

Proceedings of the Canadian Society for Mechanical Engineering International Congress 2020

CSME Congress 2020

June 21-24, 2020, Charlottetown, PE, Canada

Hadi M. Daniali1, Nasser L. Azad1
1 Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada

Abstract— This paper proposes a computationally fast scheme

for implementing Nonlinear Model Predictive Control

(NMPC) as a high-level controller for unmanned quadrotors.

The NMPC-based controller is designed using a more realistic

highly nonlinear control-oriented model which requires heavy

computations for practical implementations. To deal with this

issue, the Newton generalized minimal residual

(Newton/GMRES) method is applied to solve the NMPC’s

real-time optimizations rapidly during the control process.

The Kalman filter and Luenberger observer algorithms are
used, as well as compared, to estimate unknown states. The

NMPC-based controller operation is simulated and compared

with a proportional controller which shows great

improvements in the response of the quadrotor. Experimental

results using a commercial drone, called AR.Drone, in our

laboratory instrumented by a Vicon motion capture system

demonstrate that our control method is sufficiently fast for

practical implementations and it can solve the trajectory

tracking problem properly.

Keywords-predictive control of nonlinear systems; optimal

control; autonomous robots

I. INTRODUCTION

Quadrotor (or quadcopter) is a type of Unmanned Aerial
Vehicle (UAV). Due to the capabilities of quadrotors to hover,
vertical take-off, and landing, they have become popular
platforms and are applied to civilian and military duties, such
as photography, security, search and rescue, drone-delivery,
art, etc. [1-3]. To accomplish these tasks properly, quadrotors
should be able to fly autonomously. To do so, they should have
a capability to fly in multi-agent systems, plan paths, and track
trajectories [4-6]. Accordingly, path following is one of the
most significant problems discussed in the literature in recent
years and a wide variety of control algorithms have been
applied to quadrotors to solve this problem.

Although the quadrotor’s equations of motion are
generally nonlinear, several types of linear control techniques
have been investigated to find a solution to the path tracking

This work is partly supported by the Natural Sciences and Engineering

Research Council of Canada.

problem. The reported results of linear controllers, such as PID
control, Linear Quadratic Regulator (LQR) control [7], model
reference adaptive control [8], and linear Model Predictive
Control (MPC) [9], reveal that these kinds of control
approaches are not capable of manipulating highly nonlinear
systems like quadcopters appropriately. One of the most
advanced robust model-based control techniques is Learning-
Based Model Predictive Control (LBMPC). This approach has
been applied to quadrotors in [10-12]. Similar to any other type
of MPC controllers, this method predicts the state of the
system and chooses the optimum input. Therefore, it is highly
dependent on the accuracy of the control-oriented (prediction)
model used inside the controller [1]. To use the best linear
model at any instant, LBMPC updates the model’s parameters
online, while linear models are not able to represent such a
nonlinear platform accurately.

Also, the sliding mode control technique based on
backstepping for quadrotors and feedback-linearization
technique discussed in [13] and [14], are different versions of
nonlinear control methods. However, unlike the NMPC
method, these approaches cannot impose directly constraints
on inputs and states. Moreover, as it will be discussed, NMPC
tries to minimize errors with minimal efforts. So far, various
NMPC-based controllers have been designed to solve the
trajectory tracking problem for quadrotors. A switching model
predictive controller is introduced and simulated in [15], and
in [16], the NMPC method is used to control a human-sized
quadrotor. These approaches have been all used to act as a low-
level controller, while another alternative is to design a two-
level control architecture for drones with an NMPC-based
high-level controller which is presented in this study, as
follows.

The low-level controller inputs of any quadrotor are
left/right, forward/backward, up/down, and rotation around
itself (namely 𝑧-axis). The task of this controller is to receive
these inputs from the user and calculate the desired rotor inputs
in such a way that the drone follows the desired path. The
left/right and forward/backward commands can be denoted as
𝜙 and 𝜃 references, where 𝜙 is the roll angle and 𝜃 is the pitch
angle. Besides, up/down and rotation commands can be

Fast Nonlinear Model Predictive Control of Quadrotors: Design and
Experiments

recognized as reference values for 𝑧̇ (vertical velocity) and 𝜓̇
(yaw rate). As depicted in Figure 1, to control the drone at a
particular position or path, a high-level controller obtains the
desired position (𝑥𝑑, 𝑦𝑑, and 𝑧𝑑) and heading (𝜓𝑑), and send

𝑧̇, 𝜙, 𝜃, and 𝜓̇ reference values to the low-level controller.

