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Abstract— This paper proposes a computationally fast scheme 

for implementing Nonlinear Model Predictive Control 

(NMPC) as a high-level controller for unmanned quadrotors. 

The NMPC-based controller is designed using a more realistic 

highly nonlinear control-oriented model which requires heavy 

computations for practical implementations. To deal with this 

issue, the Newton generalized minimal residual 

(Newton/GMRES) method is applied to solve the NMPC’s 

real-time optimizations rapidly during the control process. 

The Kalman filter and Luenberger observer algorithms are 
used, as well as compared, to estimate unknown states. The 

NMPC-based controller operation is simulated and compared 

with a proportional controller which shows great 

improvements in the response of the quadrotor. Experimental 

results using a commercial drone, called AR.Drone, in our 

laboratory instrumented by a Vicon motion capture system 

demonstrate that our control method is sufficiently fast for 

practical implementations and it can solve the trajectory 

tracking problem properly. 

 

Keywords-predictive control of nonlinear systems; optimal 

control; autonomous robots 

I. INTRODUCTION 

Quadrotor (or quadcopter) is a type of Unmanned Aerial 
Vehicle (UAV). Due to the capabilities of quadrotors to hover, 
vertical take-off, and landing, they have become popular 
platforms and are applied to civilian and military duties, such 
as photography, security, search and rescue, drone-delivery, 
art, etc. [1-3]. To accomplish these tasks properly, quadrotors 
should be able to fly autonomously. To do so, they should have 
a capability to fly in multi-agent systems, plan paths, and track 
trajectories [4-6]. Accordingly, path following is one of the 
most significant problems discussed in the literature in recent 
years and a wide variety of control algorithms have been 
applied to quadrotors to solve this problem. 

Although the quadrotor’s equations of motion are 
generally nonlinear, several types of linear control techniques 
have been investigated to find a solution to the path tracking 
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problem. The reported results of linear controllers, such as PID 
control, Linear Quadratic Regulator (LQR) control [7], model 
reference adaptive control [8], and linear Model Predictive 
Control (MPC) [9], reveal that these kinds of control 
approaches are not capable of manipulating highly nonlinear 
systems like quadcopters appropriately. One of the most 
advanced robust model-based control techniques is Learning-
Based Model Predictive Control (LBMPC). This approach has 
been applied to quadrotors in [10-12]. Similar to any other type 
of MPC controllers, this method predicts the state of the 
system and chooses the optimum input. Therefore, it is highly 
dependent on the accuracy of the control-oriented (prediction) 
model used inside the controller [1]. To use the best linear 
model at any instant, LBMPC updates the model’s parameters 
online, while linear models are not able to represent such a 
nonlinear platform accurately. 

Also, the sliding mode control technique based on 
backstepping for quadrotors and feedback-linearization 
technique discussed in [13] and [14], are different versions of 
nonlinear control methods. However, unlike the NMPC 
method, these approaches cannot impose directly constraints 
on inputs and states. Moreover, as it will be discussed, NMPC 
tries to minimize errors with minimal efforts. So far, various 
NMPC-based controllers have been designed to solve the 
trajectory tracking problem for quadrotors. A switching model 
predictive controller is introduced and simulated in [15], and 
in [16], the NMPC method is used to control a human-sized 
quadrotor. These approaches have been all used to act as a low-
level controller, while another alternative is to design a two-
level control architecture for drones with an NMPC-based 
high-level controller which is presented in this study, as 
follows.  

The low-level controller inputs of any quadrotor are 
left/right, forward/backward, up/down, and rotation around 
itself (namely 𝑧-axis). The task of this controller is to receive 
these inputs from the user and calculate the desired rotor inputs 
in such a way that the drone follows the desired path. The 
left/right and forward/backward commands can be denoted as 
𝜙 and 𝜃 references, where 𝜙 is the roll angle and 𝜃 is the pitch 
angle. Besides, up/down and rotation commands can be 
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recognized as reference values for �̇� (vertical velocity) and �̇� 
(yaw rate). As depicted in Figure 1, to control the drone at a 
particular position or path, a high-level controller obtains the 
desired position (𝑥𝑑, 𝑦𝑑, and 𝑧𝑑) and heading (𝜓𝑑), and send 

�̇�, 𝜙, 𝜃, and �̇� reference values to the low-level controller. 

