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Abstract— This paper carries out an iterative computer 

simulation approach to tune B-dot detumbling and 3-axis PD 
attitude controller gains for magnetically-actuated CubeSats. 
The effect of different gains for 1U and 2U CubeSats are 
investigated along with the effect on PD control performance 
when nonidealities are included in the simulator such as Sun 
sensor noise, magnetometer sensor noise, rate gyroscope sensor 
noise and CubeSat eclipse conditions (when the Satellite cannot 
estimate its attitude using Sun sensors due to Earth blocking 
Sun). For the simulation conditions used in this research, it was 
observed that a relatively large range of B-dot gain values 
(between 2 × 103  and 1 × 105  A2s3m2/rad-kg)  enables both 
1U and 2U CubeSats to settle in under ~10 orbits, indicating a 
degree of insensitivity to the gains selected for a B-dot 
controller. Compared to the B-dot detumbling controller, the 3-
axis PD magnetic attitude controller was found to be more 
sensitive to CubeSat geometry and control gain selection with 
some gains resulting in significant settling times and others 
yielding ineffective attitude control. It was also observed that 
the presence of sensor noise increased settling time and steady-
state oscillations in attitude and angular rate errors, while the 
presence of eclipse conditions showed similar settling times and 
steady-state behaviour to the non-eclipse cases. 
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I.  INTRODUCTION 

Solely-magnetically-actuated attitude control is a low-cost, 
mechanically simple choice for actuation when designing the 
attitude determination and control system (ADCS) for CubeSats. 
Achieving high pointing accuracy within short timeframes, 
however, is difficult given that magnetic attitude control systems 
are underactuated; at any given time, torques can only be 
produced in the plane perpendicular to the local geomagnetic 
field. The relatively small size of CubeSats restricts the quality 
and quantity of attitude determination sensor components that 
can be used – further complicating the control problem. 

Amongst the most common types of magnetic attitude 
controllers used onboard CubeSats are the B-dot detumbling and 
proportional-derivative (PD) control laws due to their 
computational simplicity. Although much literature has been 

published on the topic of B-dot detumbling and 3-axis PD 
attitude control for small magnetically-actuated satellites, there 
are relatively few studies that investigate the effect of different 
gains for B-dot and PD controllers. Lovera et al. [1,2,3] 
developed a PD-like control law for Earth-pointing 
magnetically-actuated satellites in circular orbits based on 
averaging theory to ensure global stability. Colagrossi et al. [4] 
also developed and validated in simulation a magnetic attitude 
control system for picosatellites based on PD control and a 
modified B-dot controller using global optimisation methods for 
tuning. Juchnikowski et al. [5] derived optimal gains for a B-dot 
controller as a function of the local magnetic field and its rotation 
rate and assessed its effectiveness for a spherically-symmetric 
body. Ovchinnikov et al. [6] studied a PD-like controller and 
tuned the gains according to several stability assumptions using 
a simplified direct dipole model of Earth’s magnetic field. 
Numerical gain results were then presented using stability 
isolines forming an optimal gain parabola. An efficient 
automated genetic algorithm was proposed and simulated by 
Sorgenfrei et al. [7] using a simplified magnetic field model to 
tune the gains for a PD-like controller that incorporated actuator 
saturation limits. Similarly, Walker et al. [8] applied a genetic 
algorithm using the International Geomagnetic Reference Field 
(IGRF) model to optimise the gains of an LQR controller. They 
found their approach to be a more computationally efficient 
tuning solution than manual tuning. Reyhanoglu et al. [9] 
developed and simulated a constant-gain PD controller for three-
axis control of a picosatellite based on the theory of slowly-
varying systems with gain constraints defined based on a 
reduced-order system to ensure uniform exponential stability. 

