as a whole
and both are affected by the grid size.

Existing error estimators and mesh adaptation procedures
for Reynolds-averaged Navier–Stokes (RANS) solvers could
serve as references [3] but cannot be directly applied to LES
due to the nature of the turbulence model. Despite the number
of literature devoted to the assessment of LES quality [4]–[9],
few of them could be directly applied to mesh adaptation for
practical LES applications, due to the following limitations:

1) Different from RANS, where the grid size mainly affects
the discretization error; in LES, both modeling and
numerical errors are implicitly dependent on each other
and are non-trivial to estimate;

2) There is no grid-convergence for LES since as the grid
is refined, smaller scales are developed in the solution;

3) LES is intrinsically unsteady and chaotic, such that the
error estimators should include some averaging process
in space and/or time;

4) Different from detailed LES quality assessment, the
error estimation for LES application only allows for
single grid estimators for practical reasons.

Geurts and Frohlich proposed the activity parameter [10] for
LES quality assessment based on the estimation of turbulent
and viscous dissipation. Celik et al. [11], [12] introduced a
family of Index Quality for LES error estimation, based on
the effective Kolmogorov scale ηeff or the eddy viscosity
νeff which incorporates the contribution from the SGS model
and the numerical dissipation. The estimator was extended
using the proportion of resolved to total TKE based on
Pope’s suggestion that a “good” LES approach should resolve
at least 80% of the total TKE [13]. Instead of using the
proportion of resolved TKE, Antepara [14] used the residual
velocity magnitude (without scaling) as an error indicator.
A similar small energy density indicator depending on the
residual velocity magnitude which includes the directional
information was developed and employed in [15], [16]. In
each of the above formulas, there is at least one parameter
which requires an estimation based on empirical equations.
Some error estimators were proposed based on the Richardson
extrapolation approach [17], Klein assumes that in LES using
implicit filtering, the modeling and numerical errors could be
combined to a unique function of grid size as an alternative to
assess the Index Quality. The modeling and numerical errors,
and even the coupling error from the two sources, could also
be separated with the help of solving the flow with a systematic
grid and model variation [6], [8], which leads to a tremendous
increase in the computational cost.

The current work focuses on the error estimation for prac-
tical LES mesh adaptation, thus the focus is on a posteriori
single-grid error estimators which could be implemented in
the post-processing process without modifying the flow solver
in itself.

II. OCTREE FLOW SOLVER

SYN3D is a finite-volume based multi-block structured flow
solver for compressible flows developed at the Computation-
al Aerodynamics Group at McGill University. The WALE
Subgrid-Scale model [18] is employed for LES simulations.
Modifications on the data structure and the integration process
are made to carry out mesh adaptation for LES.



A. Data Structure

To achieve mesh adaptation, we have incorporated a cell-
based octree data structure [19] within SYN3D. When a
certain cell is refined, eight children cells are generated with
one level higher than the parent cell and a continuous sequence
of memory is allocated. Given a list of refined cells from
the error estimator, the connection pointers are automatically
generated and the CPUs are rebalanced for parallel efficiency.
In the current flow solver only geometry variables exist on
face and vertices while all the flow variables are cell-based.

B. Integration Process

The time integration follows the process proposed in [19],
where the time steps in refined cells are automatically reduced
from that of the parent cell,

∆t(l) = 2lmin−l∆t, (1)

where ∆t is the time step on the root cell and l the level
of the current cell. Assuming the flux evaluation and time
advancement procedures at level l to be A(l), the operation at
level l is

O(l) =

{
O(l + 1)O(l + 1)A(l); if l < lmax;
A(l); if l = lmax.

(2)

The recursion is carried on until reaching cells on the highest
level l = lmax.

III. ERROR ESTIMATION

In this subsection the formulas and implementation of
several error estimators are presented. The approaches for
estimation of numerical TKE are provided.

A. Index Quality IQη

The Index Quality based on the effective Kolmogorov scale
is defined as,

IQη =
1

1 + αη( h
ηeff

)m
, (3)

where the effective Kolmogorov length scale ηeff is defined
by

ηeff = (
ν3

ε
)1/4, (4)

where the dissipation ε is estimated from

s = (
ε

νeff
)1/2, (5)

where s =
√

2sijsij is the square root of the double inner
product of the mean strain rate tensor sij . The grid cell length
scale h is simply

h = V 1/3, (6)

where V is the volume of the cell. αη and m are empirical
constants.