 

Due to the computational cost of NMPC real-time 
optimization process, which also depends on the complexity 
of the control-oriented model, the use of fast optimizers is 
critical to implement this approach in practice. As a result, in 
previous studies, for instance [17], where a condensed multiple 
shooting continuation generalized minimal residual 
(CMSCGMRES)-based NMPC is proposed as a high-level 
controller for a commercial UAV, to make the resulting 
controller real-time implementable, significant simplifications 
have been considered. In this study, a highly nonlinear model 
of quadrotors with more realistic behavior is introduced and 
used to develop an NMPC-based high-level controller. To the 
best of our knowledge, such a realistic control-oriented model 
has not been considered before to develop high-level NMPC-
based controllers for quadrotors. To tackle the NMPC’s real-
time optimization problem, the Newton generalized minimal 
residual (Newton/GMRES) technique is employed. The 
Newton/GMRES method offers a quick scheme to calculate 
the Hamiltonian function’s solution which can handle the real-
time optimization problem properly [18-20]. To estimate the 
unknown states of the system, Kalman filter [21] and 
Luenberger Observer [22] are used, as well as compared 
against each other. MATLAB/Simulink has been employed to 
simulate the performance of the proposed NMPC-based 
controller and the state estimators. Finally, some experiments 
have been conducted with a commercial quadrotor (AR.Drone 
2.0) by employing the Simulink Toolbox introduced in [23]. 
To do these tests, a set of off-board cameras (Vicon motion 
capture system) and an onboard IMU have been used to track 
the quadcopter’s states. 

 

The remainder of the paper is organized, as follows. In 
Section II, the quadrotor’s high-level model is introduced. 

Section III discusses NMPC and Newton/GMRES in detail. 
Next, Section IV describes the state estimation approaches. 
Section V presents the simulation results, and in Section VI, 
the experimental setup is described, and the test results are 
discussed. Finally, Section VII concludes the paper. 

II. SYSTEM MODELLING 

The free body diagram of the drone is depicted in Figure 2. 
As shown, each rotor produces thrust which is represented by 
𝐹1, 𝐹2, 𝐹3, or 𝐹4. Accordingly, 𝐹 can be expressed as 

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4      (1) 

Therefore, 

𝑚[
�̈�
�̈�
�̈�

] = −𝑚[
0
0
𝑔
] + 𝑅 × [

0
0
𝐹
]     (2) 

where 𝑔 and 𝑅 are the gravity acceleration and rotation matrix. 

 

Figure 3.  Free body diagram of quadrotor 

By expanding the rotation matrix, the following can be 
written: 

𝑚�̈� = −𝑚𝑔 + (𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙))𝐹    (3) 

Thus, 𝐹 can be expressed as a function of �̈�. 

𝐹 =
𝑚(�̈�+𝑔)

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)
        (4) 

Consequently, by using (2) and (4) 

�̈� = (
𝑠𝑖𝑛(𝜓) 𝑡𝑎𝑛(𝜙)

𝑐𝑜𝑠(𝜃)
+ 𝑐𝑜𝑠(𝜓)𝑡𝑎𝑛(𝜃)) (�̈� + 𝑔)  

  �̈� = (−
𝑐𝑜𝑠(𝜓) 𝑡𝑎𝑛(𝜙)

𝑐𝑜𝑠(𝜃)
+ 𝑠𝑖𝑛(𝜓)𝑡𝑎𝑛(𝜃)) (�̈� + 𝑔) (5) 

Finally, the system model is represented in (6). 

