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Abstract— In this study, an optimization method is proposed 

to obtain an initial configuration of the catenary. To this end, a 

gradient-based algorithm is employed, and the sensitivity 

analysis is performed by introducing an alternative finite 

difference method (FDM). Unlike the original FDM, a 

proposed method can dramatically reduce the computation 

cost due to its simplified format. The form-finding problem is 

formulated as the unconstrained optimization problem with an 

objective function defined by half mean squared error. In the 

optimization process, static analysis for the catenary 

constructed by the 2-node beam elements is performed at each 

iteration calculation using commercial software. A well-

defined unconstrained optimization problem is solved 

successfully, and the validity of the suggested optimization 

method is supported by the numerical results obtained for 

specific design conditions. 

Keywords- pantograph-catenary system; static analysis; 
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I.  INTRODUCTION 

The overhead line system for a high-speed modern train 
should be operated under the stable current-collection quality 
which can be judged by the contact loss between the catenary 
and pantograph. Numerical simulations are required to verify 
performance primarily because real-world overhead line tests 
are inefficient, expensive and sometimes dangerous. The 
simulation for the high-speed train should capture exactly the 
wave propagation phenomena in the catenary system because it 
dominates the physical behaviors between the pantograph and 
catenary [1]. In order to simulate the pantograph-catenary 
system accurately, two numerical methods have been 
intensively investigated so far: the absolute nodal coordinate 
formulation (ANCF) based finite element method (FEM) [2-9] 
and the standard FEM [10-16]. In a nutshell, the standard FEM 
considers six degrees of freedom (DOF) for the 2-node beam 
element, but the ANCF based FEM solves for 12 DOF for the 
same beam element because it additionally considers the 
absolute nodal coordinates to calculate the large deformation 
phenomenon effectively. 

There is another important issue in the simulation to obtain 
the stable current-collection quality apart from the formulation 

selection of the numerical methods: initial catenary form-
finding problem considering pre-sag and distortion. Since the 
catenary configuration is exerted by the external forces such as 
gravitational and tensile forces, the pre-sag and distortion of the 
catenary are inevitable if one does not perform optimization for 
finding proper initial catenary configuration. Accordingly, 
numerous methods have been reported to overcome this issue 
so far. There were useful form-finding methods that considered 
the constraints introduced during the assembly of the catenary, 
pantograph and the other parts [4,7], or found the static form of 
the catenary configuration by using geometry variation method 
[11,12]. Also, Zhou et al. [13] performed the optimization 
process by introducing the negative sag method, Massat et al. 
identified the dropper length by minimizing the dropper tension 
error in [14], and Yang et al. [8] facilitated the catenary form-
finding by controlling tension with the piecewise equations. 
Several types of research with respect to minimizing distance 
have been reported. Ambrósio et al. [15] performed minimizing 
the distance between the static deformed geometry of the 
contact wire and its specified position and Collina et al. 
minimized a residual function constructed by the weighted 
differences between the target and the design values of the 
tensile load in the wires and the lateral position of the steady 
arms in [16]. Besides, Gregori et al. [9] minimized the 
interaction force between the catenary wire and pantograph 
head by using a genetic algorithm. However, there was a lack 
of optimization formulation descriptions in the researches 
mentioned previously to the catenary form-finding problems. 

Even though a tailored analytical solution was proposed in 
[17], it was only valid for the specific geometry and 
parameters. Therefore, an advanced optimization scheme 
should be developed to obtain the proper initial configuration 
for the various catenary types. In this study, a new optimization 
method is proposed to solve the form-finding problem by using 
a gradient-based algorithm with an alternative finite difference 
method (FDM) for the sensitivity analysis. This paper is 
organized as follows: Section II describes the static analysis 
method with the governing equation and boundary conditions. 
Section III describes the optimization formulation for the 
catenary initial form-finding problem. In Section IV, the 
optimal results are shown with the optimization history and 
tabulated data. 
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Figure 1.  Two-dimensional catenary model 

II. CATNEARY STATIC ANALYSIS 

In this section, a numerical analysis method is described for 
obtaining the static catenary configuration before proposing a 
new method to solve the form-finding problem. 