This paper presents the results of an iterative simulation 
approach for B-dot and PD controller tuning to investigate the 
effect of different gains on magnetic attitude control 
performance for both 1U and 2U CubeSat geometries. An 
important contribution of this paper is to use the tuned gains to 
explore the effect of Sun sensor noise, magnetometer sensor 
noise, gyroscope (angular rate) sensor noise and CubeSat eclipse 
conditions on PD control settling times. The paper is structured 
as follows: Section II describes the CubeSat simulation 
parameters, Section III explains the control algorithms, Section 
IV illustrates the effects of different gains on control 
performance, Section V presents the effects of sensor noise on 
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PD control performance, Section VI investigates orbit eclipse 
conditions, and Section VII draws conclusions. 

II. CUBESAT SIMULATION PARAMETERS 

Referring to Fig. 1, CubeSat attitude can be described 
relative to three coordinate frames: Earth-centered inertial 
(ECI), nadir-pointing (NP), and body-fixed (BF). The ECI 
coordinate frame is defined such that its X axis is fixed in space 
along the vernal equinox direction and its Z axis is coincident 
with Earth’s polar axis. The NP coordinate frame is fixed at the 
orbiting CubeSat’s centre of mass, with its Z axis pointing 
towards Earth’s centre and its X axis along the satellite’s 
direction of travel – both of which lie within the orbital plane. 
The BF coordinate frame shares the same origin as NP and its 
three axes are fixed along the satellite’s respective axes of 
inertia. It is assumed that the NP frame is the desired orientation 
of the CubeSat; therefore, the axes of the BF and NP frames are 
aligned when the satellite’s attitude error is zero. 

 
Figure 1. Coordinate frame definitions 

     The satellite is assumed to travel in a near-circular 
International Space Station (ISS) orbit with initial orbital 
parameter values reported in Table I. Values were obtained 
from the ISS two-line element dataset on the indicated date.  

TABLE I.  INITIAL SIMULATION PARAMETERS 

Parameter Value 

Eccentricity eini = 0.0001068 

Inclination 𝑖𝑖𝑛𝑖 = 51.6413 
RAAN Ω𝑖𝑛𝑖 = 257.8729 
Argument of perigee 𝜔𝑖𝑛𝑖 = 231.7821 
Orbital period 𝑇 = 5561.9680 s 

Epoch radius 𝑟𝑖𝑛𝑖 = [
4.2219
2.9113
4.4427

] × 106 m 

True anomaly at epoch 𝜃𝑖𝑛𝑖 = 251.5996 
Time at epoch 𝑡𝑖𝑛𝑖 = 13: 09: 36 UTC 

Date at epoch April 26th, 2019 

 
A MATLAB/Simulink simulation tool was developed using 

the Simscape multibody dynamics toolbox in combination with 
the IGRF-12 geomagnetic field model to assess B-dot 
detumbling and 3-axis PD magnetic attitude control algorithms. 
It was assumed that magnetic control torques and attitude 
determination occurred simultaneously and continuously 
(rather than cycling between measurement and actuation). 

External orbital perturbations were excluded from the 
simulator. Initial simulations assumed ideal conditions where 
the attitude and rate errors were free of measurement noise, after 
which nonidealities were incorporated into the simulator. 

III. CONTROLLER DEFINITION 

The B-dot control law shown in (1) is typically used during 
the initial detumbling phase of a satellite’s orbit. The B-dot 
algorithm consists of a scalar gain 𝐾  acting on the rate of 

change of the local magnetic field vector 𝐁̇ in the BF frame in 
units of T [10]. This term is defined as the cross-product of the 
local geomagnetic field vector 𝑩  with the satellite’s angular 
rate vector 𝝎 . The resulting control law defines the desired 
magnetic dipole moment 𝒎 in units of Am2 as shown in (1): 

𝒎 = −𝐾(𝑩×𝝎) = −𝐾𝐁̇ (1) 

where 𝑩× corresponds to the skew-symmetric matrix of 𝑩. The 
magnetic dipole moment then generates a control torque 𝑻𝒄 
according to (2) [10]: 

 

𝑻𝒄 = 𝒎×𝑩 (2) 

     Three-axis magnetic attitude control for the satellite can be 
accomplished through a PD controller defined as [10]: 

 

