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Abstract—Wild blueberry (Vaccinium angustifolium Ait.) 

production is hindered by weeds such as fescue (Festuca 
filiformis Pourr.) and sheep sorrel (Rumex acetosella L.). 
Commercial sprayers provide a uniform application of 
herbicide regardless of the incidence of weed coverage. 
Traditional methods of spot-applying herbicide to target weed 
locations relied on colour co-occurrence matrices that were 
limited by long processing times in addition to green colour 
segmentation lacking the ability to discriminate between weeds 
and crop canopy of similar colour. Deep learning convolutional 
neural networks (CNNs) are a modern processing technique 
which often uses powerful graphics processing units (GPUs) to 
classify images or detect objects within images. This novel 
research study featured two object-detection CNNs, YOLOv3 
and YOLOv3-Tiny, trained to detect fescue using images of 
wild blueberry fields captured during application timing 
intervals in the 2019 growing season. A custom-built desktop 
computer using the Ubuntu 16.04 operating system and an 
NVIDIA GeForce RTX 2080 Ti GPU was used to test the 
CNNs using 1280x720 resolution images. YOLOv3 classified 
fescue images with an F1-score of 0.95 and YOLOv3-Tiny 
classified fescue images with an F1-score of 0.97. YOLOv3 
and YOLOv3-Tiny classified sheep sorrel images with F1-
scores of 0.93 and 0.89 respectively. A laptop running 
Windows 10 Pro with an NVIDIA Quadro RTX 5000 GPU 
was used to process video streams from four USB cameras 
simultaneously. YOLOv3 processed each video stream at an 
average framerate of 4.7 FPS using 9.2 GB of vRAM, while 
YOLOv3-Tiny processed each video stream at an average 
framerate of 20.5 FPS using 3.2 GB of vRAM. Initial results 
suggest that YOLOv3-Tiny can be deployed for use with a 
machine vision system to detect fescue and sheep sorrel in real-
time for spot application of herbicide in wild blueberry fields. 
Using CNNs to selectively spray herbicide will appreciably 
reduce the volume of herbicides needed to manage wild 
blueberry fields, resulting in cost-savings for producers. 
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I.  INTRODUCTION 

Wild blueberries (Vaccinium angustifolium Ait.) are a 
perennial crop native to northeastern North America with a 
total production of over 108 million kg in 2019 [1]. The plants 
grow in a two-year cycle in which the flower buds begin to 
grow from August to October in the first (sprout) year and lay 
dormant during the winter. The plants continue growing in the 
second (crop) year with fruit being harvested in August and 
September. The bare branches are pruned by flail mowing or 
burning after harvesting [2]. 

Weeds are a major yield limiting factor in wild blueberry 
production [3]–[5], and are typically managed with application 
of liquid herbicides [3], [6]. In 2019, sheep sorrel (Rumex 
acetosella L.) and fescue (Festuca filiformis Pourr.) were 
respectively the first and fourth most common weeds in Nova 
Scotia wild blueberry fields [7]. Fescue can be managed using 
spring sprout year applications of pronamide or glufosinate [8]. 
Hexazinone and pronamide applications have given mixed 
results for managing sheep sorrel [3], [9], [10], but tests using 
spring applications of sulfentrazone have shown promising 
results [7]. Sheep sorrel and fescue had field uniformities of 
63% and 25% respectively in 2019 [7], suggesting that uniform 
application methods waste herbicide. An opportunity for 
improved application efficiency is possible through targeting 
and spraying only areas of the fields with weed cover. 

Smart sprayers use sensors to intelligently select which 
areas of a field to apply agrochemicals, reducing the volume of 
agrochemical needed for field management. Smart sprayers in 
wild blueberry have previously relied on imaging data to detect 
foliage [11]–[15] or ultrasonic sensors to detect plant height 
[16] for spraying herbicides. The smart sprayer relying on 
ultrasonic sensors could successfully detect weeds taller than 
the wild blueberry plant canopy but could not detect weeds at 
the same height or shorter than the canopy [16]. An imaging 
system which used green colour segmentation could 
successfully isolate target weeds from blueberry branches and 
bare ground and resulted in herbicide savings of up to 78.5% 
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[13]. However, this system could not discriminate different 
weed species of the same colour. Another imaging system 
relying on colour co-occurrence matrices successfully 
identified goldenrod (Solidago Spp.) in wild blueberry fields, 
but had to be purpose-built for goldenrod and had slow 
processing speeds in certain situations [14].  