A. Simulation Model 

A single-span catenary configuration is selected for the 
analysis and optimization model. Its geometry is shown in Fig. 
1, and there is an assumption that the model only behaves on 
the x-y plane considering only in-plane degrees of freedom. 
The height (D1) and length (D2) of the span are 1.2 [m] and 60 
[m], respectively. The number of droppers and their heights 
and locations will be shown in the following section. 

B. Govering Equation and Boundary Conditions 

The displacements of for the contact ( cwu ) and messenger 

wires ( mwu ) denoted by the subscripts ‘cw’ and ‘mw’, 

respectively, are governed by Euler–Bernoulli beam theory as 
follows. 
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where q represents the local coordinate in the longitudinal 

direction of the beam element. EI and T stand for the bending 

stiffness and tensile force of wires, respectively. 
dr

kf  and kx  

represent an external force by a dropper and the location of k-

th dropper, respectively.  For the messenger wire in Fig. 1, 

Point A is constrained against displacements in x and y 

directions, and Point B is constrained against displacement y, 

and a tensile force mT  is applied on Point B as well. For the 

contact wire, Point C is constrained against displacement in x 

direction and rotation about z. Point D is constrained against 

rotations z, and exerted a tensile force cT . Further, all nodes 

are globally constrained against displacements in z and 

rotations about x and y and a gravitational force is applied to 

all nodes in the -y direction. Based on the governing equation 

and boundary conditions, the standard FEM formulation can 

be constructed as in (3). 
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Figure 2.  Keypoints for undeformed and deformed configurations 

represented by black-solid and red-dashed lines. (a) Keypoints for x direction. 

(b) Keypoints for y direction. 

Ku = f                                       () 

where K  , f  and  u  denote a global mass matrix, the vector 

of external forces and the vector of nodal displacement, 

respectively.  

C. Static Analysis Implementation 

To obtain the static solution in (3), ANSYS APDL script 
[18] is used with the 2-node Euler–Bernoulli beam element 
(BEAM188) for the messenger and contact wires modeling. 

Also, the tensile forces of wires due to droppers, 
dr

kf  in (1) 

and (2), can be modeled by using the non-linear spring element 
(COMBIN39). The deformed and undeformed coordinates for 
keypoints as shown in Fig. 2 can be used to construct the 
vectors outlined in (4) and (5). A Python scrip is used to 
integrate the ANSYS APDL script in (6) with the form-finding 
optimization problem. 

 1 1,..., ,..., , ,..., ,...,
T

m M n Nx x x y y y=χ         () 

 1 1,..., ,..., , ,..., ,...,
T

m M n Nx x x y y y=χ         () 

( )APDL

Staticf=χ χ                                 () 

where χ  and χ  represent the undeformed and deformed 

coordinates vectors, respectively, and the number of the 

coordinates are M = N = 2K + 2.  
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Figure 3.  Optimization history 

III. CATENARY OPTIMIZATION FORMULATION 

A. Set the Target Values for Keypoints 

In this study, a single span catenary configuration with 9 
droppers (K = 9) is considered, so the number of the keypoints 
for x and y coordinates in (4) and (5) are M = 20 and N = 20, 
respectively. The x direction coordinates for the target 
keypoints are defined by EN50318, and the y direction 
coordinates are obtained considering the momentum 
equilibrium as described in [5,6]. Also, the zero pre-sag is only 
considered in this study, so the y direction target values for the 
contact wires are all zeros. The target values are listed in 

TABLE. I, and the values are compiled in 
target

χ  as follows 

with the total number of the target values, S = 40. 
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B. Objective Function and Sensitivy Analysis 

The form-finding problem can be solved by optimizing the 
unconstrained optimization problem with the design variable 
vector χ . To this end, an objective function is defined in (8) 

and (9) which is half mean squared error. 
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where ‘  ’ and ‘ ’ represent the dot and Hadamard product 

operations, respectively. 