Due to the computational cost of NMPC real-time
optimization process, which also depends on the complexity
of the control-oriented model, the use of fast optimizers is
critical to implement this approach in practice. As a result, in
previous studies, for instance [17], where a condensed multiple
shooting continuation generalized minimal residual
(CMSCGMRES)-based NMPC is proposed as a high-level
controller for a commercial UAV, to make the resulting
controller real-time implementable, significant simplifications
have been considered. In this study, a highly nonlinear model
of quadrotors with more realistic behavior is introduced and
used to develop an NMPC-based high-level controller. To the
best of our knowledge, such a realistic control-oriented model
has not been considered before to develop high-level NMPC-
based controllers for quadrotors. To tackle the NMPC’s real-
time optimization problem, the Newton generalized minimal
residual (Newton/GMRES) technique is employed. The
Newton/GMRES method offers a quick scheme to calculate
the Hamiltonian function’s solution which can handle the real-
time optimization problem properly [18-20]. To estimate the
unknown states of the system, Kalman filter [21] and
Luenberger Observer [22] are used, as well as compared
against each other. MATLAB/Simulink has been employed to
simulate the performance of the proposed NMPC-based
controller and the state estimators. Finally, some experiments
have been conducted with a commercial quadrotor (AR.Drone
2.0) by employing the Simulink Toolbox introduced in [23].
To do these tests, a set of off-board cameras (Vicon motion
capture system) and an onboard IMU have been used to track
the quadcopter’s states.

The remainder of the paper is organized, as follows. In
Section II, the quadrotor’s high-level model is introduced.

Section III discusses NMPC and Newton/GMRES in detail.
Next, Section IV describes the state estimation approaches.
Section V presents the simulation results, and in Section VI,
the experimental setup is described, and the test results are
discussed. Finally, Section VII concludes the paper.

II. SYSTEM MODELLING

The free body diagram of the drone is depicted in Figure 2.
As shown, each rotor produces thrust which is represented by
𝐹1, 𝐹2, 𝐹3, or 𝐹4. Accordingly, 𝐹 can be expressed as

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 (1)

Therefore,

𝑚[
𝑥̈
𝑦̈
𝑧̈

] = −𝑚[
0
0
𝑔
] + 𝑅 × [

0
0
𝐹
] (2)

where 𝑔 and 𝑅 are the gravity acceleration and rotation matrix.

Figure 3. Free body diagram of quadrotor

By expanding the rotation matrix, the following can be
written:

𝑚𝑧̈ = −𝑚𝑔 + (𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙))𝐹 (3)

Thus, 𝐹 can be expressed as a function of 𝑧̈.

𝐹 =
𝑚(𝑧̈+𝑔)

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)
 (4)

Consequently, by using (2) and (4)

𝑥̈ = (
𝑠𝑖𝑛(𝜓) 𝑡𝑎𝑛(𝜙)

𝑐𝑜𝑠(𝜃)
+ 𝑐𝑜𝑠(𝜓)𝑡𝑎𝑛(𝜃)) (𝑧̈ + 𝑔)

 𝑦̈ = (−
𝑐𝑜𝑠(𝜓) 𝑡𝑎𝑛(𝜙)

𝑐𝑜𝑠(𝜃)
+ 𝑠𝑖𝑛(𝜓)𝑡𝑎𝑛(𝜃)) (𝑧̈ + 𝑔) (5)

Finally, the system model is represented in (6).