Deep learning convolutional neural networks (CNNs) are 
an advanced form of image processing which can quickly and 
accurately classify images or objects within an image [17]. 
CNNs are trained to detect targets using backpropagation, 
which involves showing a computer many labelled images of 
the desired target [18]. Training through backpropagation 
automatically determines the most important visual features of 
the targets, limiting the involvement from the user. CNNs are 
typically trained and processed using graphics processing units 
(GPUs) because they have many more processing cores than a 
central processing unit (CPU), which allows the calculations to 
be performed faster through parallelization [17], [19]. Image 
processing using CNNs has been used in various aspects of 
agriculture since 2015 [20]. Innovative uses of this technology 
in agriculture have included livestock monitoring [21]–[23], 
plant disease detection [24]–[26], wild blueberry ripeness 
detection [27], and weed detection for strawberries [28], 
Florida vegetables [29], turfgrasses [30], [31], and ryegrass 
[32]. Reference [33] was the first to use CNNs for detecting 
weeds in wild blueberry fields. The authors of [33] discussed 
that although not all instances of fescue and sheep sorrel were 
detected, only one detection per image was needed to trigger a 
spray event. The authors also noted that multiple cameras, and 
therefore multiple CNN instances, would be required to detect 
weeds underneath each sprayer nozzle. 

This study evaluated two CNNs, YOLOv3 and YOLOv3-
Tiny [34], to determine if they could accurately detect at least 
one instance of fescue or sheep sorrel in images . These CNNs 
were previously trained by [33] to detect fescue and sheep 
sorrel in images of wild blueberry fields in Nova Scotia, 

Canada. Furthermore, this study examined the processing speed 
and memory requirements of a mobile GPU when processing 
multiple instances of the CNNs to determine if it would be 
viable for controlling spray applications. Using CNNs to 
control spray applications could lead to greater herbicide 
application efficiency, resulting in major cost savings for wild 
blueberry producers. 

II. MATERIALS AND METHODS 

The ability of the CNNs to detect fescue and sheep sorrel 
was measured using separate datasets each containing 800 
images. The dataset for testing fescue detection contained 402 
images with one or more instances of fescue and 398 images 
without any instances of fescue. The dataset for sheep sorrel 
detection contained 394 images with at least one instance of 
sheep sorrel, and 406 images without any sheep sorrel. The 
images were captured from April 24 to May 17, 2019 in 
northern and central Nova Scotia from sprout year fields. The 
images were originally captured using eight digital cameras 
with resolutions from 4000x3000 to 6000x4000 pixels, then 
were scaled and cropped to 1280x720 pixels using IrfanView1 
for processing. The locations of target weeds in the images 
were labelled with software developed by [27].  

A custom-built desktop computer containing an NVIDIA 
GeForce RTX 2080 Ti 11 GB GPU2, an Intel i9-7900X 3.30 
GHz CPU3, and 32 GB of random-access memory (RAM) 
running the Ubuntu 16.04 operating system4 was used to 
validate the CNNs. The Darknet framework [35] was installed 
to process the CNNs using the weight files trained by [33]. 
YOLOv3 and YOLOv3-Tiny were tested at three different 
network resolutions (1280x736, 1024x576, and 960x544) to 
determine the effect that resolution had on detection accuracy. 
Reference [33] previously determined the precision, recall, and 
F1-score metrics [36] for the networks at detecting all instances 
of target weeds in images. These metrics are functions of true 
positive (tp), false positive (fp), and false negative (fn) 
detections of targets. Precision is ratio of true positives to all 
detections: 

               

Recall is the ratio of true positives to all relevant targets: 

              

F1-score is the harmonic mean of precision and recall: 

                 

Considering the authors of [33] noted that only one 
detection per image was needed to trigger a spray event, this 
paper defines a true positive as an image where one or more 
relevant targets were detected by the CNN. The detection 
threshold for testing was set at 0.15. 

