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Abstract—This paper presents a sensor fault reconstruction 
algorithm for DC motors using a sliding mode observer. The 
sliding mode observer was designed through modeling the DC 
motor dynamics with actual system parameters and applying a 
linear transformation matrix for state transformation. In the 
designed observer, a discrete injection term was considered to 
achieve asymptotic stability of the error dynamics. Evaluations 
were conducted using an actual DC motor test platform to 
validate the performance of the proposed fault reconstruction 
algorithm. Evaluation results show that the developed 
algorithm can reconstruct a sensor fault signal to represent an 
actual fault signal with small errors. 
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I.  INTRODUCTION 

Different types of motors such as DC, induction, and step 
motors have been widely used in dynamic motion control 
applications. Among them, the DC motor possesses attractive 
features for motion control in various industrial sectors that 
include excellent speed control, delivery of high starting 
torque, and easy and simple control design, etc.  

A sensor is an essential component of DC motor systems 
since it can detect physical quantities including voltage, torque, 
and angular displacement whose information is used to monitor 
the performance of motor systems and to control them. In 
addition, state estimation techniques such as Kalman filtering 
can contribute to improving the performance of motor control 
systems by estimating the rotational velocity. However, since 
its control performance can be degraded by unexpected sensor 
faults, various studies have investigated the areas of fault 
detection, isolation, and identification in motor control 
applications.  

Adouni [1] proposed an artificial neural network-based 
architecture that can enable fault detection, isolation, and 
identification to minimize fault alarms for a DC motor by 
generating robust residuals. In the study of Lu [2], a simple and 
easily implemented algorithm was developed, which can run on 
an embedded system for the online fault diagnosis of motor 

bearing. For the safety of motor systems, the detection of an 
online inter-turn fault is essential. This is because an inter-turn 
fault is the second most commonly observed but the most 
severe fault. To tackle this issue, Singh [3] presented infrared 
thermography-based online and non-invasive techniques to 
detect the presence of an inter-turn fault in motor drives. The 
sensor fault-resilient control using a high order sliding mode 
observer was developed for DC servomotors to detect sensor 
faults [4]. However, this approach only dealt with a fixed 
threshold and may potentially deteriorate the closed-loop 
performance due to highly increased control inputs for speed 
tracking. In the existent studies, there exist various methods for 
fault detection of hardware and sensors using the model-based 
algorithms that require relatively accurate model parameters. 
However, it is not easy to obtain such accurate model 
parameters. As an alternative solution, an artificial intelligence-
based algorithm has been considered but reliable and sufficient 
training data sets are prerequisites to achieving high 
performance.  

To address the above limitations, this study proposes a 
methodology to reconstruct signal faults of a voltage sensor in 
DC motors by applying a sliding mode observer. For this, a 
mathematical dynamic equation of the DC motor was modeled 
and a sliding mode observer was designed based on the 
dynamic equation. Transformation and distribution matrices 
were designed by considering the stability conditions of the 
observer. A performance evaluation of the developed sensor 
fault reconstruction algorithm was conducted using an actual 
DC motor test platform. 

The rest of the paper is organized as follows. Section 2 
describes the fault reconstruction algorithm with a sliding mode 
observer. Section 3 presents the results of performance 
evaluation. Finally, concluding remarks are provided in Section 
4. 



   

II. SLIDING MODE OBSERVER-BASED FAULT 

RECONSTRUCTION 

A. Dynamics of a DC motor system 

Figs. 1-2 show the actual DC motor test platform used in 
this study and its electrical circuit diagram, respectively. 

 

Figure 1.  Actual DC motor test platform 

 

 

Figure 2.  The electrical circuit of a DC motor system 

The considered test platform was equipped with a rotary 
type encoder to measure the angular displacement. The 
platform was compatible with the Matlab/Simulink software.  
The dynamic equations of the DC motor in Fig. 1 can be 
presented by the following Eq.(1)-(3) that originate from the 
Kirchhoff’s voltage law. 
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where v , i ,   represent the voltage input, current, and 
angular velocity, respectively. R , L , eqJ , bk , tk  are the 

resistor, inductance, equivalent inertia, back-
EMF(electromotive force) constant, and torque constant, 
respectively. In this study, the parameters provided by the 
manufacturer were used for an evaluation of the designed fault 
reconstruction algorithm. The parameters used in the study are 
given in Table 1. 

TABLE I.  PARAMETERS USED FOR MODELING OF DC MOTOR DYNAMICS 

Parameters Description Value Unit 

R  Resistance 6.3   

L  Inductance 0.85 mH  

eqJ  Equivalent inertia 21.67  10-6 2kgm  

bk  Back EMF 0.036 /Vs rad  

tk  Torque constant 0.036 /Nm A  

 

B. Sliding mode observer for fault reconstruction 

A sliding mode observer was adopted for the sensor fault 
reconstruction in the considered DC motor system. The 
following equations include internal system states (state-space) 
and outputs derived from the motor dynamics that were used to 
design a sliding mode observer. 
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, respectively. Based on 

the linear transformation matrix in Eq. (6) that consists of the 
output matrix C  and its null space, the above state-space 
equation can be transformed with output and new state 
variables. 
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The observer dynamics is defined in Eq. (7) and (8) using 
an injection term and its distribution matrix. 
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where the matrix nG was designed as  TL I to guarantee 

asymptotic stability for the state and output errors. inv  is the 
discrete injection term as an observer input. Using the 
equations of (4) and (7), the error dynamics can be derived with 
respect to the error state ˆ( ) ( ) ( )e t x t x t   as follows. 
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Through a linear transformation using the matrix C, the derived 
error dynamics can be partitioned as follows. 
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To design a sliding mode observer, the injection term can 
be defined using the output error ye  in Eq. (12). 
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       It is assumed that the absolute value of 
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following the assumption and eta-reachability condition  [5], 
the output error can converge to zero in finite time.  Eqs. (13) 
and (14) show inequality conditions for the bounded 
disturbance and magnitude of the computed injection term for 
stability. 
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After the output error converges to zero by the injection 
term in Eq. (11), the output errors can be negligible in Eq. (10). 
Then, the equivalent injection can be computed and the error 
dynamics for the state in Eq. (11) is rewritten as follows. 
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If the gain L  in the matrix nG  from Eq. (7) is selected to 
have the system matrix in Eq. (4) be negative definite, the state 
error can converge to zero asymptotically. Additionally, the 
injection term can maintain the error near zero despite the 
existence of disturbance such as a fault signal.  

