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Abstract— Contact wire pre-sag directly impacts the current 

quality collection in a high-speed railway catenary. Due to 

this, the initial configuration of the catenary geometry plays an 

important role on the dynamic performance of the railway. 

Therefore, accurately representing the initial equilibrium state 

of the catenary based on specific design requirements is 

crucial to obtain accurate dynamic results. Despite its 

importance, there are only a few publications in this area that 

present methods that can accommodate desired amount of pre-

sag in the contact wire and are computationally efficient. The 

goal of this paper is to present a catenary system that has been 

modelled using a novel optimization method and validate its 

dynamic response from its interaction with a pantograph 

system against the reference model results in BS EN 50318. 

The novel optimization methodology presented in this paper 

employs a gradient-based algorithm with a modified finite 

difference method to solve the initial equilibrium geometry of 

the catenary. The pantograph and catenary systems are 

modelled using a commercial finite element software and the 

post-processing of the results is done using in-house code. A 

penalty contact-force model is used to represent the contact 

behavior between the pantograph-catenary system and a three-

step simulation procedure is used to achieve better 

convergence of results. The results from the simulation 

demonstrated good accordance with the reference model 

results in BS EN 50318. 
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I. INTRODUCTION 

In modern railways, catenary systems are used to transmit 
power to the train by means of contacting the pantograph. 
Uniform contact force throughout the interaction between the 
pantograph and catenary system is critical in order to maintain 
high current collection quality. Large contact forces increase 
friction and wear on pantograph collector strips, while low 
forces can lead to sparking and wear due to electrical arcing. 
This variation of the contact force between the pantograph and 
catenary system are mainly a result of stiffness variations and 
wave propagations along the catenary [1]. Studies have also 
shown that the pre-sag of the contact wire influences the 

dynamic interaction of the pantograph and catenary system [1]. 
Therefore, properly modelling the initial equilibrium state of 
the catenary is important to obtain an accurate dynamic 
response to ensure the train of a light rail system receives 
enough power. 

The catenary system is a complex system of wires with low 
bending stiffness that displays strong nonlinear geometric 
behavior under high tensile forces. Due to this behavior, there’s 
a challenge in modelling the initial configuration of the 
unstressed catenary system as the undeformed reference 
geometry is unknown. This is known as the initial equilibrium 
problem [3]. Several approaches have been developed to solve 
this problem namely, analytical methods and finite element 
(FE)-based approaches [3-7]. However, not much work has 
been done in the development of a method that can be adapted 
to several different catenary configurations and is 
computationally efficient [8]. In this paper, a novel FE-based 
methodology is utilized to model the undeformed catenary 
geometry that will result in the desired deformed geometry 
after both gravity and tension are applied to the system [9]. 
This method employs a gradient-based algorithm and uses a 
modified finite difference method (FDM) for sensitivity 
analysis. It can accommodate irregular catenary geometries as 
it enables the user to specify known geometrical points, such as 
the amount of desired pre-sag in the contact wire, after both 
tension and gravity are applied to the system. The catenary 
geometry is then used for transient analysis where all required 
outputs are determined.  

The current modelling and simulation methodology 
proposed in this paper leverages ANSYS commercial finite 
element software and in-house code. The dynamic interaction 
between the catenary and pantograph models are validated in 
accordance to standard BS EN 50318. This standard presents a 
method for validating simulations of the dynamic interaction of 
a pantograph-catenary system [2]. The method recommends 
two stages of validation, referred to as Validation 1 and 
Validation 2. For Validation 1, the simulation results are 
validated against a reference model. The parameters, such as 
mean contact force and percent contact loss, must all fall within 
the acceptable range of results. Once the results satisfy these 
requirements, the simulation must be validated against real line 
data for Validation 2. The simulation results for the model 
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presented in this paper have been validated against the 
reference model from the standard. 

This paper is organized as follows: Section II describes the 
modelling approach for the low fidelity pantograph and 
catenary system. Section III introduces the approach for 
representing the dynamic interaction between the catenary-
pantograph systems, as well the post-processing method for 
filtering the simulation data. Section IV presents and discusses 
the results obtained from the simulation. Finally, Section V 
discusses main conclusions and future works for the current 
work. 