  �̇�(𝑡) =

[
 
 
 
 
 
 
 

𝑥2

(
𝑠𝑖𝑛(𝜓) 𝑡𝑎𝑛(𝑢2)

𝑐𝑜𝑠(𝑢3)
+ 𝑐𝑜𝑠(𝜓)𝑡𝑎𝑛(𝑢3)) (𝑢1 + 𝑔)

𝑥4

(−
𝑐𝑜𝑠(𝜓) 𝑡𝑎𝑛(𝑢2)

𝑐𝑜𝑠(𝑢3)
+ 𝑠𝑖𝑛(𝜓)𝑡𝑎𝑛(𝑢3)) (𝑢1 + 𝑔)

𝑥6
𝑢1
𝑢4 ]

 
 
 
 
 
 
 

 (6) 

where 𝒖(𝑡) is [𝑢1, 𝑢2, 𝑢3, 𝑢4]
𝑇 = [�̈�, 𝜙, 𝜃, �̇�]𝑇, and 𝒙(𝑡) is 

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]
𝑇 = [𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�, 𝜓]𝑇. 

III. CONTROL APPROACH 

Using the control-oriented model of the system presented 
in Section II, the NMPC problem can be formulated, as 
follows: 

Figure 1.  Two-level control architecture for drones 

Figure 2.  Block diagram of MPC [18] 



 

 

 

 

 

 

Minimize: 𝐽 = Φ(𝒙𝑁(𝑡),𝒑𝑁(𝑡)) + ∑ 𝐿(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡))∆𝜏
𝑁−1
𝑖=0  

Subject to: 

{
 
 

 
 𝒙𝑖+1(𝑡) = 𝒙𝑖(𝑡) + 𝑓(𝒙𝑖(𝑡),𝒖𝑖(𝑡), 𝒑𝑖(𝑡))∆𝜏,

 𝒙0(𝑡) = 𝒙(0)

𝑔(𝒙𝑖(𝑡), 𝒖𝑖(𝑡), 𝒑𝑖(𝑡)) = 0

𝐶(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡)) < 0

   (7) 

Where 𝒙(0) is the current state of the UAV provided by 
sensors and observers, ∆𝜏 is the stepping time, 𝑁 denotes the 
number of prediction horizon steps, 𝒑(𝑡) expresses a vector of 
given time-dependent parameters, 𝑓(.) is the dynamics of the 
system, 𝑔(.) refers to equality constraints, and 𝐶(.) expresses 
inequality constraints. 

Similar to LQR, the purpose of NMPC is to select 𝒖(𝑡) in 
a way that minimizes the errors between the actual and desired 
states with minimal effort by defining well-tuned Φ(.) and 𝐿(.). 
However, they have major differences. Firstly, the NMPC’s 
cost function can take different forms other than a quadratic 
function. Moreover, constraints can be added to the NMPC 
problem definition such that keep the system’s states, outputs, 
or inputs within specific boundaries. 

NMPC optimization problems can be solved by 
Hamiltonian and Newton/GMRES methods [18-20]. Based on 
the Hamiltonian method, the following can be stated: 

{
  
 

 
 
 

𝒙𝑖+1(𝑡) = 𝒙𝑖(𝑡) + 𝑓(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡))∆𝜏 

𝜆𝑖(𝑡) = 𝜆𝑖+1(𝑡) + 𝐻𝑥
𝑇(𝒙𝑖(𝑡),𝜆𝑖+1(𝑡),𝒖𝑖(𝑡), 𝜈𝑖(𝑡),𝒑𝑖(𝑡))

𝐻𝑢(𝒙𝑖(𝑡), 𝜆𝑖+1(𝑡),𝒖𝑖(𝑡), 𝜈𝑖(𝑡),𝒑𝑖(𝑡)) = 0

𝑔(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡)) = 0

𝒙0(𝑡) = 𝒙(0)

𝜆𝑁(𝑡) = Φ𝑥
𝑇(𝒙𝑁(𝑡),𝒑𝑁(𝑡))

  (8) 