B. Index Quality IQν

The IQν takes the same form as IQη does,

IQν =
1

1 + αν(
νeff

ν )n
, (7)

based on the eddy viscosity νeff which incorporate the con-
tribution from the SGS model and the numerical dissipation.
The implementation of IQν can be directly fulfilled by using

νeff = νnum + νsgs (8)

where the numerical viscosity νnum is obtained from the
numerical TKE with

νnum = sgn(knum)Cν∆
√
abs(knum), (9)

with ∆ the filter size and Cν a constant. The estimation of
knum will be discussed in Sec III-D.

C. Index Quality IQk.

The index quality was extended using the proportion of
resolved to total TKE,

IQk =
kres
ktot

, (10)

where the resolved TKE, kres, is obtained by adding the
contribution from the diagonal terms in the Reynolds stress
tensor, obtained by subtracting the instantaneous flow field
from the time-averaged solution,

kres =
1

2

3∑
i=1

u′iu
′
i (11)

with

u′i = ui − Ui, (12)

where ui and Ui are the instantaneous and time-averaged ve-
locities. ktot is the sum of the resolve, modeled and numerical
TKE,

ktot = kres + ksgs + knum, (13)

where the modeled TKE, ksgs, could be estimated from the
eddy viscosity

ksgs =
ν2
sgs

C2
ν∆2

. (14)

D. Evaluation of knum

All of the above formulas depend on an estimation of nu-
merical TKE, knum and its estimation is not straight forward.
Three approaches are evaluated to achieve the goal including
an empirical formula which leads to IQk−emp, an approach
based on the evaluation of kinetic energy dissipation which
leads to IQk−ke and the evaluation of turbulent kinetic energy
dissipation which leads to IQk−tke.



1) Evaluation based on an empirical formula: Considering
that ksgs and knum are related to the length scale ∆ and h
respectively, Celik et al. [12] proposed a direct way of evalu-
ating knum on a single grid by assuming a linear relationship
between knum and ksgs

knum = Cn(
h

∆
)2ksgs. (15)

In the case of implicit filtering, the filter size is directly
related to the grid size, such that the only parameter to tune is
Cn. The procedure is proposed based on a spectral analysis for
the Decaying Isotropic Turbulence (DIT) case [20]. A process
was proposed [21] to estimate the impact of the inclusion of
numerical dissipation and the SGS model to the amount of
captured TKE and Cn is estimated to be 2.71.

Although the uniform turbulence may show a linear relation
between ksgs and knum, the linear assumption has two primary
drawbacks because of the nature of the error even if the
coefficient is tuned:
• The SGS model primarily contributes to the modeled

TKE in the high wavenumber region while the numerical
dissipation contributes to the numerical TKE in a much
wider wavenumber range;

• When approaching to the wall, the modeled TKE tends
to zero, while knum should not diminish, such that ksgs
cannot serve as a direct way to estimate knum in the
near-wall region.

2) Evaluation from the kinetic energy dissipation: An
improved approach was proposed to estimate knum from
the kinetic energy (KE) dissipation. A practical numerical
approach was proposed by Domaradzki et al. [22] and was
developed in spectral space. The approach was extended in
physical space by Schranner et al. [23] and the formular was
proposed for explicit LES by Cadieux et al. [24]. The transport
equation for the kinetic energy ekin is

∂ekin
∂t

+
∂(uiekin)

∂xi
= −ui

ρ

∂p

∂xi
+ (ν + νt)uj

∂τij
∂xi

, (16)

where νt is the subgrid-scale eddy viscosity, and

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
xk

. (17)

When the discretization provided by a Navier-Stokes solver is
employed to estimate ekin, Eq 16 will result into a residual,
εn,

(
∂ekin
∂t

)d + (NS)dekin = (
∂ekin
∂t

) + (NS)ekin︸ ︷︷ ︸
=0

+εn, (18)

where εn is replaced by the discretization of each term in the
flow solver,

−εn =(
∂ekin
∂t

)d + (NS)dekin

=[
∂ekin
∂t

+
∂(ujekin)

∂xj
+
ui
ρ

∂p

∂xi
− (ν + νt)ui

∂τij
∂xj

]d.

