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Abstract—In this study we investigate the effect of yield stress
on the performance of viscosity regularization models in predict-
ing unsteady flow of yield stress fluids. Viscosity regularization
is popular for its simplicity of implementation into CFD codes
and relatively low computational cost; however, the discussion
on the limitations of this method in predicting the flow behavior
has remained qualitative. We present a quantitative comparison
between regularization and exact rheology in predicting natural
convection of the Bingham fluids in a square cavity with differen-
tially heated sidewalls. We consider a range of Bingham numbers
and compare viscosity regularization results with augmented
Lagrangian solutions. We show that the accuracy of viscosity
regularization declines as the Bingham number increases. We
also show that for high yield stress values the computational cost
of viscosity regularization increases significantly.

Index Terms—Yield stress fluids, Viscosity regularization, Bi-
viscosity, Unsteady flow

I. INTRODUCTION

Yield-stress fluids, YSF, behave like solids under any ap-
plied shear stress below a threshold called the yield stress.
If the applied stress exceeds the yield stress, YSF flow like a
fluid. In nature, avalanches, mud flow or landslides, lava flows
and many biological substances such as mucus can display
similar behavior. In industrial settings, chocolate confections,
the cement slurry used in buildings or paints, pulp suspensions
in paper production, pharmaceutical and cosmetic products
involve the YSF (1)(2). Bingham fluids, named after Bingham
(3), are described as YSF with the following ideal relation
between the shear stress and the strain rate:

if τ̂ < τ̂y ˆ̇γij = 0 , otherwise τ̂ij =

[
µ̂+

τ̂y
ˆ̇γ

]
ˆ̇γij (1)

where ˆ̇γij and τ̂ij are the rate of strain and the deviatoric stress
tensors. ˆ̇γ and τ̂ are the second invariants of the rate of strain
and deviatoric stress tensors:

ˆ̇γ =

√
1

2
ˆ̇γij ˆ̇γij

ˆ̇τ =

√
1

2
τ̂ij τ̂ij

τ̂y and µ̂ are the yield stress and plastic viscosity. The effective
viscosity, η̂e, therefore, becomes:

η̂e = µ̂+
τ̂y
ˆ̇γ
. (2)

Other popular constitutive laws for YSF are Herschel-Bulkley
and Casson models that have different definitions of effective
viscosity. Although these constitutive models do not describe
the exact behavior of YSF, they are convenient in practice. The
effective viscosity of Bingham, Herschel-Bulkley and Casson
models are similarly unbounded and discontinuous at ˆ̇γ = 0
and this brings about theoretical and numerical challenges:
(i) the stress fields within plug regions are indeterminate,
(ii) the effective viscosity is singular at the plug boundaries
(where τ̂ = τ̂y) and (iii) the shape and size of the unyielded
regions are also not known a priori. This is usually remedied
through the use of (a) augmented Lagrangian methods (AL)
or (b) viscosity regularizations models (VR). The augmented
Lagrangian methods, introduced by Glowinski (4), use the
variational formulation of the Navier-Stockes equations and
an optimization algorithm to perform numerical simulations
of flow of YSF. Numerical predictions based on AL can
accurately identify unyielded regions; they cannot, however, be
easily integrated in most commercially available CFD codes
and computation times can be prohibitively long (5). VR,
first used by Glowinski (6), facilitates numerical simulations
by estimating the effective viscosity using a bounded func-
tion: a regularized model represents a strongly shear-thinning
but purely viscous fluid. VR can be easily implemented in
commercial CFD codes and are generally faster than AL (1).
Commonly used variations of VR are the models proposed
by Bercovier and Engelman (7), Papanastasiou (8), and Bi-
viscosity model, developed by (9). Bi-viscosity model esti-
mates the effective viscosity using a bilinear curve:

η̂e =

{
mµ̂ ˆ̇γ ≤ ˆ̇γcr
µ̂ Otherwise

(3)

Here µ̂y = mµ̂ is the yield viscosity and ˆ̇γcr = τ̂y/(µ̂y− µ̂)
is the critical strain rate. m is the regularization parameter and
is inherently dimensionless. The choice of this parameter de-
termines the accuracy of the regularization model in estimating



Fig. 1. Illustration of viscosity regularization models and
Bingham model. The regularization parameter is chosen such
that

[η̂e]ˆ̇γ=0

[η̂e]ˆ̇γ=∞
= 100.

the Bingham constitutive law. See Fig. 1 for an illustration of
the different regularization models.