 𝒙̇(𝑡) =

[

𝑥2

(
𝑠𝑖𝑛(𝜓) 𝑡𝑎𝑛(𝑢2)

𝑐𝑜𝑠(𝑢3)
+ 𝑐𝑜𝑠(𝜓)𝑡𝑎𝑛(𝑢3)) (𝑢1 + 𝑔)

𝑥4

(−
𝑐𝑜𝑠(𝜓) 𝑡𝑎𝑛(𝑢2)

𝑐𝑜𝑠(𝑢3)
+ 𝑠𝑖𝑛(𝜓)𝑡𝑎𝑛(𝑢3)) (𝑢1 + 𝑔)

𝑥6
𝑢1
𝑢4]

 (6)

where 𝒖(𝑡) is [𝑢1, 𝑢2, 𝑢3, 𝑢4]
𝑇 = [𝑧̈, 𝜙, 𝜃, 𝜓̇]𝑇, and 𝒙(𝑡) is

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]
𝑇 = [𝑥, 𝑥̇, 𝑦, 𝑦̇, 𝑧, 𝑧̇, 𝜓]𝑇.

III. CONTROL APPROACH

Using the control-oriented model of the system presented
in Section II, the NMPC problem can be formulated, as
follows:

Figure 1. Two-level control architecture for drones

Figure 2. Block diagram of MPC [18]

Minimize: 𝐽 = Φ(𝒙𝑁(𝑡),𝒑𝑁(𝑡)) + ∑ 𝐿(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡))∆𝜏
𝑁−1
𝑖=0

Subject to:

{

 𝒙𝑖+1(𝑡) = 𝒙𝑖(𝑡) + 𝑓(𝒙𝑖(𝑡),𝒖𝑖(𝑡), 𝒑𝑖(𝑡))∆𝜏,

 𝒙0(𝑡) = 𝒙(0)

𝑔(𝒙𝑖(𝑡), 𝒖𝑖(𝑡), 𝒑𝑖(𝑡)) = 0

𝐶(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡)) < 0

 (7)

Where 𝒙(0) is the current state of the UAV provided by
sensors and observers, ∆𝜏 is the stepping time, 𝑁 denotes the
number of prediction horizon steps, 𝒑(𝑡) expresses a vector of
given time-dependent parameters, 𝑓(.) is the dynamics of the
system, 𝑔(.) refers to equality constraints, and 𝐶(.) expresses
inequality constraints.

Similar to LQR, the purpose of NMPC is to select 𝒖(𝑡) in
a way that minimizes the errors between the actual and desired
states with minimal effort by defining well-tuned Φ(.) and 𝐿(.).
However, they have major differences. Firstly, the NMPC’s
cost function can take different forms other than a quadratic
function. Moreover, constraints can be added to the NMPC
problem definition such that keep the system’s states, outputs,
or inputs within specific boundaries.

NMPC optimization problems can be solved by
Hamiltonian and Newton/GMRES methods [18-20]. Based on
the Hamiltonian method, the following can be stated:

{

𝒙𝑖+1(𝑡) = 𝒙𝑖(𝑡) + 𝑓(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡))∆𝜏

𝜆𝑖(𝑡) = 𝜆𝑖+1(𝑡) + 𝐻𝑥
𝑇(𝒙𝑖(𝑡),𝜆𝑖+1(𝑡),𝒖𝑖(𝑡), 𝜈𝑖(𝑡),𝒑𝑖(𝑡))

𝐻𝑢(𝒙𝑖(𝑡), 𝜆𝑖+1(𝑡),𝒖𝑖(𝑡), 𝜈𝑖(𝑡),𝒑𝑖(𝑡)) = 0

𝑔(𝒙𝑖(𝑡),𝒖𝑖(𝑡),𝒑𝑖(𝑡)) = 0

𝒙0(𝑡) = 𝒙(0)

𝜆𝑁(𝑡) = Φ𝑥
𝑇(𝒙𝑁(𝑡),𝒑𝑁(𝑡))

 (8)

𝐻 expresses the Hamiltonian function, and 𝜆 and 𝜈 denote
the co-states and Lagrange multipliers. By calculating the
states forward in time and the co-states backward in time from
the first and second equations of (8), 𝒙𝑖 and 𝜆𝑖 can be found as

sequences of 𝑈(𝑡) = [𝒖0
𝑇 , 𝜈0

𝑇 , 𝒖1
𝑇 , 𝜈1

𝑇 , … , 𝒖𝑁−1
𝑇 , 𝜈𝑁−1

𝑇]. Then,
(8) can be written as one equation denoted by 𝐹(𝑈, 𝑥, 𝑡):