II. MODELLING THE CATENARY AND PANTOGRAPH 

SYSTEMS 

A. Low fidelity catenary model 

1) Catenary reference model 
The geometry and features incorporated in the catenary 

model are based on the reference model found in BS EN 
50318. The catenary reference model is defined to have a 
messenger wire, contact wire, nine droppers, and two steady 
arms per span. Ten identical spans are incorporated in the 
catenary model at a +/- 0.2 m stagger. However, the catenary 
model developed does not incorporate stagger because only 
two-dimensional analysis between the pantograph and catenary 
is considered. Additional parameters such as span length, 
encumbrance, and dropper position are also defined by the 
standard and presented in Fig. 1 and TABLE I. 

2) Finite element modeling of the catenary system 
The contact and messenger wires are represented with 

Euler-Bernoulli beam elements, which correspond to 
BEAM188 in the commercial software used. Typically, copper 
alloys are used for the wires in the catenary system. For this 
catenary model, Copper Magnesium (CuMg) Bronze is 
assumed for both the messenger and contact as it is commonly 
used in high-performance railway lines [10]. The cross section 
of the wires is assumed as circular and a mesh density of 30 
elements is used between each dropper to accurately capture 
the wave propagation of the contact and messenger wires. The 
mesh density was determined through a mesh convergence 
study. The steady arms are also modelled using BEAM188 
elements with a circular cross section and material properties 
assumed to be that of mild steel. The droppers, which connect 
the contact and messenger wires, are modelled using 
unidirectional spring elements COMBIN39. The spring 
stiffness is defined as 100,000 N/m in tension and 0 N/m in 
compression. Additionally, the mass of the droppers and the 
clamps used to attach the droppers to the messenger and 
contact wires are taken to be zero in the reference model. 
Therefore, no additional lumped masses have been included to 
represent these features. For Validation 1, the standard also 
specifies zero damping in the catenary system, thus no 
damping method is used to represent the dissipation of energy 
in the system.  

 

 

 

TABLE I.  CATENARY PARAMETERS FROM THE REFERENCE MODEL 

Catenary Data 
Parameters 

Value Units 

Contact wire tension 20 000 N 

Contact wire linear density 1.35 kg/m 

Messenger wire tension 16 000 N 

Messenger wire line density 1.07 kg/m 

Spring constant of droppers 100 000 N/m 

Mass of links between wires 
and droppers (clamps) 

0 kg  

Steady arm line density 1.0 kg/m 
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Figure 1.  This figure details the encumbrance, distance between droppers, 

and span length for one span in the reference model. Note: the span is 

symmetrical, thus only the values for the first five droppers are shown. 

3) Initial equilibrium of the catenary system 
The initial equilibrium state of the catenary is based on the 

reference model detailed in BS EN 50318 and Fig 1. Therefore, 
the desired deformed geometry is known, while the 
undeformed geometry is unknown. This poses a challenge, as 
the undeformed geometry must be defined in ANSYS to run 
the simulation. To solve this problem, a novel optimization 
methodology is utilized to determine the initial undeformed 
geometry that will result in the desired deformed geometry 
after both gravity and tension are applied to the system. The 
FE-based method minimizes the error between the initial 
deformed geometry obtained with ANSYS and the target points 
from the deformed reference geometry [9]. This section 
discusses the unknown user-specified target points, such as the 
y-coordinate points for nodes connecting the droppers to the 
contact and messenger wires, and briefly presents the 
optimization algorithm.   

To obtain the deformed reference geometry, the lengths of 
each dropper can be manipulated. Knowledge on the desired 
amount of contact wire pre-sag in a catenary system is helpful, 
as it is function of dropper length [1]. The reference model is 
stated to have zero pre-sag; therefore, after applying the 
gravitational and tensile forces on the catenary, the resulting 
deformed geometry must match the reference geometry 
outlined in Fig. 1. The lengths of the droppers are calculated 
using an analytical method that assumes the system to be in 
static equilibrium [1]. This method assumes uniform linear 
density within the wires, symmetry about the center of the 
span, and equal encumbrance and height at the steady arms. 
Additionally, concentrated masses such as insulators and 
clamps are not considered. The reader is referred to the source 
for access to the full equations [1]. The calculated lengths for 
each dropper are shown in Fig. 2 and are used as target points 
in the optimization algorithm. 