Generally, the difference between VR and Bingham model
is maximum for small strain rates and it diminishes as γ̇ →∞.
The convergence of the predictions based on VR and the exact
Bingham rheology has been discussed by (10). They provided
error bounds for the difference between the results of VR and
the exact Bingham model. They have shown that when the
shear stresses is close to the yield stress in relatively large
part of the flow domain, VR errors are the largest. Turan et
al utilized bi-viscosity model to study the steady state natural
convection in a square cavity with differentially heated side
walls. Karimfazli et al (11) studied the temporal evolution of
the flow in the same problem, utilizing the AL.

The limitations of VR have been primarily considered
qualitatively and in predicting steady flows. The goal of this
study is to investigate the effect of VR on the accuracy of
unsteady flows of YSF. We present a quantitative comparison
of AL and VR in predicting the buoyancy-driven flow of YSF
in a square cavity subject to differentially heated sidewalls. In
§II-C, we validate our results in comparison with numerical
solutions of (12) and (11). In III, we present unsteady flow
development based on VR and discuss the accuracy and
numerical complications. §IV summarizes our observations
and draws the conclusions.

II. PROBLEM SETUP

We consider two-dimensional flow between two differen-
tially heated vertical walls confined to two adiabatic horizontal
walls (∂T̂ /∂x̂ = 0) in a square geometry. Fig. 2 shows the

Fig. 2. Problem setup and boundary conditions. T̂ is temper-
ature and ûi is the velocity in i th direction where i, j = 1, 2
and (x1, x2) = (x, y).

schematics of boundary conditions. Left wall is maintained at a
constant hot temperature, TH and right wall has a constant cold
temperature, TC , (TC ≤ TH ). No-slip boundary conditions
is applied on all the boundaries of the cavity. Initially (at
t = 0), the Bingham fluid is at rest and has a linear
temperature distribution. This is representative of the steady
purely conductive state.

A. Formulation

In this paper we denote dimensional quantities withˆsymbol
and dimensionless quantities without. Assuming Boussinesq’s
approximation, three dimensionless groups govern the flow
dynamics:

Pr =
ν̂

κ̂
, Ra =

ĝβ̂∆T̂ L̂3

ν̂κ̂
, B =

τ̂y

ρ̂0ĝβ̂∆T̂ L̂

Here µ̂, κ̂, β̂, ĝ, L̂ and ∆T̂ are the fluid’s momentum
diffusivity, thermal diffusivity and coefficient of thermal ex-
pansion, acceleration due to gravity, the cavity width and the
temperature difference between the two sidewalls (T̂H − T̂L),
respectively. ρ̂0 is the density evaluated at reference tem-
perature, T̂0 = (T̂H + T̂C)/2. Pr is the Prandtl number
representing the ratio of momentum diffusivity to thermal
diffusivity. Rayleigh number, Ra, represents the balance of
the destabilizing effect of buoyancy stresses to the stabilizing
effect of viscosity. Bingham number, B, represents the ratio
of the yield stress, τ̂y to buoyancy stresses. If the Bingham
number exceeds a critical limit Bcr, the steady state becomes
motionless. Karimfazli et al (11) demonstrated that Bcr is
independent of other dimensionless numbers and only depends
on the geometry. They calculated Bcr = 0.03125 for square
cavity.



Non-dimensional governing equations (momentum, continuity
and energy equations) become:

1

Pr

∂ui
∂t

+
Ra

Pr
uj
∂ui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ Tδi2 (4)

∂ui
∂xi

= 0 (5)

∂T

∂t
+Raui

∂T

∂uj
=

∂2T

∂xi∂xi
(6)

We use a viscosity regularization of Bingham model known
as bi-viscosity to relate the deviatoric stress tensor to the strain
rate,

τij =

mγ̇ij , if γ̇ ≤ γ̇cr(
1 +

B

γ̇

)
γ̇ij , otherwise

(7)

Here the ratio of the yield viscosity (µ̂y) to the plastic viscosity
(µ̂) is the regularization parameter m =

µ̂y
µ̂ . The viscosity of

the fluid switches from yield viscosity to plastic viscosity if
the strain rate exceeds γ̇cr = B

m−1 . We used m = 103 for
all the simulations presented in this paper. The dimensionless
initial and boundary conditions are{

ui(t = 0, x, y) = 0, i = 1, 2
T (t = 0, x, y) = −x+ 1/2
ui(t, x = 0, y) = ui(t, x = 1, y) = 0
ui(t, x, y = 0) = ui(t, x, y = 1) = 0, i = 1, 2
T (t, x = 0, y) = 1/2
T (t, x = 1, y) = −1/2

The dimensionless variables in the above equations are
defined as

xi =
x̂i

L̂
, T =

T̂ − T̂0

T̂H − T̂C
, ui =

ν̂ûi

ĝβ̂∆T̂ L̂2
,

t =
κ̂t̂

L̂2
, τij =

τ̂ij

ρ̂0ĝβ̂∆T̂ L̂
, γ̇ij =

ν̂ ˆ̇γij

ĝβ̂∆T̂ L̂
.