𝐹(𝑈, 𝑥, 𝑡) =

[

𝐻𝑢(𝒙0(𝑡), 𝜆1(𝑡), 𝒖0(𝑡), 𝜈0(𝑡), 𝒑𝑁−1(𝑡))

𝑔(𝒙0(𝑡), 𝒖0(𝑡), 𝒑𝑁−1(𝑡))

𝐻𝑢(𝒙1(𝑡), 𝜆2(𝑡), 𝒖1(𝑡), 𝜈1(𝑡), 𝒑𝑁−1(𝑡))

𝑔(𝒙1(𝑡), 𝒖1(𝑡), 𝒑𝑁−1(𝑡))

⋮
𝐻𝑢(𝒙𝑁(𝑡), 𝜆𝑁(𝑡), 𝒖𝑁−1(𝑡), 𝜈𝑁−1(𝑡), 𝒑𝑁−1(𝑡))

𝑔(𝒙𝑁−1(𝑡), 𝒖𝑁−1(𝑡), 𝒑𝑁−1(𝑡))]

= 0 (9)

To solve (9), Newton’s method will be useful:

𝐹𝑈(𝑈
𝑘(𝑡), 𝑥𝑘(𝑡), 𝑡)𝛿𝑈(𝑡) = −𝐹(𝑈𝑘(𝑡), 𝑥𝑘(𝑡), 𝑡) (10)

𝑈𝑘+1(𝑡) = 𝑈𝑘(𝑡) + 𝛿𝑈(𝑡) (11)

Due to the complexity of calculation of Jacobian of 𝐹𝑈,
Newton/GMRES method involves the use of Forward-
Difference GMRES (fdgmres) technique which approximates
the Jacobian of 𝐹𝑥 by a forward difference approximation:

𝐹𝑥(𝑥)𝑤 ≈
𝐹(𝑥+ℎ𝑤)−𝐹(𝑥)

ℎ
 (12)

Although by using Newton/GMRES method some
approximations are made, the NMPC optimization problem
can be solved quickly while the result will be accurate enough.

IV. STATE ESTIMATION

NMPC requires to have access to the states of the system.
As stated before, two sensors have been employed to detect the
states of the considered UAV: Vicon camera system and
onboard IMU. The Vicon determines 𝑥, 𝑦, 𝑧, and 𝜓, and the
IMU observes 𝑥̇ and 𝑦̇. Therefore, 𝑧̇ is the only state which
cannot be measured directly. Because of the Vicon system’s
noisy data, taking derivative of 𝑧 for calculations is inaccurate.
Also, as shown in Figure 1, 𝑧̇ is the first input to the low-level
controller. On the other hand, 𝑧̈ is the first output of NMPC.
Hence, a method should be employed to estimate 𝑧̇ based on
the inaccurate derivative of 𝑧 and the output of NMPC which

is 𝑧̈. To do so, firstly, the observability should be checked.

A. Observability

As discussed, all of the states except for 𝑧̇ are measurable.
Therefore, according to the definition of observability, if 𝑧̇ can
be determined by knowing the input and the output of the plant
over a finite time, then the system is completely observable
[22]. Hence,

𝒙′ = [
𝑥5
𝑥6
] = [

𝑧
𝑧̇
] (13)

𝒙̇′ = [
𝑥6
𝑢1
] = [

0 1
0 0

] 𝑥′ + [
0
1
] 𝑢1 (14)

When 𝑧 can be observed by the sensors, the observability
matrix will be full rank. As a result, 𝑧̇ can be determined from

observations of 𝑥5 (𝑧) and 𝑢1 (𝑧̈), and the system is observable.

