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Abstract—This paper investigates the natural frequencies of a 
thin-walled Euler-Bernoulli ring under different boundary 
conditions with an analytical method. The free in-plane 
vibration problem of the system is solved in this work and 
analytical results are validated with numerical solutions 
obtained from simulations done in ABAQUS package. 
Comparing the cases of hinged and fixed supports, both 
analytical and FEM methods confirmed that the natural 
frequencies for the case of having fixed supports are 
considerably higher. 
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I.  INTRODUCTION 

Dynamic characteristics of free rings have been investigated 
in many works [1-6], and closed-form equations for evaluating 
natural frequencies and associated mode shapes are already 
obtained. However, there are few authors investigating the 
dynamic characteristics of rings on radial supports [7-9].  The 
vibration of a thin ring has been studied extensively by Rao [2]. 
Wu and Parker [3] used perturbation and Galerkin methods to 
study the mode contamination of a ring with an elastic 
foundation. Zhang et al. [4] studied the natural frequencies and 
mode contaminations of a spinning ring. Rao et al. [10] 
determined natural frequencies and associated mode shapes of a 
ring on rigid radial support using the differential equation 
formulation. However, their numerical results seem to be only 
accurate for a small range of radial supports. For cases with 
small or large numbers of radial supports their method was not 
entirely satisfactory. Sahay et al. [11] studied the same problem 
using a different method and presented a solution for the case of 
having a large number of radial supports. Transfer matrix is 
another approach that has been used by a few other researchers 
[12-14] to express more accurate results for natural frequencies 
and modes for a ring supported by numerous radial supports. 
However, some mode shapes neglected because they assumed 
the total vibrational mode of the whole ring could be determined 
by considering the same behavior of one studied segment for all 
the other segments. This behavior is only feasible for a non-
general case of boundary conditions. Malik et al. [15] used the 

wave approach and determined the natural frequencies from the 
propagation constants of the ring, assuming it as an endless 
periodic structure. Zakrzhevskii et al. [16] used a numerical 
method to solve a boundary-value problem (BVP) for an elastic 
ring fixed at a point. However, none of those works could 
express a neat closed-form formulation for mode shapes of a ring 
with different types of radial supports. To fill this knowledge 
gap, this paper investigates the free vibration of a ring with 
various different supports, including hinged and fixed supports. 
Studying dynamics and free vibration of thin-walled rings play 
an important role in the functional performance of many systems 
that undergo complex behavior when subjected to static or 
moving loads. For instance, studying the vibrations of rings used 
in the planetary gear train is a critical consideration, particularly 
for high speed and heavy load applications. Planetary gear trains 
are widely used in many applications, such as automobiles, 
helicopters, and wind turbines, etc. This wide range of 
applications shows the importance of analyzing the vibration of 
a typical ring under different possible boundary conditions. 

The paper is organized below. In section II, the in-plane 
vibrational equations are derived. Mode shapes are boundary 
conditions corresponding to different support are discussed in 
section III and IV. Conclusions are given in section V, and some 
recommendations for future work are outlined in section VI. 

II. DYNAMIC MODEL 

Figure 1 shows a thin-walled ring represented by its 
centerline. To avoid the complexity in the governing equations, 
the rigidity of the ring EI is assumed constant, and the effects 
of rotary inertia and shear deformation are both neglected. The 
ring is being held with 𝑛 radial supports as shown in the figure 

 
Figure 1. A thin-walled ring and the location of each support 



   

A. System Equations 

To derive the governing equations, a typical element at an 
arbitrary position θ is selected. The forces and moments acting 
on this element can be expressed as functions of deformation 
components. Neglecting the small quantities of high order terms 
will result in the following equilibrium equations in tangential 
𝑤 , radial 𝑢, and rotational motion φ around the 𝑤 axis.  