𝑻𝒄𝑑𝑒𝑠𝑖𝑟𝑒𝑑
= −𝐾𝑃𝒒̂ − 𝐾𝐷𝝎̂ (3) 

where 𝑻𝒄𝑑𝑒𝑠𝑖𝑟𝑒𝑑
 is the desired control torque, the attitude 

quaternion error 𝒒̂ and body angular rate error 𝝎̂ are defined as 
the relative attitude quaternion and body angular rates between 
the BF and NP frames, and 𝐾𝑃  and 𝐾𝐷  are constant scalar 
proportional and derivative control gains, respectively. The 
attainable control torque 𝑻𝒄𝑎𝑐𝑡𝑢𝑎𝑙

 can then be calculated from 

[10]: 

 

𝑻𝒄𝑎𝑐𝑡𝑢𝑎𝑙
= ((𝑩×+

)𝑻𝒄𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

×

𝑩 (4) 

where 𝑩×+
represents the pseudoinverse of the skew symmetric 

matrix of 𝑩.  For the simulation parameters shown in Table 1, 
the NP frame rotates relative to the ECI frame at rate of 2π/T = 

1.1297  10-3 rad/s (which corresponds to the desired BF rate 
when the satellite is pointing correctly using the 3-axis PD 
controller). The desired attitude quaternion error to achieve the 
desired BF and NP frame alignment using PD control is 𝒒̂ = [1 
0 0 0] T

. 

IV. CONTROLLER GAIN SELECTION 

A series of simulations were carried out to determine a valid 
range of control gains for both B-dot detumbling and 3-axis PD 
attitude control. The simulations assumed simplified 1U and 2U 
CubeSat geometries and mass distributions as summarized in 
Table II to study both controllers. These simulations assumed 
that attitude and angular rate errors were measured 
continuously, and control torques were generated and applied 
continuously. 

 



   

A. B-Dot Control 

For the scope of these simulation results, the B-dot 
controller’s performance was assessed in terms of its settling 
time to reach and stay within 10-6 rad/s from an initial rotation 
rate of 10-1 rad/s about all three body axes. Settling times 
beyond 50 orbits (approximately 3 days) were not included in 
the analysis. 

TABLE II.  CUBESAT PARAMETERS 

Parameter Value 

1U dimensions 10 × 10 × 10 cm 

1U mass 1 kg 

1U inertia matrix [
0.0016̅ 0 0

0 0.0016̅ 0
0 0 0.0016̅

] kgm2 

2U dimensions 10 × 20 × 10 cm 

2U mass 2 kg 

2U inertia matrix [
0.0083̅ 0 0

0 0.0083̅ 0
0 0  0.0033̅

] kgm2 

 
Fig. 2 plots the resulting settling times for a 1U CubeSat (in 

terms of seconds on the LHS and number of orbits on the RHS) 
as a function of B-dot gains K between 102 and 105 A2s3m2/rad-
kg under ideal (no sensor noise) conditions. To determine the 
lowest achievable settling time, additional gains between 6,000 
and 10,000 A2s3m2/rad-kg were tested as shown in the inset plot 
of Fig. 2. For the simulation conditions used in this research, a 
gain of K = 7,900 A2s3m2/rad-kg yielded the lowest 1U CubeSat 
settling time of 4,224 seconds (corresponding to less than one 
orbital period). 

 
Figure 2. B-dot settling times for a 1U CubeSat with different gains K 

 
Simulations were then carried out for a 2U CubeSat for a 

similar range of B-dot gains K of 102 and 105 A2s3m2/rad-kg. 
Fig. 3 compares the resulting B-dot settling times for both the 
1U and 2U geometries. 

     For the simulation conditions used, a gain of K = 40,000 
A2s3m2/rad-kg yielded the lowest 2U CubeSat settling time of 
7,258 seconds (corresponding to 18 minutes more than one 
orbital period). It is observed that, while the lowest settling 
times for the 1U and 2U CubeSats are similar, the best gain in 
Fig. 3 (K = 40,000 A2s3m2/rad-kg) for the 2U CubeSat is ~5 

times higher than the best gain in Fig. 2 (K = 7,900 A2s3m2/rad-
kg) for the 1U CubeSat. 