B. Kalman Filter

To estimate 𝑧̇, because of the noise of 𝑧 measured by the
Vicon system, finding the derivative of 𝑧 will not be accurate.
Therefore, a Kalman filter is used to obtain a more reliable
vertical velocity value. Moreover, the first NMPC’s output
(𝑢1) is 𝑧̈, however, the first low-level controller input is 𝑧̇.
Hence, the predicted vertical velocity obtained by the Kalman
filter based on the system model can be sent to the low-level
controller as a reference signal 𝑧̇.

To design the Kalman filter, the model can be converted to
a discrete form by using the forward Euler approach and

Algorithm 1. Forward-Difference GMRES algorithm [18,20]

finding 𝐴, 𝐵, and 𝐶 which are system’s parameters [21]. Then,
the Kalman estimator can be expressed as:

𝑥6
−[𝑘] = 𝐴𝑥6[𝑘 − 1] + 𝐵𝑢1[𝑘 − 1]

𝑃−[𝑘] = 𝐴𝑃[𝑘 − 1]𝐴 + 𝑄

𝑥6[𝑘] = 𝑥6
−[𝑘] + 𝐾[𝑘](𝑧̇[𝑘] − 𝐶𝑇𝑥̂6

−[𝑘])

𝐾[𝑘] = 𝑃−[𝑘]𝐶(𝐶𝑇𝑃−[𝑘]𝐶 + 𝑅)−1

𝑃[𝑘] = (𝐼 − 𝐾(𝑘)𝐶𝑇)𝑃−[𝑘] (15)

where 𝑧̇ is the derivative of the measured 𝑧 at each time-
step, and 𝑄 and 𝑅 are the covariances of the process and
measurement noises which are assumed to have white
Gaussian form.

C. Luenberger Observer

Luenberger observer is another method to estimate the
unknown states, and for the sake of comparison, it will be
designed in study as follows [22]:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐾𝑜(𝑦 − 𝑦̂), 𝑥(0) = 𝑥0, 𝑦̂ = 𝐶𝑥 (17)

where,

𝐴 = [
0 1
0 0

], 𝐵 = [
0
1
], 𝐶𝑇 = [

1
0
]

𝐾𝑜 is chosen such that 𝐴 − 𝐾𝑜𝐶 is a stable matrix which
means:

det(𝑠𝐼 − (𝐴 − 𝐾𝑜𝐶)) = (𝑠 − 𝜆0)
2 = 0, (𝜆0 > 0) (18)

V. SIMULATIONS

The discussed controller and observers have been
implemented in the ARDrone Simulink Development Kit V1.1
[23]. This Simulink toolbox contains a simulation
environment that simulates AR.Drone 2.0 which is
parameterized by parameter identification techniques. Also,
the MPsee toolbox [18] which is based on our group’s previous
works, is used to implement the designed NMPC controller.
After modifying the model and controller’s parameters, such
as receding horizon length and time steps, 𝑁, Φ(.), and 𝐿(.),
this toolbox generates a Newton/GMRES-based NMPC
controller block which is very fast.

As Figure 4 shows, the both observers can estimate the
actual velocity accurately, and as depicted in Figure 5, the
NMPC controller which needs vertical velocity as a feedback
signal from an estimator, can control the UAV platform at
different height set-points properly without any overshoot.
Also, Figure 6 shows that applying these estimators will
greatly improve the performance of the altitude controller. It
will converge to the desired heights quickly without any
overshoot.

Figure 4. Estimated vertical velocity by observers in simulation

Figure 5. Simulation of the height control with applying Luenberger
observer and Kalman filter

Figure 6. Effect of Kalman filter on altitude control

The proposed NMPC approach is compared with a
proportional controller designed in the ARDrone Simulink
Development Kit V1.1. The formulation of this controller can
be expressed as:

𝑧̇ = 𝑘1(𝑧𝑑 − 𝑧)

𝜙 = 𝑘2(𝑦̇𝑑 − 𝑦̇), 𝑦̇𝑑 = 𝑦𝑑 − 𝑦

𝜃 = 𝑘3(𝑥̇𝑑 − 𝑥̇), 𝑥̇𝑑 = 𝑥𝑑 − 𝑥

𝜓̇ = 𝑘4(𝜓𝑑 −𝜓) (19)

As shown in Figure 7, the NMPC method tries to converge to
the reference input smoothly while with the proportional
controller, the UAV behaves much more aggressively and
usually with overshoot. However, while the proportional
controller performs better for altitude control, NMPC leads to
a smooth response with less overshoots for other coordinates.