𝜕𝑄

𝜕𝜃
+ 𝑁 = 𝜌𝐴𝑅 �̈� 

𝜕𝑁

𝜕𝜃
− 𝑄 = 𝜌𝐴𝑅 �̈� 

𝜕𝑀

𝜕𝜃
+ 𝑅. 𝑄 = 𝜌𝐼𝑅 �̈� 

where R  is the radius of ring centerline, ρ  is the total mass 
density, A is the cross-sectional area, I is the moment of inertia 
of the area 𝐴 about  w axis. The normal force N is considered 
positive in tension, the shear force Q is considered positive when 
acting in a radially inward direction on a positive face, and 
finally, the in-plane bending moment M is considered positive 
when it tends to reduce the curvature of the ring.  Similarly, the 
relationship between the displacement functions can be 
represented as follows: 
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1

𝑅
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Equation (6) can alternatively be presented based on the 
tangential and radial displacements by applying equation 4 into 
that. This new relationship is shown in (7). 

𝑀 =
𝐸𝐼

𝑅

𝜕 𝑢
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Using Hooke’s law, the axial stress σ  can be related to the 
strain ε which can be alternatively written based on the radial 
and tangential displacements [2]. 

𝜀 =
1

𝑅

𝜕𝑤

𝜕𝜃
− 𝑢 +

𝑥

𝑅

𝜕
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where x is the distance from the ring centerline. 

This equation can be simplified for the centerline since it has 
assumed to remain unstretched. Hence, by considering 𝜀 = 0 for 
the centerline and neglecting the effects of products of tiny 
quantities in (8), the tangential and radial displacements can be 
related as follows: 

𝑢 =
𝜕𝑤

𝜕𝜃
 

The equation (9) is called the inextensibility condition. Under 
this condition, the right-hand side of (3) would be zero due to 
zero deflection for the ring centerline in the tangential direction. 
In order to find a relationship for the shear force Q, first, the 
normal force N needs to be found from (1) and replaced into (2). 

Then, by substituting (3) and (9) into the obtained equation, the 
following relationship will be derived. 

𝑄 = −𝜌𝐴𝑅�̈� −
1

𝑅

𝜕𝑀

𝜕𝜃
 

Eventually, by combining (1) through to (5), (7), (9), and (10) 
into a single equation, the in-plane flexural classical vibration 
equation for a thin ring can be represented as follows: 
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( , )
+

( , )
+

 

 
 

( , )
−

𝑤(𝜃, 𝑡) = 0  


where 𝑤(𝜃, 𝑡) is the tangential displacement of the centerline of 
the ring. By separating the variables using the form represented 
in (12), the total solution can be written as multiplication of 
mode shape function  Ψ(θ) by time-varying harmonic function 
 q(t) as follows: 

𝑤(𝜃, 𝑡) = 𝐶  Ψ (𝜃) q (𝑡) ≃ Ψ(𝜃) 𝑞(𝑡) 

q (𝑡) = 𝐵  exp(𝑖𝜔 𝑡) 
Similarly, for the other two displacement functions, in general, 
the following equations are valid. 

𝑢(𝜃, 𝑡) = 𝐷  𝑈 (𝜃) q (𝑡) ≃ 𝑈(𝜃) 𝑞(𝑡) 

𝜑(𝜃, 𝑡) = 𝐸  Φ (𝜃) q (𝑡) ≃ Φ(𝜃) 𝑞(𝑡) 

where i is the unit imaginary number 𝑖 = √−1. For simplicity 
in future substitution, just the first order (j = 1) is considered 
throughout this paper. The equation (12) can now be plugged 
into the governing vibrational, i.e. (11). This substitution will 
result in: 

Ψ(𝜃)𝑞(𝑡) + 2 Ψ(𝜃)𝑞(𝑡) + Ψ(𝜃)𝑞(𝑡) +

 

 
 

( )
− Ψ(𝜃) �̈�(𝑡) = 0  

By substituting (13) into the (16), (17) will be derived, as 
follows: 

( )
+ 2

( )
+

( )
exp(𝑖𝜔𝑡) −

  

 
 

( )
−

Ψ(𝜃) exp(𝑖𝜔𝑡) = 0  


Equation (18) is a neat form of the (17) after eliminating the 
time-variable exponential part from all terms of it. 
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where: 

𝑎 = 2 



   

𝑏 = 1 − Ω  
𝑐 = Ω  

Ω = 𝑅
𝜌 𝐴 

𝐸 𝐼
 𝜔 

From (9), the relationship between radial and tangential mode 
shapes is as follows: 