Fig. 3 also suggests that there is a relatively wide range of 

B-dot gain values (between 2  103 and 1  105 A2s3m2/rad-kg) 
that enable both 1U and 2U to settle in ~10 orbits or less. This 
result is encouraging because, should the satellite geometry or 
mass distribution characteristics change in orbit, there is 
potential for the B-dot controller as launched to retain its base 
functionality to detumble the satellite within a reasonable 
timeframe. 

 
Figure 3. B-Dot settling time comparison for 1U and 2U geometries with 

different gains K 

B. PD Control 

To investigate the effect of different gains on PD control, 
the simulated CubeSat was given an initial rotation rate of 10−3 
rad/s about all three body axes. The amount of time for the 
satellite to settle to within 5% of the desired orbital NP rate of 

1.1297  10-3 rad/s was then determined. The corresponding 
orientation of the satellite at this settling time was also checked 
to ensure that the satellite’s attitude matched the desired NP 
frame: if the attitude error was less than 10 degrees, then the 
satellite was considered to have “settled”. 

When attempting to select suitable proportional and 
derivative gains for the PD control of a 1U CubeSat, it was 
observed that many gain combinations did not enable the 
CubeSat to settle within 500 orbits and some gain combinations 
could not attenuate the errors. For the simulation conditions 

used in this research, PD controller gains of KP = 1  10-9 Nm 

and KD = 1  10-7 Nms/rad were found to successfully enable 
the 1U CubeSat to track the desired NP frame within ~500 
orbits (about 32 days.)  

     Using KP = 1  10-9 Nm as a starting point, equally spaced 

values of KD ranging between 10-7 ≤ KD ≤ 10-3 Nms/rad (i.e. 1  

10-7, 2  10-7, 3  10-7, …) were simulated. Fig. 4 plots the 
corresponding settling times as a function of KD for those gain 
values that successfully enabled the 1U CubeSat to “settle”. 

Although this figure shows that when KD = 1  10-5 Nms/rad 
there is a local minimum, it was observed that a gain of KD = 2 

 10-5 Nms/rad exhibited a less oscillatory response at steady-
state which would be preferable for an Earth-pointing satellite. 

Therefore, KD = 2  10-5 Nms/rad was selected as the derivative 
gain for the next iterative stage of tuning.       

      

 

 



   

 
Figure 4. PD settling time for 1U CubeSat with constant 𝐾𝑃 = 1 × 10−9 Nm 

and different values of 𝐾𝐷  

     Holding KD = 2  10-5 Nms/rad fixed, the value of KP was 

then varied for the 1U CubeSat from 1  10-9 to 1  10-8 Nm. 
For comparison, these gains were also used to simulate a 2U 
CubeSat and the resulting settling times as a function of KP are 
superimposed for both geometries in Fig. 5. Note that the two 

values absent for the 1U CubeSat (KP = 9  10-9 and KP = 1  
10-8 Nm) did not successfully settle within 500 orbits and are, 
therefore, excluded from the plot to maintain a reasonable scale.  
    

 
Figure 5. PD gain comparison for 1U and 2U CubeSat geometries with 

constant 𝐾𝐷 = 2 × 10−5 Nms/rad and different values of 𝐾𝑃  

This iterative gain tuning process can be repeated as desired. 
For example, if one were to use Fig. 5 and continue to tune the 
gains for a 2U CubeSat, then one would select the lowest 

settling time (corresponding to KP = 7  10-9 Nm) and, holding 
this gain fixed, vary the KD values. As an example, Fig. 6 plots 
the corresponding settling times for the 2U CubeSat as a 
function of KD showing that the lowest settling time of 13,707 

seconds (2.5 orbits) corresponds to KD = 9  10-6 Nms/rad. 

Tuning was stopped at this stage for the scope of this paper, 
although the iterative process may be continued if desired. For 
the simulation conditions used, it can be concluded that the 
selection of PD attitude controller gains is far more sensitive to 
both changes in satellite geometry and combinations of control 
gains when compared to a B-dot detumbling controller. 
Improper PD control gain selection could result in significant 
settling times or an ineffective attitude control system. 