Figure 7. NMPC vs. proportional controller

VI. EXPERIMENTS

The proposed controller and observers are applied to
AR.Drone in our laboratory which is equipped by a Vicon
Vantage motion capture system including eight cameras (see
Figure 8). This system can track spherical markers which are
attached to the quadrotor and provide its pose at a rate of 100
Hz. For real-time applications, this rate can be increased to 400
Hz. This system is interconnected to a ground station computer
on a local area network (LAN) and transfers the position data
over UDP. Also, the ARDrone Simulink Development Kit
V1.1 provides a toolbox which can communicate with
AR.Drone’s onboard computer via WiFi, which act as a low-
level controller. The toolbox is installed on the ground station
computer. The control and estimation approaches discussed in
this study are implemented on this station, which can use the
UDP data as feedback and send the optimal inputs to the UAV
over WiFi. Also, an IMU is attached to the UAV’s onboard
computer to send reliable observations of 𝑥̇ and 𝑦̇.

Figure 8. Experiment environment

Figure 9 represents a sample of the performance of
estimators. These graphs show that the estimated values can
represent the actual vertical velocity with little errors, and in
Figures 10, it is demonstrated that, even with such errors, the
designed NMPC controller can follow the reference height
properly. It should be mentioned that, without the Kalman
filter, the devised NMPC controller cannot be implemented
because the system will be unstable in practice.

Figure 9. A sample of estimated vertical velocity by observers in practice

Figure 10. Experiment of height control with applying Luenberger

observer and Kalman filter

Also, in Figure 11, the UAV is attempting to follow a
square path. The blue and red lines are the desired and actual
paths. As shown, the quadrotor remains close to the desired
path with little errors.

Figure 11. Square path following experimental results

VII. CONCLUSION

In this study, a fast-implementable NMPC-based controller

was designed to perform as a high-level control module for

quadrotors. The control-oriented model was highly nonlinear

but more realistic, making the NMPC’s real-time

optimizations very time-consuming for practical applications.

To resolve this issue, the controller was embedded with a fast

optimizer, namely the Newton/GMRES scheme. A Kalman

filter and Luenberger observer were also designed and

employed to determine the unknown vertical velocity for real-

life implementations. The proposed NMPC control system

was compared with a proportional controller in simulations,

which indicated significant improvements in the control

performance. Besides, this technique was successfully

implemented using a commercial UAV, AR.Drone 2.0, while

a Vicon Vantage motion capture system was used to track the

drone. The test results demonstrated superior performance of

the proposed NMPC-based controller.

Future work will examine whether the controller can follow

other complicated trajectories, such as Elliptical and Lorenz

paths. Also, solving the obstacle avoidance problem using the

proposed control scheme will be investigated. This can be

done by adding an inequality constraint which keeps the

quadrotor away from pre-defined obstacles. Moreover, the

performance of the NMPC-based controller will be compared

with another advanced method like Reinforcement Learning.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and

Engineering Research Council of Canada for supporting this

study.

REFERENCES

[1] Cao, G., Lai, E. M. K., & Alam, F. (2017). Gaussian process model

predictive control of an unmanned quadrotor. Journal of Intelligent &

Robotic Systems, 88(1), 147-162.

[2] Abdolhosseini, M., Zhang, Y. M., & Rabbath, C. A. (2013). An

efficient model predictive control scheme for an unmanned quadrotor

helicopter. Journal of intelligent & robotic systems, 70(1-4), 27-38.

[3] Hoffmann, G., Waslander, S., & Tomlin, C. (2006, August). Distributed

cooperative search using information-theoretic costs for particle filters,

with quadrotor applications. In AIAA Guidance, Navigation, and

Control Conference and Exhibit (p. 6576).

[4] Xiao, T. (2016). A Literature Review of Learning and Optimization

Methods Applied to Quadrotor Control.