The key concept of the fault reconstruction is to reconstruct 
a fault signal with an equivalent injection term after having the 
convergence of error to zero. The following equations describe 
the error dynamics with an input fault signal. 
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If the state (e1) and output errors (ey) converge to zero, the 
above equations can be rewritten as Eq. (19) and (20).  
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By utilizing the above equations, the reconstructed input 
fault can be obtained as given in Eq. (21). 
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As a condition to reconstruct an actual fault, Eq. (22) needs 
to be satisfied. 

 1
,1 ,2input inputL B B   

Using the DC motor dynamics (Eq. (1)-(3)), linear 
transformation matrix (Eq. (6)), and condition for fault 
reconstruction (Eq. (22)), it is observed that an input fault of 
the DC motor system can be reconstructed without the 
information of parameter A. Therefore, the back-EMF constant 
does not affect the fault reconstruction performance.  

The following Eq. (23) presents the system (AO) and input 
matrices (BO) of the DC motor dynamic equation. In Eq. (24),  
the gain L was designed to generate the conditions for fault 
reconstruction and stability in Eq. (25) on which eigenvalues in 
Eq. (16) are always negative, and thus the state error dynamics 
can be asymptotically stable. 
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     The next section describes the performance evaluation 
results that were obtained through experimental validations 
using an actual DC motor test platform. 

III. PERFORMANCE EVALUATION 

Figure 3 shows a model schematics for performance 
evaluations of the designed fault reconstruction algorithm. 

 

Figure 3.  Model schematics for performance evaluations 
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To obtain the angular velocity, the double integrator model-
based Kalman filter was applied using experimental data with 
processes and Gaussian noises. Two fault cases were set up to 
conduct performance evaluations by applying different square-
shapes of voltage at 2-3 sec in simulation. A sinusoidal voltage 
input (amplitude: 1 volt, frequency: 0.2 Hz) was applied to the 
DC motor test platform. Figs. 4–5 show the applied voltage 
input and fault signals in each case, respectively. The value of 
an equivalent injection term was calculated using a first-order 
transfer function with a time constant of 0.05 sec. 

 

Figure 4.  Sinusoidal voltage input used for performance evaluations 

 

Figure 5.  Fault signals of a voltage sensor applied in each case 

Figs. 6–10 present evaluation results of the developed fault 
reconstruction algorithm. 

Case 1: sinusoidal voltage input and square-shaped fault 
signal with an amplitude of 1 volt 

 

Figure 6.  State estimation: angular displacement 

 

Figure 7.  State estimation: angular velocity 

 

Figure 8.  Discrete injection value 

 

Figure 9.  Output error 

 

Figure 10.  Fault signals: actual (blue) and reconstructed (dashed red) in case 1 

Case 2: sinusoidal voltage input and square-shaped fault 
signal with an amplitude of 2 volt 
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Figure 11.  State estimation: angular displacement 

 

Figure 12.  State estimation: angular velocity 

 

Figure 13.  Discrete injection value 

 

Figure 14.  Output error 

 

Figure 15.  Fault signals: actual (blue) and reconstructed (dashed red) in case 2 

As seen in Figs. 6-7 (case 1) and 11-12 (case 2), the 
designed sliding mode observer shows the reasonable 
performance of state estimation despite an occurrence of a fault 
signal during the simulations. In addition, Fig. 8 and 13 show 
that the switching frequency of an injection value for the 
designed sliding mode observer is very low while the fault is 
applied at 2-3 sec. In Fig. 9 (case 1) and 14 (case 2), it is 
observed that output errors vary between -1 and 1 and have a 
slight vertical shift at 2-3 sec. Finally, it is noted in Fig. 10 and 
15 that the actual (original, blue line) signal can be 
reconstructed by the developed algorithm with a small range of 
error (i.e., ± 0.25 between actual and reconstructed signals) 
except for the region of rising and falling edges. The 
concluding remarks are provided in the next section with future 
works. 

IV. CONCLUSION 

This study proposes the sliding mode observer-based fault 
reconstruction algorithm for an input voltage sensor of the DC 
motor. In the proposed algorithm, a fault sensor signal was 
reconstructed using system parameters and an equivalent 
injection term for the sliding mode observer that was computed 
using a first-order transfer function. From test results using an 
actual DC motor platform in two fault cases, we can note that 
the developed algorithm has good capabilities for fault signal 
reconstruction and state estimation. However, since a small 
amount of error between the reconstructed and actual fault 
signals is still observed, reconstruction accuracy can be 
enhanced through improving the performance of the developed 
observer and filtering algorithms that will be considered as 
future work of this study. The design of a system identification-
based adaptive sliding mode observer can be another topic for a 
future extension since this method can contribute to the 
improvement of robustness and accuracy of fault reconstruction 
by dealing with load inertia variation. When considering the 
sound features of signal fault reconstruction, the proposed 
algorithm combined with the system identification techniques 
can be extensively used for fault detection and tolerant control 
of DC servo systems. 
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