Using an RTX 2080 Ti GPU on a smart sprayer is not ideal 
due to the large physical size of desktop computers, and the 
1v4.52, Wiener Neustadt, Austria 
2NVIDIA Corporation, Santa Clara, CA, USA 
3Intel Corporation, Santa Clara, CA, USA 
4Canonical Ltd., London, UK 

 

 

Figure 1.  Sheep sorrel detections using YOLOv3-Tiny at 1280x736 

resolution for an image from the Cattle Market field (45.3674°N, 

63.2124°W) captured on April 24, 2019 [33]. The round, green leaves 
are sheep sorrel plants growing around wild blueberry branches leftover 

from flail mowing the previous autumn. 



   

650 W power requirement for a computer containing this GPU. 
Therefore, mobile processing hardware was tested to determine 
if it was viable for running multiple CNNs to process images in 
real-time. An MSI workstation laptop1 containing an NVIDIA 
Quadro RTX 5000 Max-Q 16 GB GPU, an Intel i9-9880H 2.30 
GHz CPU, and 64 GB of RAM running the Windows 10 Pro2 
operating system was used for testing. Four USB 2.0 cameras3 
were plugged into separate USB 3.1 ports on the laptop and the 
video captured by each camera was processed using a separate 
instance of Darknet. YOLOv3 and YOLOv3-Tiny were tested 
at each resolution with 1, 2, and 4 cameras running 
simultaneously. This test took place indoors instead of in-field 
conditions, so the CNNs were loaded using weights trained on 
the COCO4 dataset by [34]. The average processed frames per 
second (FPS) for each camera reported by Darknet, and the 
total amount of video RAM (vRAM) needed, as reported by 
Task Manager, in each test were recorded. 

III. RESULTS AND DISCUSSION 

A. Detection in Static Images 

YOLOv3 and YOLOv3-Tiny were both able to successfully 
detect if an image contained fescue (Fig. 2). YOLOv3-Tiny 
produced equal or slightly better results than YOLOv3 for all 
three metrics at each respective resolution (Table I.). The best 
F1-score, 0.97, was produced by YOLOv3-Tiny at 1280x736 
resolution. Reducing the resolution of YOLOv3-Tiny resulted 
in a reduction in precision, meaning there were more false 

positive detections, but no change in recall. YOLOv3 saw 
increases in recall as the resolution was decreased, indicating 
that higher resolutions resulted in more missed instances of 
fescue.  

1WS65 9TM-1410CA, Micro-Star International Co., Ltd., New Taipei, Taiwan 
2Microsoft Corporation, Redmon, WA, USA 
3c920, Logitech International S.A., Lausanne, Switzerland 
4Common Objects in Context (http://cocodataset.org/) 
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Figure 4.  Linear relationships between vRAM usage and number of cameras in simultaneous use for YOLOv3 and YOLOv3-Tiny at various resolutions. 

 

 

 

Figure 2.  Fescue detections using YOLOv3-Tiny at 1280x736 

resolution for an image from the Cattle Market field (45.3674°N, 

63.2124°W) captured on April 24, 2019 [33]. The green and tan blade-
like leaves are fescue plants growing in a field with wild blueberry 

branches leftover from flail mowing the previous autumn. Sheep sorrel 

is also present in the image. 

Figure 3.   

http://cocodataset.org/


   

Detection of sheep sorrel was best achieved using YOLOv3 
and 1280x736 resolution, which produced an F1-score of 0.93 
(Table II). Sheep sorrel detection with YOLOv3 and 1024x576 
and 960x544 resolutions produced precision scores 0.09 and 
0.14 higher than the recall. Lowering the detection threshold 
would increase the recall at the expense of precision and may 

result in a higher F1-score. Inversely, sheep sorrel detection 
with YOLOv3-Tiny produced higher recall than precision 
scores at all resolutions. Increasing the detection threshold 
would improve precision at the expense of recall. 