   

 
 

Figure 2.  Catenary reference model with the dropper lengths calculated for 

the first five of droppers of one span to achieve zero pre-sag. 

The optimization method minimizes the half mean squared 
error of the nodal x  and y  coordinates ( χ ) for nodes 

connecting the dropper to the contact and messenger wires, as 
well as the nodes located on mast points. Error is considered as 

the difference between the target nodal coordinate (
target
χ ) and 

current nodal coordinate ( χ ). In the case of no pre-sag, the 

vertical target coordinate points for the dropper and contact 
wire connections is zero, and the vertical target point for the 
dropper and messenger wire connections is its respective 
dropper length. The optimization function defined in (1) 
determines the initial geometry required to attain the deformed 
target geometry within a user defined tolerance. With this 
method the initial geometry can be determined for any 
combination of pre-sag and tensile forces, expanding the scope 
of problems that can be analyzed using the methods outlined in 
this paper. To solve the optimization problem in (1), the 
Broyden-Fletcher-Goldfarb-Shanno algorithm is used by 
introducing SciPy which is a free and open-source Python 
library. The reader is referred to the source for further details 
about the algorithm [9]. 

( ) ( ) ( )target target1

2
L  =  − −

 
χ 1 χ χ χ χ           () 

B. Low fidelity pantograph model 

1) Pantograph reference model 
According to the reference model in BS EN 50318, the 

pantograph is to be modeled as a discrete mass-spring damper 
system (as shown in Fig. 3) that does not consider bump stops, 
frictional forces associated with contact, or the effect of 
aerodynamic forces. The pantograph uplift force, F1, is 
represented as a constant 120 N force acting on the mass, m2. 
The pantograph is modelled in two-dimensions; considering the 
horizontal ( x ) and vertical ( y ) influence of the pantograph as 

it moves along the contact wire.  

2) Finite element modeling of the pantograph 
To represent the simplified pantograph model in ANSYS, 

both lumped masses are modelled with MASS21 elements, 
while the spring-damper systems are modelled with 
COMBIN14 elements. These elements are defined in 
accordance with the data provided in the reference model.  
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Figure 3.  Pantograph model represented as a discrete mass-spring damper 

system. All parameters shown are defined in BS EN 50318. 

TABLE II.  PANTOGRAPH PARAMETERS FROM THE REFERENCE MODEL 

Pantograph Data 
Description 

Parameter [unit] Value 

Lumped mass  
m1 [kg] 7.2 

m2 [kg] 15 

Lumped spring  
k1 [N/m] 4200 

k2 [N/m] 50 

Contact spring kc [N/m] 50000 

Lumped damper  
r1 [Ns/m] 10 

r2 [Ns/m] 90 

Static/uplift force F1 [N] 120 

 

A physical representation of the pantograph collector strip is 
also incorporated in the pantograph model to properly define 
the line-line contact at the interface of the pantograph collector 
strip and the contact wire. The collector strip is modelled with 
BEAM188 elements with a cross-section assumed to be 
circular. 

III. PANTOGRAPH-CATENARY SYSTEM INTERACTION 

A. Contact modelling 

CONTA176 and TARGE170 elements are used to represent 
line-to-line contact between the contact and target points. Key 
options have been used to define the contact algorithm, contact 
model, and behavior of the contact surface to represent the 
dynamic interaction between both components. A penalty 
contact-force based model is selected to represent the sliding 
contact between the pantograph-catenary systems. The penalty 
method uses a contact spring stiffness to establish a 
relationship between both contact lines [11]. This method is 
widely used in existing pantograph-catenary software and is 
selected because the contact spring stiffness is defined by the 
standard as 50,000 N/m [12]. Furthermore, to capture the 
sliding contact between the crossing beams of the pantograph-
catenary system, the normal component of the contact force is 
considered, and the effect of friction is neglected.  

B. Three-step simulation procedure  

Static equilibrium of the system must be achieved before 
the pantograph begins to move horizontally across the catenary 
system in the x  direction. As a result, a three-step simulation 

procedure is adopted and detailed in the following paragraphs.  
Note, the boundary conditions for steps 1 and 2 are defined  
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Figure 4.  The boundary conditions on the catenary model for static analysis 

with reference to BS EN 50318. These constraints are shown in 
Fig. 4. Furthermore, as two-dimensional analysis is of interest, 
nodes are constrained against displacements in the z (lateral) 

direction and rotations about x (horizontal) and 
y (vertical). 