𝐻 expresses the Hamiltonian function, and 𝜆 and 𝜈 denote 
the co-states and Lagrange multipliers. By calculating the 
states forward in time and the co-states backward in time from 
the first and second equations of (8), 𝒙𝑖 and 𝜆𝑖 can be found as 

sequences of 𝑈(𝑡) = [𝒖0
𝑇 , 𝜈0

𝑇 , 𝒖1
𝑇 , 𝜈1

𝑇 , … , 𝒖𝑁−1
𝑇 , 𝜈𝑁−1

𝑇 ]. Then, 
(8) can be written as one equation denoted by 𝐹(𝑈, 𝑥, 𝑡): 

𝐹(𝑈, 𝑥, 𝑡) =

[
 
 
 
 
 
 
 
 

𝐻𝑢(𝒙0(𝑡), 𝜆1(𝑡), 𝒖0(𝑡), 𝜈0(𝑡), 𝒑𝑁−1(𝑡))

𝑔(𝒙0(𝑡), 𝒖0(𝑡), 𝒑𝑁−1(𝑡))

𝐻𝑢(𝒙1(𝑡), 𝜆2(𝑡), 𝒖1(𝑡), 𝜈1(𝑡), 𝒑𝑁−1(𝑡))

𝑔(𝒙1(𝑡), 𝒖1(𝑡), 𝒑𝑁−1(𝑡))

⋮
𝐻𝑢(𝒙𝑁(𝑡), 𝜆𝑁(𝑡), 𝒖𝑁−1(𝑡), 𝜈𝑁−1(𝑡), 𝒑𝑁−1(𝑡))

𝑔(𝒙𝑁−1(𝑡), 𝒖𝑁−1(𝑡), 𝒑𝑁−1(𝑡)) ]
 
 
 
 
 
 
 
 

= 0  (9) 

To solve (9), Newton’s method will be useful: 

𝐹𝑈(𝑈
𝑘(𝑡), 𝑥𝑘(𝑡), 𝑡)𝛿𝑈(𝑡) = −𝐹(𝑈𝑘(𝑡), 𝑥𝑘(𝑡), 𝑡)   (10) 

𝑈𝑘+1(𝑡) = 𝑈𝑘(𝑡) + 𝛿𝑈(𝑡)        (11) 

Due to the complexity of calculation of Jacobian of 𝐹𝑈, 
Newton/GMRES method involves the use of Forward-
Difference GMRES (fdgmres) technique which approximates 
the Jacobian of 𝐹𝑥 by a forward difference approximation: 

𝐹𝑥(𝑥)𝑤 ≈
𝐹(𝑥+ℎ𝑤)−𝐹(𝑥)

ℎ
        (12) 

Although by using Newton/GMRES method some 
approximations are made, the NMPC optimization problem 
can be solved quickly while the result will be accurate enough. 

 

 

IV. STATE ESTIMATION 

NMPC requires to have access to the states of the system. 
As stated before, two sensors have been employed to detect the 
states of the considered UAV: Vicon camera system and 
onboard IMU. The Vicon determines 𝑥, 𝑦, 𝑧, and 𝜓, and the 
IMU observes �̇� and �̇�. Therefore, �̇� is the only state which 
cannot be measured directly. Because of the Vicon system’s 
noisy data, taking derivative of 𝑧 for calculations is inaccurate. 
Also, as shown in Figure 1, �̇� is the first input to the low-level 
controller. On the other hand, �̈� is the first output of NMPC. 
Hence, a method should be employed to estimate �̇� based on 
the inaccurate derivative of 𝑧 and the output of NMPC which 

is �̈�. To do so, firstly, the observability should be checked. 

A. Observability 

As discussed, all of the states except for �̇� are measurable. 
Therefore, according to the definition of observability, if �̇� can 
be determined by knowing the input and the output of the plant 
over a finite time, then the system is completely observable 
[22]. Hence, 

𝒙′ = [
𝑥5
𝑥6
] = [

𝑧
�̇�
]         (13) 

�̇�′ = [
𝑥6
𝑢1
] = [

0 1
0 0

] 𝑥′ + [
0
1
] 𝑢1      (14) 

When 𝑧 can be observed by the sensors, the observability 
matrix will be full rank. As a result, �̇� can be determined from 

observations of 𝑥5 (𝑧) and 𝑢1 (�̈�), and the system is observable. 