B. Processing Performance on a Mobile GPU 

The 16 GB of vRAM included with the RTX 5000 GPU 
was enough for processing four video streams simultaneously 
using CNNs. YOLOv3 at 1280x736 resolution required the 
most vRAM, 9.2 GB for four video streams, while YOLOv3-
Tiny at 960x544 required the least, 2.7 GB for four video 
streams (Fig.3). For both CNNs, reducing the resolution 
resulted in less vRAM usage. This was expected, as there is 
less information to process in a smaller image. YOLOv3 
required more vRAM to process video streams than YOLOv3-
Tiny at every resolution, indicating that it is a more viable 
option for processing many video streams on a single GPU. 
The vRAM requirement was found to scale linearly with the 
number of cameras. Understanding this relationship will be 
useful for selecting GPUs for future research. Most currently 
available GPUs have 8 GB or less of vRAM, with only the 
most expensive GPUs containing more. Using YOLOv3-Tiny 
for processing video streams would be preferable for projects 
with a modest budget.  

There was no discernable change in speed for YOLOv3-
Tiny at any resolution when processing with one or two 
cameras but did see reductions when four cameras were in use 
(Fig. 4). A potential reason for the lack of change is that the 
CNN was limited by the c920 camera, which captures video at 
30 frames per second. 

YOLOv3 consistently had framerates of less than 10 FPS 
when four cameras were in use. The slowest average 
processing speed was 4.7 FPS at 1280x736 resolution, while 
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Figure 5.  Average processing speed of YOLOv3 and YOLOv3-Tiny for detecting objects at various resolutions and number of cameras. 

 

 



   

the fastest was 8.0 FPS at 960x544 resolution. YOLOv3-Tiny 
processed video much faster, with framerates between 20.5 
FPS and 30.1 FPS. Based on the vRAM usage and processing 
speed, YOLOv3-Tiny provides a much better option than 
YOLOv3 for use in a smart sprayer. Considering that 
YOLOv3-Tiny had the highest F1-score for fescue detection, 
and only a slightly lower F1-score for sheep sorrel than 
YOLOv3, it is the better option for use as part of a machine 
vision system on a smart sprayer. By defining a true positive as 
an image where one or more relevant targets were detected by 
the CNN, these object detection CNNs were evaluated as 
image classification CNNs. Image classifiers only determine 
the appropriate label for an image, and not the location of 
objects within an image. It is possible that using an image 
classifier would result in faster processing speeds and less 
vRAM usage than the two CNNs evaluated in this paper. 
Additionally, the latency of the CNNs should be tested to 
determine the time between an object appearing in front of the 
camera, and when the CNN detects it. Future work will involve 
testing image classifiers to compare results and measuring the 
latency of the system. 

IV. CONCLUSIONS 

Previous weed detection systems in wild blueberry smart 
sprayers have been limited by their inability to discriminate 
between different plants. Convolutional neural networks can 
successfully discern between different targets using visual 
information with minimal direction from the user. YOLOv3 
and YOLOv3-Tiny at 1280x736 resolution produced F1-scores 
of 0.95 and 0.97 respectively for fescue. For sheep sorrel, the 
F1-scores were 0.93 for YOLOv3 and 0.89 for YOLOv3-Tiny 
at the same resolution. Although the accuracy was comparable 
for both networks, the processing speed and vRAM usage were 
not. YOLOv3 processed four video streams at 1280x736 
resolution at 4.7 FPS using 9.2 GB of vRAM, while YOLOv3-
Tiny did the same at 20.5 FPS with only 3.2 GB of vRAM. 
YOLOv3-Tiny provides a faster, lighter, and similarly accurate 
solution for detecting fescue and sheep sorrel compared to 
YOLOv3. Image classification networks could potentially 
provide an even faster and lighter solution for this problem and 
should be tested in future. Using a convolutional neural 
network to control spray applications will reduce herbicide use, 
creating major cost-savings for wild blueberry producers. 
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