 
Figure 6. PD settling time for 2U CubeSat with constant 𝐾𝑃 = 7 × 10−9 Nm 

and different values of KD  

V. EFFECT OF SENSOR NOISE 

Previous analyses assessed the performance of the PD 
controller under the assumption of perfect attitude and angular 
rate knowledge. In this section, CubeSat attitude relative to ECI 
(used to determine attitude quaternion error 𝒒̂  for the 
proportional part of the PD controller in (3)) is instead estimated 
using the QUEST algorithm proposed by Shuster [11]. QUEST 
uses the eigenvalue decomposition principle of the q-Method to 
estimate the attitude quaternion directly from measured and 
reference Sun and magnetic field vectors. Eighteen Sun sensors 
– three per satellite face – were added to the 2U CubeSat with 

each sensor having a field of view of 120. The Sun sensor triad 
on a given face was oriented such that their normals had azimuth 

and elevation angles of (0,60), (120,60) and (240,60). 

QUEST uses reference ECI magnetic field and Sun vectors 
𝑾1  and 𝑽1 , respectively, in combination with measured 
magnetic field and Sun vectors 𝑾2  and 𝑽2  to determine the 
attitude profile matrix 𝑩 as follows [11]: 

𝑩 = ∑ 𝑎𝑖𝑾𝑖𝑽𝑖

𝑛

𝑖=1

 (5) 

where both sets of vectors are expressed in the BF frame, n = 2, 
and weighting parameters 𝑎𝑖  are assumed equal to 1. The 
eigenvector corresponding to the maximum eigenvalue of the 
following matrix 𝑲 provides the estimated attitude quaternion 
[11]: 

𝑲 = [
𝑺 − 𝜎𝐼3 𝒁

𝒁𝑇 𝜎
] 

(6) 

where: 

𝜎 = 𝑡𝑟(𝐵) 𝑺 = 𝑩 + 𝑩𝑇 𝒁 = ∑ 𝑎𝑖(𝑾𝑖 × 𝑽𝑖)

𝑛

𝑖=1

 (7) 

Uniform random noise data, scaled by a percentage of the 
maximum values measured by the Sun, magnetometer and rate 
gyroscope sensors, were then added to the individual sensor 
readings within the simulator. The noisy Sun and magnetometer 
signals created errors in the resulting Sun and magnetic field 
vectors used by QUEST to calculate the CubeSat’s attitude. 
These attitude errors, in turn, influenced the attitude quaternion 
error term 𝒒̂ used in the proportional part of the PD controller 

 

 

 



   

in (3). The noisy gyroscope signals influenced the resulting 
angular rate error term 𝝎̂ used in the derivative part of the PD 
controller in (3). It was assumed that the sensor measurement 
frequency was ~1 Hz with a zero-order-hold applied to the 
corresponding PD control torques. 

Simulations of 10 orbits using the best PD gains found for 
the 2U CubeSat in the previous section were carried out with 
the addition of 5%, 10% and 20% noise. Fig. 7 plots the 
resulting attitude and angular rate errors as a function of time 
for these different levels of noise. Referring to Fig. 7, attitude 
error 𝜃 corresponds to the angle between the desired and actual 
CubeSat attitude quaternions which can be calculated as 
follows: 

𝜃 = 2 cos−1(|𝒒̂0|) (8) 
 
where 𝒒̂0 is the scalar part of the resulting error quaternion: 

𝒒̂ = 𝒒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⨂𝒒𝑑𝑒𝑠𝑖𝑟𝑒𝑑
∗  (9) 

 
where 𝒒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  represents the calculated attitude quaternion, 
𝒒𝑑𝑒𝑠𝑖𝑟𝑒𝑑

∗  represents the conjugate of the desired attitude 
quaternion, and ⨂  represents the quaternion multiplication 
operator. 

 

 
Figure 7. Comparison of attitude and rate error over 10 orbits for different 

levels of Sun sensor, magnetometer and gyroscope measurement noise 

 
     It can be seen in Fig. 7 that both the attitude and rate errors 
decrease as desired and, at steady state, the noisier data exhibit 
small oscillations about zero. Fig. 8 shows a magnified view of 
the attitude error steady-state region in Fig. 7 to better illustrate 
settling times and steady-state attitude error behaviour. 