B. Kalman Filter 

To estimate �̇�, because of the noise of 𝑧 measured by the 
Vicon system, finding the derivative of 𝑧 will not be accurate. 
Therefore, a Kalman filter is used to obtain a more reliable 
vertical velocity value. Moreover, the first NMPC’s output 
(𝑢1) is �̈�, however, the first low-level controller input is �̇�. 
Hence, the predicted vertical velocity obtained by the Kalman 
filter based on the system model can be sent to the low-level 
controller as a reference signal �̇�. 

To design the Kalman filter, the model can be converted to 
a discrete form by using the forward Euler approach and 

Algorithm 1.  Forward-Difference GMRES algorithm [18,20] 



 

 

 

 

 

 

finding 𝐴, 𝐵, and 𝐶 which are system’s parameters [21]. Then, 
the Kalman estimator can be expressed as: 

𝑥6
−[𝑘] = 𝐴𝑥6[𝑘 − 1] + 𝐵𝑢1[𝑘 − 1] 

𝑃−[𝑘] = 𝐴𝑃[𝑘 − 1]𝐴 + 𝑄 

𝑥6[𝑘] = 𝑥6
−[𝑘] + 𝐾[𝑘](�̇�[𝑘] − 𝐶𝑇�̂�6

−[𝑘]) 

𝐾[𝑘] = 𝑃−[𝑘]𝐶(𝐶𝑇𝑃−[𝑘]𝐶 + 𝑅)−1 

𝑃[𝑘] = (𝐼 − 𝐾(𝑘)𝐶𝑇)𝑃−[𝑘]       (15) 

where �̇� is the derivative of the measured 𝑧 at each time-
step, and 𝑄 and 𝑅 are the covariances of the process and 
measurement noises which are assumed to have white 
Gaussian form. 

C. Luenberger Observer 

Luenberger observer is another method to estimate the 
unknown states, and for the sake of comparison, it will be 
designed in study as follows [22]: 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐾𝑜(𝑦 − �̂�), 𝑥(0) = 𝑥0, �̂� = 𝐶𝑥    (17) 

where, 

𝐴 = [
0 1
0 0

], 𝐵 = [
0
1
], 𝐶𝑇 = [

1
0
] 

𝐾𝑜 is chosen such that 𝐴 − 𝐾𝑜𝐶 is a stable matrix which 
means: 

det(𝑠𝐼 − (𝐴 − 𝐾𝑜𝐶)) = (𝑠 − 𝜆0)
2 = 0, (𝜆0 > 0)   (18) 

V. SIMULATIONS 

The discussed controller and observers have been 
implemented in the ARDrone Simulink Development Kit V1.1 
[23]. This Simulink toolbox contains a simulation 
environment that simulates AR.Drone 2.0 which is 
parameterized by parameter identification techniques. Also, 
the MPsee toolbox [18] which is based on our group’s previous 
works, is used to implement the designed NMPC controller. 
After modifying the model and controller’s parameters, such 
as receding horizon length and time steps, 𝑁, Φ(.), and 𝐿(.), 
this toolbox generates a Newton/GMRES-based NMPC 
controller block which is very fast. 

As Figure 4 shows, the both observers can estimate the 
actual velocity accurately, and as depicted in Figure 5, the 
NMPC controller which needs vertical velocity as a feedback 
signal from an estimator, can control the UAV platform at 
different height set-points properly without any overshoot. 
Also, Figure 6 shows that applying these estimators will 
greatly improve the performance of the altitude controller. It 
will converge to the desired heights quickly without any 
overshoot. 