𝑈 =
𝜕Ψ

𝜕𝜃
 

Similarly, by means of (4) and (9), the relationship between 
mode shapes of rotational and tangential displacement 
functions can be expressed as follows: 

Φ =
1

𝑅

𝜕 Ψ

𝜕𝜃
+ Ψ  

III. MODE SHAPE DETERMINATION 

The general solution of (18) takes the form of: 

Ψ(𝜃) = 𝑍 𝑒    
Inserting (25) and its derivatives into (18) forms a sixth-order 
algebraic equation as below: 

Υ + 𝑎 Υ + 𝑏 Υ + 𝑐 = 0 
This equation can be simplified into a cubic equation in (27): 

𝜆 + 𝑎 𝜆 + 𝑏 𝜆 + 𝑐 = 0 
where 𝜆 = Υ . Thus, the six roots of (26) can be found after the 
determination of the three roots of (27) i.e. 𝜆  (𝑟 = 1,2,3). The 
advantage of this method over solving the original sixth order 
equation is the roots can make closed-form shapes. Once 𝜆  are 
calculated, Υ  (𝑠 = 1 − 6) can be easily obtained through Υ =

± 𝜆 .  

In order to solve any standard cubic equation, a discriminant 
parameter Δ needs to be defined. This parameter is expressed in 
(27) [17]. 

Δ = 𝑄 + 𝑅  
where: 

Q =
1

9
(3𝑏 − 𝑎 ) 

R =
1

54
(9𝑎𝑏 − 27𝑐 − 2𝑎 ) 

Having defined Δ, the roots of (27) can be expressed as follows: 

𝜆 = S + T −
𝑎
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√3

2
(S − T)  

where: 

S = 𝑅 + √Δ 

T = 𝑅 − √Δ 

Thus, (25) can be rewritten based on the roots evaluated from 
(30) through (32), as follows: 

Ψ(𝜃) = ∑ 𝐴  𝑒   =  𝐴 𝑒 + A e + A e +

A e + A e + A e  

Or alternatively: 

Ψ(𝜃) = 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒

+ 𝐴 𝑒 + 𝐴 𝑒  

The roots of (27) i.e. 𝜆  (𝑟 = 1,2,3) can take different forms 
based on the discriminant Δ. For Δ > 0, there will be one real 
root and the other two roots will be complex conjugates. For the 
case of Δ = 0, all three roots will be real; however, two of them 
will be identical. In other words, there will be a set of repeated 
roots in the system. In this case, the corresponding terms of (36) 
associated with the repeated roots will take forms of 𝐴 +

𝐴 𝜃 exp( 𝜆 𝜃) . Finally, for Δ < 0 , all roots will be 
real and distinct. For this system, the discriminant is expressed 
below: 

Δ = −
𝑐

27
+

71 𝑐

108
−

2 𝑐

27
 

IV. BOUNDARY CONDITIONS 

For the ring studied in the current work, three common 
supports are considered. Firstly, it is assumed that the ring is 
hinged to its frame. Secondly, 𝑛 fixed supports are considered to 
hold the ring along its rim. Finally, the ring is considered to be 
connected to its frame at 𝑛 equally-spaced points. By assuming 
equal length for all segments, the angle between any two 
connected segments 𝜁 can be expressed as follows 

𝜁 =
2𝜋

𝑛
     (𝑟𝑎𝑑) 

A. Hinged Supports 

Based on the radial-tangential u-w coordinate demonstrated in 
Fig. 1, the slope and bending moment of the ring can be 

represented as   and , respectively. At each support, 

normal and tangential deflections are zero 𝑢 = 𝑤 = 0. In this 
scenario, the moment is zero at each node. For an arbitrary 
support  i  one can say: 

𝑢 (𝜃 ) = 0 
𝑤 (𝜃 ) = 0 

𝜕 𝑤

𝜕𝜃
= 0 

Applying (39) through (41) into (36) for the first segment leads 
to the following equations. This can be similarly re-written for 
the first scenario. 