In order to minimize the objective function L using the 
gradient-based algorithms, sensitivity analysis should be 

performed preliminary: L χ . Unfortunately, since the 

objective function is calculated based on a black-box-like  

TABLE I.  TARGET VALUES FOR FORM-FINDING OPTIMIZATION 

Symbols Values [m]  Symbols Values [m] 

target

1x  5.0 
target

1y  0.985636172 

target

2x  10.5 
target

2y  0.804060736 

target

3x  17.0 
target

3y  0.647338322 

target

4x  23.5 
target

4y  0.553304873 

target

5x  30.0 
target

5y  0.521960391 

target

6x  36.5 
target

6y  0.553304873 

target

7x  43.0 
target

7y  0.647338322 

target

8x  49.5 
target

8y  0.804060736 

target

9x  55.0 
target

9y  0.985636172 

target

10x  60.0 
target

10y  0 

target

11x  
target

1x  
target

11y  0 

target

12x  
target

2x  
target

12y  0 

target

13x  
target

3x  
target

13y  0 

target

14x  
target

4x  
target

14y  0 

target

15x  
target

5x  
target

15y  0 

target

16x  
target

6x  
target

16y  0 

target

17x  
target

7x  
target

17y  0 

target

18x  
target

8x  
target

18y  0 

target

19x  
target

9x  
target

19y  0 

target

20x  
target

10x  
target

20y  0 

 

function as shown in (6), analytical sensitivity analysis cannot 

be performed.  Finite difference method (FDM) can be use 

instead, however, this significantly increases computational 

costs. 
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where  stands for a small change of the corresponding 

variable, and s   denotes the deformed coordinates 

considering  . As shown in (10), the original FDM requires 

S+1 separate finite element analyses which increases 

computation cost. Therefore, an alternative FDM is proposed 

in (11) with an assumption that s s  −  is almost identical to 

s . 

targetL
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χ χ
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Figure 4.  The optimal catenary (black-dashed line) and deformed catenary 

based on the optimal keypoints (red-solid line) congifurations. 

TABLE II.  DIFFERENCE BETWEEN THE TARGET AND DEFORMED 

KEYPOINTS 

Design variable  

index (S) 
target opt  [m]−χ χ  Design variable  

index (S) 
target opt  [m]−χ χ  

1 -0.000192 21 -0.000572 

2 -0.000104 22 -0.002698 

3 -0.000084 23 -0.002821 

4 -0.000064 24 -0.002786 

5 -0.000043 25 -0.002629 

6 -0.000241 26 -0.002355 

7 -0.000011 27 -0.001920 

8 -0.000020 28 -0.001632 

9 -0.000033 29 -0.001527 

10 0.000011 30 0.004299 

11 0.000016 31 -0.003862 

12 0.000034 32 -0.002503 

13 0.000050 33 -0.002572 

14 0.000066 34 -0.002504 

15 0.000082 35 -0.002277 

16 0.000100 36 -0.001884 

17 0.000113 37 -0.002981 

18 0.000126 38 -0.000491 

19 0.000142 39 -0.001957 

Design variable  

index (S) 
target opt  [m]−χ χ  Design variable  

index (S) 
target opt  [m]−χ χ  

20 0.000075 40 0.008825 

C. Optimization Algorithm  

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm 
is selected as an optimizer for the unconstrained optimization 
problem formulated in the previous section. There are many 
options in the algorithm selection, but the optimizers such as 
Newton's method which requires the Hessian matrix are not 
suitable in the optimization formulation as in (8) because of the 
high computational cost in FDM. Therefore, the BFGS method 
having high accuracy for the search direction and step length 
based only on the gradient vector is employed as the 
optimization algorithm in our problem. To implement this 
algorithm in the Python environment, SciPy is introduced, [19] 
which is a free and open-source Python library. 

IV. OPTIMIZATION RESULTS AND DISCUSSIONS 

A. Optimization History 

The form-finding problem is successfully solved by 
minimizing the objective function in (8). The optimization 
history is displayed in Fig. 3, and shows the efficient 
convergence behavior. These results conclude that the 
simplified FDM in (11) works for the catenary configuration 
optimization problem. 

B. Optimization Result Validation 

The mathematical relationship between the optimal (
opt

χ ) 

and deformed (
opt

χ ) keypoints in (12) as follows. 

( )opt APDL opt

Staticf=χ χ                           () 

The optimal and deformed catenary configurations are 
displayed in Fig. 4 represented by black-dashed line based on 

opt
χ  and red-solid line based on 

opt
χ , respectively. The 

difference between the target values and deformed values based 
on the optimal coordinates should be close to 0 as represented 
in (13), and TABLE. II lists these values. 

target opt− χ χ 0                               () 

Consequently, the optimization results in TABLE.II show a 
capability of the proposed method to obtain a proper initial 
form of catenary. This method can be used as the preliminary 
stage of the transient simulation for the pantograph-catenary 
system. 
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