(19)

The residual εn serves as an estimate of the numerical
dissipation of kinetic energy, since it includes the truncation
error of the numerical scheme, that includes both dissipative
and dispersive errors, for all terms in the kinetic energy
equation. For the purpose of implementation, Eq. 19 is re-
written for the finite volume framework:

−εn = ekin,t + Fekin
+ Fac − Fν −Π + εν , (20)

where the right hand side includes the total time-rate of change
of kinetic energy:
• ekin,t =

∫∫∫
A
∂ekin

∂t ,
three flux terms:
• Fekin

=
∫∫
A
ekinujdA,

• Fac =
∫∫
A
p
ρuidA,

• Fν =
∫∫
A

(ν + νt)uiτijdA,
and two volume terms:
• Π =

∫∫∫
V
p
ρ
∂ui

∂xi
dV ,

• εν =
∫∫∫

V
(ν + νt)τij

∂ui

∂xi
dV .

In order to achieve a local cell-based error estimation, Eq. 20
is evaluated locally in each computational cell, providing local
εn values. A numerical eddy viscosity νnum is estimated by
analogy to the formula for the viscous dissipation term,

εn =

∫∫∫
V

νnumτij
∂ui
∂xi

dV, (21)

such that
εn
εν

=
νnum
ν + νt

. (22)

Here, νnum is calculated locally and the numerical TKE,
knum, is estimated from νnum with the help of Eq. 9; while,
εν and εn are computed at each time step in a LES simulation.
The time and space averaged values of εν and εn are then used
to estimate a time and space averaged numerical TKE.

The process of εn evaluation is similar to the residual
evaluation procedure in the flow solver. The implementation of
the approach could easily be carried out for an arbitrary flow
solver. However, the approach shows two drawbacks when
applied for mesh adaptation for LES:
• Due to the nature of the term, the dissipation εν is

always positive and Π is zero for incompressible flow; the
unsteady term ekin,t tends to zero after time averaging for
a statistically steady case, while the flux terms, Fekin

, Fac
and Fν , have the possibility of showing negative values,
such that the whole numerical dissipation could result in
negative values in certain regions where the dissipative
effect is negligible compared to the convective effect. For
example, Fekin

and Fac could become the leading terms
in the laminar region with high mean flow velocity and
low turbulent intensity as well as low velocity gradients,
and lead to negative numerical dissipation [25];

• The current approach is focused on kinetic energy dissi-
pation which incorporates both mean flow kinetic energy
dissipation and turbulent kinetic energy dissipation, and
both parts contribute to the evaluation of νnum. However,
the error estimator IQk should be only formulated based
on numerical dissipation of the turbulent kinetic energy.



Fig. 1: Periodic hill case geometry.

3) Evaluation from the turbulent kinetic energy dissipation:
In order to provide for an improved approach for an appropri-
ate estimation of knum, we propose to study the discretized
resolved turbulent kinetic energy equation for LES. When
using an eddy viscosity model with the inclusion of νt, the
time averaged resolved TKE equation for LES is written as:

∂k

∂t
+

∂

∂xj
(kuj +

u′jp

ρ
) = −u′iu′j

∂ūi
∂xj

+ (ν + ν̄t)
∂2k

∂xj∂xj

− (ν + ν̄t)
∂u′i
∂xj

∂u′i
∂xj

+ ν′tu
′
i

∂2ūi
∂xj∂xj

+ 1st order fluctuation terms,
(23)

where ūj means time averaged value, u′j means fluctuation
value and uj means the instantaneous value. All the 1st order
fluctuation terms disappear when the time averaging is carried
out. Using the same technique as the previous subsection, we
express the numerical dissipation of TKE as the discretization
of all the terms of Eq. 23 in the flow solver,

−εn =(
∂k

∂t
)d + (NS)dk

=[−u′iu′j
∂ūi
∂xj

+ (ν + ν̄t)
∂2k

∂xj∂xj

−(ν + ν̄t)
∂u′i
∂xj

∂u′i
∂xj

+ ν′tu
′
i

∂2ūi
∂xj∂xj

]d,

(24)

which is re-written for implementation purpose,

−εn = kt+Fk+Fac−Fν−Finter−Π+P+εν+εinter, (25)

where the additional terms compared to Eq. 19 are:
• P =

∫∫∫
V
p′

ρ
∂u′

i

∂xi
dV ,

• Finter =
∫∫
A

(ν + νt)ūiτijdA,
• εinter =

∫∫∫
V

(ν + νt)τij
∂ūi

∂xi
dV .