 



   

Zero tangential deflection at each support: 

Ψ(0) = 𝐴 + 𝐴 + 𝐴 + 𝐴 + 𝐴 + 𝐴 = 0 

Ψ(𝜁) = 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 + 𝐴 𝑒 +

𝐴 𝑒 + 𝐴 𝑒 = 0  

Zero radial deflection at each support: 

( )
= 𝜆 𝐴 − 𝜆 𝐴 + 𝜆 𝐴 − 𝜆 𝐴 + 𝜆 𝐴 −

𝜆 𝐴 = 0  


( )
= 𝜆 𝐴 𝑒 − 𝜆 𝐴 𝑒 + 𝜆 𝐴 𝑒 −

𝜆 𝐴 𝑒 + 𝜆 𝐴 𝑒 − 𝜆 𝐴 𝑒 = 0  


Zero moment at each support: 

( )
= 𝜆 𝐴 − 𝜆 𝐴 + 𝜆 𝐴 − 𝜆 𝐴 +

𝜆 𝐴 − 𝜆 𝐴 = 0  


( )
= 𝜆 𝐴 𝑒 − 𝜆 𝐴 𝑒 +

𝜆 𝐴 𝑒 − 𝜆 𝐴 𝑒 + 𝜆 𝐴 𝑒 −

𝜆 𝐴 𝑒 = 0  



Equations (42) through (47) make a homogenous system of 
equation which can be expressed in a matrix form as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

𝜆
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𝑒
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𝜆

𝜆

𝑒

𝜆 𝑒

𝜆 𝑒

1

− 𝜆

− 𝜆

𝑒

− 𝜆 𝑒

− 𝜆 𝑒

1

𝜆

𝜆

𝑒

𝜆 𝑒

𝜆 𝑒

1

− 𝜆

− 𝜆

𝑒

− 𝜆 𝑒

− 𝜆 𝑒 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝐴
𝐴
𝐴
𝐴
𝐴
𝐴 ⎭

⎪
⎬

⎪
⎫

=

{0}  



A non-trivial solution of (48) exists if the determinant of the 
coefficient matrix is zero. By looking at the coefficient matrix, 
it is clear that all terms are functions of 𝜆  (𝑟 = 1,2,3). Also, 
since 𝜆  are functions of frequency 𝜔; thus, determinant of the 
coefficient matrix is also and only a function of 𝜔. By setting the 
determinant to zero, the natural frequencies of the system will be 
derived. Associated constants 𝐴  (𝑖 = 1 − 6) for (48) now can 
be evaluated corresponding to each natural frequency. 

B. Fixed Supports 

In this scenario, at each node, radial and tangential deflections 
are zero 𝑢 = 𝑤 = 0. The slope and bending moment for the ith 
support must be the same when it is calculated based on either 
ith or (i+1)th segment. Hence, the boundary conditions regarding 
the slope and bending moment are both continuous along the 
rim. Mathematically, it is expressed in (49) through (52) 
(𝑘 = 1,2, … , 𝑛 − 1). 

𝑢 (𝜃 ) = 0 
𝑤 (𝜃 ) = 0 

+ 𝑤 = + 𝑤   

+ = +   

For simplicity of calculation, separate local coordinates is 
considered for studying each segment. For instance, for the kth 
segment, one can apply the boundary conditions (49) through 
(52) as follows: 

Zero tangential deflection at the beginning of the segment 
𝜃 = 0: 

∑ 𝐴 ,  = 𝐴 , + 𝐴 , + 𝐴 , + 𝐴 , + 𝐴 , + 𝐴 , = 0  
Zero tangential deflection at the beginning of the segment 

𝜃 = 𝜁: 

∑ 𝐴 , 𝑒   = 𝐴 , 𝑒  + 𝐴 , 𝑒  + 𝐴 , 𝑒  +

𝐴 , 𝑒  + 𝐴 , 𝑒  + 𝐴 , 𝑒  = 0  

Zero radial deflection at the beginning of the segment 𝜃 =
0: 

∑ Υ  𝐴 ,  = Υ 𝐴 , + Υ 𝐴 , + Υ 𝐴 , + Υ 𝐴 , +
Υ 𝐴 , + Υ 𝐴 , = 0  

Zero radial deflection at the end of the segment 𝜃 = 𝜁: 