Step 1 and 2 (Static): Tension and gravity is applied to all 
components of the catenary to allow the system to reach 
equilibrium prior to the interaction with the pantograph. To 
enable this, the collector head of the pantograph is initialized at 
a small distance below the contact wire. To model gravity and 
tension in the catenary model, accelerations equal to the 
gravitational constant are applied in the y direction to all the 

nodes in the system and constant tensioning forces of 20 kN 
and 16 kN are applied horizontally to the contact and 
messenger wire ends. In step 2, the uplift force is applied on the 
articulating frame of the pantograph. This step closes the initial 
gap between the collector head and the contact wire and 
determines the equilibrium position of the system prior to 
movement of the pantograph.  

Step 3 (Transient): Velocities equal to the speed of the train 
specified by the standard are applied to all the nodes on the 
pantograph in the x direction. The duration of the load step is 
set to match the amount of time required to meet the end of the 
line section. The Newmark method is used to solve the FE 
equations of motion to compute the contact force at each nodal 
position.  

C. Signal processing 

According to the BS EN 50318, the frequency range of 
interest for the numerical results is 0 Hz to 20 Hz. For this 
model, a low pass filtering method is required to filter out the 
high frequency oscillations resulting from the use of the 
penalty method [13]. The filtering is performed using a 6th - 
order Butterworth low pass filter. This filter has been selected 
because the frequency response from this filter is maximally 
flat (unity in the passband and zero in the stopband) and has 
monotonic amplitude response for both passband and stopband 
[14]. 

 

IV. SIMULATION RESULTS 

TABLE III.  SIMULATION RESULTS 

Range of results for 

validation 1 

Speed 250 [km/h] 

Reference model (BS 

EN 50318:2002) 
Model 

Mean contact force [N] 110 to 120 113.18 

Standard deviation [N] 26 to 31 26.54 

Statistical maximum [N] 190 to 210 192.8 

Statistical minimum [N] 20 to 40 33.57 

Actual maximum [N] 175 to 210 175.9 

Actual minimum [N] 50 to 75 55.24 

Minimum uplift at 

support [mm] 
48 to 55 44.71 

Percent contact loss [%] 0 0 

 

The pantograph-catenary interaction is evaluated for 
pantograph speeds for 250 km/h, with results being processed 
for spans 5 and 6 at a cut-off frequency of 20 Hz. The 
numerical results are shown in table IV.  At speeds of 250 
km/h, the simulation results from the model demonstrate that 
all, but one output, falls within the acceptable range of results 
for Validation 1. The minimum uplift at support is short by 3.3 
mm. This may be a result of excluding stagger of the line in the 
catenary model. Another reason for this may be due to the 
stiffness variations throughout the span: stiffness is highest at 
the supports due to the steady arms and lowest at the center of 
the spans [1].  

V. CONCLUSION 

This paper presents an overview of modeling a pantograph-
catenary system in accordance with BS EN 50318 standard 
requirements. The finite element modeling process for the 
pantograph and catenary systems is presented with the 
application of a newly developed methodology for defining the 
initial geometry of the catenary. Ultimately, this method allows 
the possibility of modeling catenary systems for any 
combination of tensile forces on the wires and pre-determined 
values of pre-sag. Furthermore, this method can be applied in 
the future to determine the undeformed catenary geometry for 
more complex systems including additional features such as 
clamps and section insulators.  

The current model developed has been validated against the 
reference model according to the standard. It is recognized that 
the modelling and simulation methods outlined should be 
validated against real line test data in accordance to the 
standard. All outputs, except for the minimum uplift at the 
supports, satisfied the requirements from Validation 1. 
However, due to high stiffness values at the supports and lack 
of modelling line stagger, the requirements have not been met 
in order to begin Validation 2.  

 



   

The methodology outlined in this paper only considers a 
simplified model; however catenary systems are diverse and 
can contain different combinations of features in each span. In 
the future, the model can be expanded to contain additional 
elements such as line stagger, section insulators, and line 
overlaps to more closely replicate real-world networks. 
Detailed modeling of these features is of critical importance 
when understanding the real-world behaviour beyond the 
standard modeling requirements, as these locations typically 
represent the highest occurrence for loss-of-contact. 
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