     Referring to the bottom portion of Fig. 8, the steady-state 
angular rate of the satellite settles to within about 2% of the 

desired angular rate of the CubeSat between 1.6  104 s to 2.2  
104 s (~2.9 to ~4.0 orbits) depending on the noise level – with 
the noisier data progressively taking longer. Referring to the top 

portion of Fig. 8, the attitude error reaches and stays below 10 

between 1.4  104 s to 1.7  104 s (~2.5 to ~3.1 orbits) depending 
on the noise level – again with the noisier data progressively 
taking longer. 

 
Figure 8. Magnified view of the steady-state region in Fig. 7 

 

     The low-frequency oscillations observed in Fig. 8 for higher 
levels of noise have a frequency of about 2 orbits. It can be seen 
in this figure that the larger the noise, the larger the resulting 
amplitudes of the attitude error. At steady state, the no-noise 

case yields attitude errors between ~0.01 to ~0.02, the 5% 

noise case oscillated between ~0.03 to ~0.34, the 10% noise 

case showed attitude errors between ~0.20 to ~0.93, and the 

20% noise case varied between ~1.4 to ~5.1. 

VI. EFFECT OF ECLIPSE 

A CubeSat’s attitude determination algorithm that is 
dependent on Sun sensors implies that no orientation data 
would be available during the time that the satellite is in eclipse 
due to Earth blocking Sun. Therefore, attitude quaternion errors 
𝒒̂  would be unavailable for the PD controller to generate 
suitable torques. Simulations were carried out to explore the 
effect on PD control performance when the satellite experiences 
eclipse.  



   

Using the final PD gains selected in Section IV, Fig. 9 plots 
the resulting attitude and angular rate errors as a function of 
time for the different levels of noise used in Figs. 7 and 8 – now 
with the addition of eclipse. Also superimposed on the lower 
plot of Fig. 9 is the eclipse cycle which corresponds to the RHS 
axes where “0” indicates when the CubeSat is in eclipse and “1” 
indicates when the satellite can see Sun – the former accounting 
for 38% of the total orbital period. It can be seen in Fig. 9 that 
the angular rates plateau during eclipse when control torques 
are not applied. Control torques are re-applied when the 
CubeSat’s attitude error can again be estimated using the Sun 
sensors. Despite these plateaus, the simulation results shown in 
Fig. 9 are very similar to those shown in Figs. 7 and 8 
suggesting that, for the simulation conditions used, the effect of 
eclipse is relatively small. 
 

 
Figure 9. Comparison of attitude and rate error over 10 orbits for different 

levels of sensor noise with eclipse 

VII. CONCLUSIONS 

This paper carried out computer simulations to examine the 
effects of different controller gains on a magnetically-actuated 
attitude control system when using B-dot detumbling and 3-axis 
PD attitude controllers. For the simulation conditions used in 
this research, it was observed that the best B-dot controller gain 

for a 2U CubeSat was ~5 times higher than that for a 1U 
CubeSat. There is also a relatively wide range of B-dot control 

gains between 2  103 and 1  105 A2s3m2/rad-kg that enable 
both 1U and 2U CubeSats to settle in less than ~10 orbits – 
suggesting a certain degree of robustness. The PD controller, on 
the other hand, was found to be much more sensitive to the 
selection of controller gains as well as to changes in the CubeSat 
geometry – with several gain combinations resulting in 
ineffective attitude control. When noise was added to the 
sensors, oscillations were observed in the attitude and angular 
rate errors at steady state for the higher noise cases such that, 
the larger the noise, the larger the resulting amplitudes. 
Incorporating the effect of eclipse into the simulator (where the 
satellite cannot determine its attitude if attitude determination 
relies on Sun sensors) had a relatively small influence on the 
resulting control performance. Reducing noise onboard the 
satellite is of paramount importance if a consistently fine 
pointing accuracy is a desirable mission characteristic.   
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