∑ Υ  𝐴 , 𝑒   = Υ 𝐴 , 𝑒  + Υ 𝐴 , 𝑒  +

Υ 𝐴 , 𝑒  + Υ 𝐴 , 𝑒  + Υ 𝐴 , 𝑒  + Υ 𝐴 , 𝑒  = 0  

Continuous slope at the studied node: 

∑ Υ + 1  𝐴 , 𝑒  − 𝐴 , = 0   
Continuous bending moment at the studied node: 

∑ Υ + 1  𝐴 , 𝑒  − 𝐴 , = 0   
Equations (53) through (58) can be represented in matrix form 
by multiplying the parameter matrix to the coefficient one. The 
order of the parameter matrix is 6n × 6n where n is the number 
of segments. 

[𝐺(𝜔)] {𝐴  𝐴  𝐴  𝐴  𝐴  𝐴  ⋯ 𝐴   𝐴   𝐴   𝐴   𝐴   𝐴 } =
{0}  

A non-trivial solution of (59) exists if the determinant of matrix 
 G(ω) is zero. By setting the determinant of this matrix to zero, 
the natural frequencies of the system will be derived. Associated 
constants 𝐴  (𝑘 = 1 − 𝑛 , 𝑖 = 1 − 6 )  for the mode shape 
function can be evaluated corresponding to each natural 
frequency. For instance, for the natural frequency ω , there will 
be 6𝑛 mode shape constants 𝐴  which 6𝑛 − 1 of them can be 
expressed based on the remaining one. 

V. RESULTS AND CONCLUSION 

The dynamic behavior of a symmetrically supported thin 
ring was studied in the current work. This analysis was 
performed for a ring with two types of boundary conditions i.e. 
hinged and fixed supports. Having used the Abaqus package, 
several numerical examples were worked out to show the 
accuracy of the analytical solutions. The evaluated first three 
natural frequencies for those cases are shown in Table 1. The 
reason leading to the slight differences between the analytical 



   

and the FEM results might be due to the simplification applied 
in the mathematical model such as neglecting the effects of the 
rotary inertia and shear deformations. 

Table 1.  Comparison of natural frequencies obtained from the 
analytical method and FEM. 

Type and 
Number of 
Supports 

𝜔  (Hertz) 𝜔  (Hertz) 𝜔  (Hertz) 

Exact FEM Exact FEM Exact FEM 

Hinged 3 12.20 12.27 36.20 36.79 55.87 57.10 
4 23.99 24.10 42.98 44.04 84.02 86.78 
5 38.87 39.14 54.01 55.51 113.25 119.86 

Fixed 3 30.10 30.32 48.12 49.45 86.98 89.04 
4 41.83 42.10 54.21 55.43 102.82 104.56 
5 55.02 55.52 59.98 60.21 117.54 120.10 

 

Fig. 2 shows the deflected ring for some picked scenarios from 
the above table. Comparing the cases of hinged and fixed 
supports, both analytical and FEM methods confirmed that the 
natural frequencies for the case of having fixed supports are 
considerably higher. This behavior could be also predicted based 
on the physical model of the problem. 

a.          b.  
 

c.            d.  

e.            f.  

g.               h.  

 

i.  

Figure 2. Mode shapes for a thin ring having 3 (a-c), 4 (d-f), and 5 (g-i) 
hinged supports. 

For lower frequencies, the precision of the natural frequencies 
derived from the formulation in the current work is pretty close 
to the FEM results. In the formulation of the governing equations 
of this work, a number of simplifying assumptions have made. 
These assumptions result in observing some differences in 
higher natural frequencies. Results obtained from this analysis 
are in excellent agreement with those found from FEM analysis 
in the Abaqus software. 

VI. RECOMMENDATION FOR FUTURE WORK 

For future work, it is recommended to study the behavior of 
Timoshenko rings under different boundary conditions. 
Moreover, the bolted supports for either Euler-Bernoulli or 
Timoshenko beams can be studied and then the obtained results 
can be compared with results expressed in the current work. 
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