Dissipated TKE due to the existance of numerical error is
estimated using a local length scale lscale and velocity scale
uscale,

knum = εn
lscale
uscale

. (26)

Considering that the numerical dissipation happens at the cell
size scale and the velocity fluctuation scale, we employ

lscale = V
1
3 (27)

uscale = |u′| =
√

2

3
kres, (28)

where V is the local cell volume and kres is the local resolved
TKE.

IV. NUMERICAL SET-UP

Our primary test case is the periodic hill, with the geometry
and mesh shown in figure 1, with periodic boundary conditions
in both streamwise and spanwise directions, and no-slip con-
ditions are applied at the upper and lower boundaries. The
Reynolds number based on the hill height and mean bulk
velocity at the hill crest is Re = 10600. A pressure forcing
term [21] is added to the streamwise momentum and energy
equations in order to drive the flow to maintain a constant
Reynolds number during the simulation. The flow is highly
unsteady featuring separation from the continuous surface and
the separation point oscillates over a large range on the wall.
The mean flow is characterized by a separation bubble with an
established separation and reattachment point. The form of the
bubble depends on two factors: the position of the separation
point and the turbulent intensity on the top of the bubble,
which determines the level of energy exchange from the mean
flow to the bubble region. The experimental data [26], a LES
with wall function on fine grid of 4.6M [27] and a very
fine wall-resolved LES on 13.1M grid [28] are available as
reference data.

Two levels of grids are available for the study. The coarse
mesh (MESH1) has 160×160×64 grid points, while the fine
mesh (MESH2) is refined from MESH1 only in the spanwise
direction. The first layer of cells satisfies y+ ≈ 1, which
ensures the wall-resolved LES on both the upper and the lower
surfaces. The goal of the study is to apply the error estimators
to the coarse mesh based on the averaged solution and refine
only 5% of cells with the largest error.

Fig. 2: Backflow on the hill top region, Left: coarse mesh;
right: fine mesh.

V. RESULTS

The simulations were launched on coarse and fine grids
for stabilization over 100 flow through periods, and the flow
field is averaged over 30 flow through periods in time and the
spanwise direction. Fig. 7 (a) shows the size of the separation
bubble with the contour of the captured TKE. The coarse mesh
shows an early flow reattachment due to an over-estimation
of the TKE level in the region above the separation bubble,
the phenomenon is also reported in [27] for a coarse grid. A
refinement in the spanwise direction allows for a lower TKE
level and a better capture of the bubble length as shown in



(a) (b)

(c) (d)

(e)

Fig. 3: Error estimation on coarse mesh based on (a): IQη;
(b): IQν ; (c): IQk−emp; (d): IQk−ke; (e): IQk−tke.

TABLE I: Separation and reattachment points for the periodic
hill case.

Mesh Size (x/h)sep (x/h)reat Lbubble
LES [27] 4.6M 0.22 4.72 4.5
LES [26] 13.1M 0.19 4.69 4.5

Coarse 1.6M -0.93 4.06 4.99
Fine 3.3M 0.22 4.67 4.45

IQη adapted 2.1M 0.14 3.95 3.81
IQk−emp adapted 2.1M 0.21 4.41 4.2
IQk−ke adapted 2.1M -0.93 4.99 5.92
IQk−tke adapted 2.1M 0.22 4.55 4.35

Fig. 7 (b). As is shown in Fig. 2, the coarse mesh wrongly
captures a backflow layer on the top of the hill while the
error is avoided by the spanwise refinement in the fine mesh.
Table. I also confirms that the coarse mesh wrongly predicts
the separation point by estimating the separation prior to the
top of the hill at a negative X coordinate and predicts an
early reattachment of the flow, while the fine mesh shows
good agreement with the reference LES data, even with a
comparatively smaller grid size.