The purely conductive temperature profile, corresponding to
the case where fluid is motionless everywhere in the domain,
is simply T = −x+0.5. We also introduce θ = T +x−0.5 as
a measure of the advective heat transfer. L2 norms of velocity,
u, and temperature, θ defined as

‖θ‖ =

√∫
Ω

θ2dΩ and ‖u‖ =

√∫
Ω

u2dΩ.

are used throughout this paper to illustrate development of the
flow from the initial motionless state (||θ|| = ||u|| = 0).

B. Numerical Method

We solve equations (4 - 6) in a domain with 80×80 discrete
control volumes, using the finite-volume based software FLU-
ENT v19.2. We used second-order and fully implicit temporal
formulation and iterate within each time step for the rest of
the terms. The convergence criteria for the residuals of the
above equations is set to 10−6. As for spatial discretization we

use a second-order pressure interpolation and a second-order
upwind scheme for convection terms. Pressure and velocity
are coupled by segregated algorithm, SIMPLE and before each
SIMPLE iteration the viscosity is updated following equation
3, implemented into a user-defined function.

C. Validation

In table I, we compare our numerical results with (12)
and (11). In table II, we present the mesh convergence of
our numerical simulation. Note that Bn is the dimensionless
number used by (12) for this problem.

Bn =
τy
µ

√
L

gβ∆T
= B

√
Ra

Pr

Table II shows that in comparison with the finest mesh M4,
the accuracy of the results for Vmax were improved from
5.7% to 1.3% by changing grid size from M2 to M3. The
average Nusselt number accuracy were also improved from
1.6% to 0.2%. Therefore, M3 is a reasonably fine mesh for
this problem providing satisfactory accuracy and reasonable
computational cost. Moreover, the augmented Lagrangian re-
sults presented in this paper were conducted on a 100 × 100
grid. Thus, we chose a similar mesh size to facilitate the
comparison between AL and VR methods. Hence, unless
otherwise specified, M3 grid was used for the simulations
presented in this manuscript.

III. RESULTS AND DISCUSSION

We provide numerical simulations of the natural convection
of Bingham fluid in a square cavity with differentially heated
sidewalls. We mainly asses a performance of the regularized
Bingham model (bi-viscosity) in retrieving the results achieved
using the Bingham model. For this purpose, we compared our
results with the work of (11). Their computations are based
on augmented Lagrangian method. We investigated the flow
development at Ra = 104 and Pr = 1 for fluids with different
Bingham numbers to study the effect of yield stress on the
accuracy of our simulations.
Fig. 3 depicts the evolution of the velocity norm as flow
evolved from the initially motionless and purely conductive
state to steady state (at Ra = 104 and Pr = 1). The results of
bi-viscosity regularization are shown by a solid red curve (BV)
and the augmented Lagrangian results by solid black curve

Present Study (11) (12)

Bingham fluid
Nu 1.5256 1.5269 1.5248

Pr = 7, Bn = 0.5 Vmax 8.9580 8.9441 8.9490

Newtonian fluid
Nu 2.243 2.248 2.245

Pr = 0.71, Bn = 0 Vmax 19.620 19.617 19.655

TABLE I: Comparison of simulation results with (11) and (12)
at Ra = 104



Present Study (11) (12)

M2 = 40× 40 Nu 1.5017 1.5382 1.5109
Vmax 8.4453 8.8925 8.2614

M3 = 80× 80 Nu 1.5234 1.5269 1.5224
Vmax 8.8393 8.9446 8.7900

M4 = 160× 160 Nu 1.5256 1.5269 1.5248
Vmax 8.9580 8.9441 8.9490

TABLE II: Comparison with Karimfazli et al. and Turan
et al. for simulation of Bingham fluid (Bn = 0.5, B =
0.0132, Ra = 104, P r = 7).