 

 

Figure 4.  Estimated vertical velocity by observers in simulation 

 

Figure 5.  Simulation of the height control with applying Luenberger 
observer and Kalman filter 

 

Figure 6.  Effect of Kalman filter on altitude control 

The proposed NMPC approach is compared with a 
proportional controller designed in the ARDrone Simulink 
Development Kit V1.1. The formulation of this controller can 
be expressed as: 

�̇� = 𝑘1(𝑧𝑑 − 𝑧) 

𝜙 = 𝑘2(�̇�𝑑 − �̇�), �̇�𝑑 = 𝑦𝑑 − 𝑦 

𝜃 = 𝑘3(�̇�𝑑 − �̇�), �̇�𝑑 = 𝑥𝑑 − 𝑥 

�̇� = 𝑘4(𝜓𝑑 −𝜓)         (19) 

As shown in Figure 7, the NMPC method tries to converge to 
the reference input smoothly while with the proportional 
controller, the UAV behaves much more aggressively and 
usually with overshoot. However, while the proportional 
controller performs better for altitude control, NMPC leads to 
a smooth response with less overshoots for other coordinates. 

 



 

 

 

 

 

 

 

 

 

Figure 7.  NMPC vs. proportional controller 

VI. EXPERIMENTS 

The proposed controller and observers are applied to 
AR.Drone in our laboratory which is equipped by a Vicon 
Vantage motion capture system including eight cameras (see 
Figure 8). This system can track spherical markers which are 
attached to the quadrotor and provide its pose at a rate of 100 
Hz. For real-time applications, this rate can be increased to 400 
Hz. This system is interconnected to a ground station computer 
on a local area network (LAN) and transfers the position data 
over UDP. Also, the ARDrone Simulink Development Kit 
V1.1 provides a toolbox which can communicate with 
AR.Drone’s onboard computer via WiFi, which act as a low-
level controller. The toolbox is installed on the ground station 
computer. The control and estimation approaches discussed in 
this study are implemented on this station, which can use the 
UDP data as feedback and send the optimal inputs to the UAV 
over WiFi. Also, an IMU is attached to the UAV’s onboard 
computer to send reliable observations of �̇� and �̇�. 

 

Figure 8.  Experiment environment 

Figure 9 represents a sample of the performance of 
estimators. These graphs show that the estimated values can 
represent the actual vertical velocity with little errors, and in 
Figures 10, it is demonstrated that, even with such errors, the 
designed NMPC controller can follow the reference height 
properly. It should be mentioned that, without the Kalman 
filter, the devised NMPC controller cannot be implemented 
because the system will be unstable in practice. 

 

Figure 9.  A sample of estimated vertical velocity by observers in practice 

 

 

Figure 10.  Experiment of height control with applying Luenberger 

observer and Kalman filter 

Also, in Figure 11, the UAV is attempting to follow a 
square path. The blue and red lines are the desired and actual 
paths. As shown, the quadrotor remains close to the desired 
path with little errors. 



 

 

 

 

 

 

 

Figure 11.  Square path following experimental results 

VII. CONCLUSION 

In this study, a fast-implementable NMPC-based controller 

was designed to perform as a high-level control module for 

quadrotors. The control-oriented model was highly nonlinear 

but more realistic, making the NMPC’s real-time 

optimizations very time-consuming for practical applications. 

To resolve this issue, the controller was embedded with a fast 

optimizer, namely the Newton/GMRES scheme. A Kalman 

filter and Luenberger observer were also designed and 

employed to determine the unknown vertical velocity for real-

life implementations. The proposed NMPC control system 

was compared with a proportional controller in simulations, 

which indicated significant improvements in the control 

performance. Besides, this technique was successfully 

implemented using a commercial UAV, AR.Drone 2.0, while 

a Vicon Vantage motion capture system was used to track the 

drone. The test results demonstrated superior performance of 

the proposed NMPC-based controller. 

Future work will examine whether the controller can follow 

other complicated trajectories, such as Elliptical and Lorenz 

paths. Also, solving the obstacle avoidance problem using the 

proposed control scheme will be investigated. This can be 

done by adding an inequality constraint which keeps the 

quadrotor away from pre-defined obstacles. Moreover, the 

performance of the NMPC-based controller will be compared 

with another advanced method like Reinforcement Learning. 
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