A. Evaluation of numerical TKE

The numerical dissipation is evaluated using all three ap-
proaches presented in Section. III-D and the results are shown
in Fig. 4. It can be observed that all approaches show the
same scale of numerical dissipation. The empirical formula
only highlights the mixing layer above the separation bubble.
The KE dissipation based approach highlights the intensively
turbulent region near the separation point shows, while not
targeting the mixing layer between 2 < X < 3.2. The
approach also shows high dissipation in a thin layer near the
wall within the separation bubble region with 2 < X < 4
and in a small near-wall region on the left side of the hill top
region, where flow separation starts to appear. Generally, the
region between the hills with Y < 1 shows positive numerical

Fig. 4: Numerical dissipation, εn, based on empirical formula
(top left), KE dissipation (top right) and TKE dissipation(top
right).

Fig. 5: Numerical TKE, knum, based on empirical formula
(top left), KE dissipation (top right) and TKE dissipation(top
right).

dissipation. Negative dissipation is shown in the region above
the hill for Y > 1, where the convective flux dominates and
the turbulence intensity is low, as discussed in Section III-D2.
A similar trend is reported by Castiglioni and Domaradzki [25]
who targeted negative numerical dissipation in the laminar
region far from the wall with the current method. Referring to
Eq. 20, in this region, the convective and pressure flux terms
dominate over the turbulence dissipation. The TKE dissipation
based approach shows high value in both the mixing layer and
the boundary layer on the lower wall. In addition, the approach
shows positive value or weakly negative value in the entire
computational domain, even in the region dominated by the
convective flux term.

The numerical TKE contour was shown in Fig. 5. The
empirical formula shows high value in the mixing layer above
the separation bubble with a peak value of 0.014, while
the KE dissipation based approach mainly targets the near-
wall region in the separation bubble with a higher peak
value of 0.044. The comparatively low numerical viscosity
in the mixing layer leads to a low numerical TKE. The TKE
dissipation based approach is able to target both the mixing
layer and the boundary layer with a peak value of 0.013.
The targeted boundary layer mainly includes three parts, the
separation point region, the reattachment point region and a
small near-wall region on the left side of the hill top region
with 7.5 < X < 8.6.



(a) (b)

(c) (d)

Fig. 6: (a): IQη adapted mesh; (b): IQk−emp adapted mesh;
(c): IQk−ke adapted mesh; (d): IQk−tke adapted mesh.

B. Error estimation

The error estimation results based on five estimators are
shown in Fig. 3. IQν and IQη are evaluated using the
empirical formula of knum. Both target a similar region in
the center of the computational domain, where νsgs shows
higher values and the size of the grid cells is relatively larger.
A small region of mixing layer near the separation point is
also slightly highlighted. The indicator IQk−emp with the
empirical formula of knum targets primarily the mixing layer
above the separation bubble. The indicator IQk−ke based
on the evaluation of KE dissipation provides for a different
outcome, by showing high values (over 90%) in most of the
flow field and mainly targeting the near-wall region on the
downstream side of the hill. Different from IQk−emp, IQk−ke
does not target the mixing layer that is present above the
separation bubble as a low-quality region, since the region is
dominated by high strain rate and shows a low numerical eddy
viscosity, νnum, and numerical TKE, knum. The indicator
IQk−tke based on the TKE dissipation targets both the mixing
layer and the near-wall region, including the separation point
and the reattachment point. Since the correct capture of TKE
in those regions is essential for the correct prediction of the
bubble length as shown in [27], the indicator IQk−tke is
expected to aid efficiently grid adaptation for LES.

C. Simulations on adapted grids

Since IQν and IQη target similar regions for mesh adapta-
tion while IQk−emp, IQk−ke and IQk−tke indicate different
regions, we decided to carry out a comparative study based
on adapted meshes based on IQη , IQk−emp, IQk−ke and
IQk−tke, which lead to four adapted meshes, namely IQη
adapted mesh (MESH3), IQk−emp adapted mesh (MESH4),
IQk−ke adapted mesh (MESH5) and IQk−tke adapted mesh
(MESH6) shown in Fig. 6, based on the largest 5% of the error
levels of the original cells. The simulation was stabilized on
the adapted meshes for 40 additional flow through periods
before making an average over 30 flow through periods in
order to make a meaningful comparison.