(AL). We observe similar qualitative evolution trends in both
solutions for low to moderate Bingham numbers (B ≤ 0.015).
In high Bingham number (B = 0.025) however, a gap is
evident between unsteady (and steady) AL and BV results.
To quantify the comparison, we defined the discrepancy of
a variable of interest, φ, between the AL numerical solution,
φAL, and BV numerical solution, φBV , by δ(φ) = |φBV −
φAL|/φAL. Fig. 4 illustrates the evolution of δ(||u||) and
δ(||θ||). Fig. 4 (a-d) show that when B ≤ 0.015, the magnitude
of δ(||u||) is mostly lower than 1% and it grows with the
yield stress. This increase in δ(||u||) is more noticable at
higher Bingham numbers. This substantial increase in δ(||u||),
persists throughout the flow development. In fig. 4 (e - h) we
observe similar loss of accuracy in predicting convective heat
transfer θ. This can be associated with the growth of the areas
with sub-critical strain rates (0 ≤ γ̇ ≤ γ̇cr) as B approaches
Bcr. Fig. 5 illustrates the areas of the sub-critical strain rates
in the domain. Under the same buoyancy forces, the fluid with
higher yield stress generally would produce lower strain-rates,
thus, it is evident as the B −→ Bcr, the areas of the domain
possessing sub-critical strain rate expand. Biviscosity model
underestimates the shear stress of the Bingham model where
0 ≤ γ̇ ≤ γ̇cr; this is the range where the regularized model is
least accurate in estimating the exact rheology of a Bingham
fluid. In fig. 5, we observe that the area with sub-critical strain
rates expands substantially from B ≤ 0.015 to B = 0.025, this
justifies the substantial increase in δ(||u||) and δ(||θ||).

We also observed that increasing the Bingham number,
significantly increases the computational cost of the problem.
To illustrate this, Fig. 6 shows the decay of error in the
governing equations 5 vs. iteration at an arbitrary time-step.
Comparing the number of iterations needed for the Newtonian
fluid (B = 0) and the Bingham fluids (B > 0) shows that the
solver demands considerably more time and computational
power to meet the convergence criteria upon the introduction
of the yield stress. Evidently, increasing the Bingham number
leads to a significant increase in the required iterations. All
simulations follow a similar pattern for the parameter ranges
considered in this study. In other words, the Bingham fluid
with a higher yield stress requires more iterations to converge
to the same residual.
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Fig. 3. The evolution of (a - d) velocity ‖u‖ and (e - h)
convective heat transfer ||θ||, for different Bingham numbers
at Ra = 104 and Pr = 1.

IV. SUMMARY

We have investigated the application of viscosity
regularization in predicting unsteady flow of yield-stress
fluids. The studied case was the natural convection inside a
square cavity with differentially heated side walls. Having
large but finite viscosity, regularized Bingham fluids flow
under any stress, Bingham fluid in contrary doesn’t flow
unless the yield stress is exceeded. This feature is more
pronounced when the flow produces stresses near the yield
stress (strain-rate is near zero). The aim of this study has
been to explore how this approximating the rheology by
regularization can affect the predicted unsteady flow and to
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Fig. 4. The evolution of (a - d) δ(‖u‖), and (e - h) δ(‖θ‖) for
different Bingham numbers at Ra = 104 and Pr = 1.

reveal what are the numerical difficulties associated with it.
We tested a range of Bingham numbers in our numerical
experiments to be able to determine when the regularized
Bingham fluid starts to differ noticeably from the Bingham
fluid. We utilized bi-viscosity model as a representative
regularized model and assessed its accuracy against the
augmented Lagrangian results.

We found that viscosity regularization predicts the dynamic
and thermal unsteady behavior of the flow with a good
accuracy for low to moderate Bingham numbers. For high
Bingham numbers (B −→ Bcr), nevertheless, the accuracy
declines; we hypothesize that due to the small strain rate (i.e.
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Fig. 5. Colormaps of velocity for different Bingham numbers
at Ra = 104 and Pr = 1; superimposed white closed curves
show the domain cells with γ̇ ≤ γ̇cr.
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Fig. 6. Residual versus iteration at t = 0.0137 for a biviscosity
model with m = 1000 with different Bingham numbers
ramging from B = 0 (Newtonian) to B = 0.025 at Ra = 104

and Pr = 1

γ̇ ≤ γ̇cr) in the domain, the regularization method fails to
deliver an acceptable accuracy. Moreover, as we increase the
Bingham number, the problem becomes numerically stiffer.
Accordingly, the computational cost increases as more itera-
tions are needed to achieve the desired precision. While the
low computational cost of VR compared to AL is one of their
main advantages, at high Bingham numbers (B −→ Bcr),
the computational cost increases significantly, undermining the
commonly perceived value.
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