[5] Dong, X., Zhou, Y., Ren, Z., & Zhong, Y. (2016). Time-varying

formation tracking for second-order multi-agent systems subjected to

switching topologies with application to quadrotor formation flying.

IEEE Transactions on Industrial Electronics, 64(6), 5014-5024.

[6] Wang, D., Pan, Q., Hu, J., Zhao, C., & Guo, Y. (2019, June). MPCC-

based Path Following Control for a Quadrotor with Collision

Avoidance Guaranteed in Constrained Environments. In 2019 IEEE

28th International Symposium on Industrial Electronics (ISIE) (pp.

581-586). IEEE.

[7] Bouabdallah, S., Noth, A., & Siegwart, R. (2004, September). PID vs

LQ control techniques applied to an indoor micro quadrotor. In 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS)(IEEE Cat. No. 04CH37566) (Vol. 3, pp. 2451-2456). IEEE.

[8] Selfridge, J. M., & Tao, G. (2014). A multivariable adaptive controller

for a quadrotor with guaranteed matching conditions. Systems Science

& Control Engineering: An Open Access Journal, 2(1), 24-33.

[9] Iskandarani, M., Givigi, S. N., Rabbath, C. A., & Beaulieu, A. (2013,

June). Linear model predictive control for the encirclement of a target

using a quadrotor aircraft. In 21st Mediterranean Conference on

Control and Automation (pp. 1550-1556). IEEE.

[10] Bouffard, P., Aswani, A., & Tomlin, C. (2012, May). Learning-based

model predictive control on a quadrotor: Onboard implementation and

experimental results. In 2012 IEEE International Conference on

Robotics and Automation (pp. 279-284). IEEE.

[11] Aswani, A., Bouffard, P., & Tomlin, C. (2012, June). Extensions of

learning-based model predictive control for real-time application to a

quadrotor helicopter. In 2012 American Control Conference (ACC) (pp.

4661-4666). IEEE.

[12] Aswani, A., Gonzalez, H., Sastry, S. S., & Tomlin, C. (2013). Provably

safe and robust learning-based model predictive control. Automatica,

49(5), 1216-1226.

[13] Bouadi, H., Bouchoucha, M., & Tadjine, M. (2007). Sliding mode

control based on backstepping approach for an UAV type-quadrotor.

World Academy of Science, Engineering and Technology, 26(5), 22-27.

[14] Voos, H. (2009, April). Nonlinear control of a quadrotor micro-UAV

using feedback-linearization. In 2009 IEEE International Conference

on Mechatronics (pp. 1-6). IEEE.

[15] Alexis, K., Nikolakopoulos, G., & Tzes, A. (2014). On trajectory

tracking model predictive control of an unmanned quadrotor helicopter

subject to aerodynamic disturbances. Asian Journal of Control, 16(1),

209-224.

[16] Zanelli, A., Horn, G., Frison, G., & Diehl, M. (2018, June). Nonlinear

model predictive control of a human-sized quadrotor. In 2018 European

Control Conference (ECC) (pp. 1542-1547). IEEE.

[17] Dentler, J., Kannan, S., Mendez, M. A. O., & Voos, H. (2016,

September). A real-time model predictive position control with

collision avoidance for commercial low-cost quadrotors. In 2016 IEEE

conference on control applications (CCA) (pp. 519-525). IEEE.

[18] Tajeddin, S. (2016). Automatic code generation of real-time nonlinear

model predictive control for plug-in hybrid electric vehicle intelligent

cruise controllers (Master's thesis, University of Waterloo).

[19] Ohtsuka, T. (2004). A continuation/GMRES method for fast

computation of nonlinear receding horizon control. Automatica, 40(4),

563-574.

[20] Kelley, C. T. (1995). Iterative methods for linear and nonlinear

equations (Vol. 16). Siam.

[21] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT

press.

[22] Ioannou, P., & Fidan, B. (2006). Adaptive control tutorial. Society for

Industrial and Applied Mathematics.

[23] Sanabria, D. E., & Mosterman, P. (2013). Ardrone simulink

development kit v1. 1.