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Separation bubble and TKE coutour on (a): coarse
mesh; (b): fine mesh; (c): IQη adapted mesh; (d): IQk−emp
adapted mesh; (e): IQk−ke adapted mesh; (f): IQk−tke adapt-
ed mesh.

Fig. 8: Reynolds stress tensor components profiles at X = 2.

Fig. 7 (c), (d) and (e) show the TKE field and the separation
bubble captured on the IQη , IQk−emp and IQk−ke adapted
grids. It can be observed that the level of captured TKE on
IQk−emp adapted mesh is significantly reduced compared to
the value on the coarse grid shown in Fig. 7 (a), while the IQη
and IQk−ke adapted mesh still captures a high level of TKE.
Both IQη and IQk−emp adapted meshes improve the incorrect
location of the separation point, while the IQk−emp and
IQk−ke adapted meshes provide for a larger separation bubble,



whose reattachment point reaches 4.41 and 4.99 respectively;
while, the reattachment point captured on the IQη adapted
mesh is similar to that on the original coarse mesh as shown
in Table. I. This confirms again that the size of the separation
depends on the turbulent intensity captured on the top of the
bubble.

Figure. 8 shows the profiles of the Reynolds stress tensor
components and the TKE compared with the reference LES
and the experimental data at the slice X = 2. The studied
slice spans across the main flow and the bubble regions, and
is characterized by a high TKE value in the mixing layer
above the bubble. The coarse mesh over-estimates all the
components and wrongly captures the boundary layer while
the fine mesh shows great comparison against the reference
data. It is observed that the IQη adapted mesh does not
provide a discernible improvement over the coarse mesh.
The IQk−emp adapted mesh shows an improvement of the
captured TKE level in most of the computational domain,
while still show an over-estimation of the TKE level on the
lower wall region compared to the fine mesh. Due to the fact
that the empirical formula estimates the knum value based
on ksgs, which tends to zero as approaching to the wall, the
value of knum is low in the near-wall region, which leads to
a reduction of νeff and kmod, in the near-wall regions even if
the separation and reattachment points are not targeted for
refinement, which could explain the over-estimation of the
TKE near the reattachment point. IQk−ke targets the high
value of numerical TKE near the wall in the bubble region and
leads to a refinement near the reattachment point, providing
for an improvement in the captured TKE level near the wall,
while showing an over-estimation of TKE in the mixing layer
on the top region of the separation bubble, which the estimator
does not target for grid refinement. The IQk−ke adapted mesh
outperforms the other estimators by targeting all the essential
regions including the mixing layer and the boundary layer, and
by capturing the correct length of the separation bubble as well
as a better level of TKE profile in the whole computational
domain.

VI. CONCLUSION AND FUTURE WORK

In this work, several error estimators for LES have been
applied to the periodic hill case in order to analyze their
applicabilities and performances. The use of these error es-
timators is of great importance in the assessment of the
quality of LES results and in the grid adaptation for LES,
where the grid resolution impacts both the SGS model and
the numerical dissipation, which leads to the modeled and
numerical TKE. Three approaches of evaluating the numerical
TKE are analyzed and implemented.

One complete grid adaptation cycle is performed for four
error estimators IQη , IQk−emp, IQk−ke and IQk−tke. IQη ,
IQk−emp and IQk−tke adapted meshes help capture the
correct location of the separation point. IQη adapted mesh
fails to provide for improvement in better capture of the size
of the separation bubble and the TKE level in the flow field.
The IQk−emp adapted mesh successfully captures a lower

level of TKE in the bubble region and a better size of the
separation bubble, while provides for an over-estimation of
TKE level in the near-wall region. The IQk−ke adapted mesh
shows better performance in the near-wall region by avoiding
the over-estimation of TKE, while the estimator over-estimates
the level of TKE above the bubble region. The IQk−tke is
able to balance the refined region between the mixing layer
above the bubble and the boundary layer, which leads to the
best performance in terms of capturing correctly the Reynolds
stress tensor component values and the length of the separation
bubble. The future step of the study is to use residual-based
and adjoint-based error estimators and to carry out simulations
on adapted grids based on the combined information provided
by different error estimators to provide for a better evaluation
of their impacts on grid refinement.
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