Proceedings of the Canadian Society for Mechanical Engineering International Congress 2020

CSME Congress 2020
June 21-24, 2020, Charlottetown, PE, Canada

A Finite Element Study of the Relationship Between
Bone Fibril Elasticity and Degree of Mineralization

Franklin Ogidi
Biosystems Engineering
University of Manitoba

Winnipeg, Canada
ogidif @myumanitoba.ca

Abstract—This paper presents a two-dimensional (2D) finite
element model of the mineralized collagen fibril. The model
was developed to investigate the relationship between fibril
elasticity and degree of mineralization, the latter is measured by
volume fraction of minerals. Mineralized fibrils were modeled as
two-phase composite materials with mineral platelet inclusions
embedded in the collagen matrix. Fibril elasticity moduli were
determined by finite element analyses. It was found that the
fibril elastic modulus increases slowly with the volume fraction
of minerals up to a volume fraction of 39.2%. Beyond this
point, the elastic modulus increases rapidly with volume fraction.
This rapid increase is probably attributed to the sharp gain
in von Mises strain within the fibril resulting from a decrease
in axial spacing between hydroxyapatite crystals. These results
provide insights into the mechanical properties of bone at the
nano-mesoscale. The results from the finite element modelling
are compared with predictions from theoretical models such as
the Mori-Tanaka Scheme, the Self-consistent scheme, and the
Voigt-Reuss bounds. Whereas there are considerable differences
between theoretical predictions and finite element results, similar
trends can still be observed, indicating that finite element
modelling is a promising approach to understand the effects of
bone chemical composition on its mechanical behaviour.

Index Terms—bone; mineralized collagen fibril; hydroxyap-
atite; finite element method; elasticity; volume fraction

I. INTRODUCTION

Bone is a rigid material that serves, among a variety of func-
tions, as a light-weight frame to support other tissues in the
body. The mechanical functions of bone are achieved through
its complex hierarchical structure (Fig. 1), with mechanical
properties depending on its architecture at all structural levels
[1, 2]. The focus of this paper is the mineralized collagen fibril
(MCF), which is the main component of bone at the lowest
structural level [3].

The MCF can be considered as a composite material con-
sisting of organic matrix reinforced by inorganic minerals
[4]. Cross-linked type I collagen (or tropocollagen) molecules
make up about 90% weight of the proteins in the organic
matrix while non-collagenous proteins comprise the other 10%
[5]. The tropocollagen molecules are about 300 nm long and
are staggered with a 67 nm period in the axial direction [1].
The staggering produces overlap and gap regions, which have
been estimated to take up about 40% and 60% of the axial
period, respectively [3]. The inorganic phase, which is mainly
composed of hydroxyapatite (HA) crystals start to nucleate in
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the gap region [6] and grow predominantly in the longitudinal
direction of the fibril [1]. Although reported experimental
results vary in terms of the geometric properties of HA
crystals, most researchers agree that the minerals are platelet-
like structures that are 15-200 nm long, 10-80 nm wide and
2-7 nm thick [4, 7]. While the HA crystals are stiff and brittle,
contributing to the strength and stiffness of bone, the collagen
matrix is tough and ductile, which provides bone with a high
capacity for energy dissipation during mechanical deformation
[9]. Together, these major constituents of the MCF combine
to achieve a compromise such that the composite is both stiff
and tough [7].

The extent to which the overall elasticity of the collagen
fibril is affected by the combination of the mechanical prop-
erties of its individual constituents is largely determined by
the volume fraction of minerals in the fibril [8]. Indeed, a
parametric study of the MCF conducted by [2] has shown
that the volume fraction of minerals has the most influential
effect on the elastic properties of the MCF. Furthermore, the
volume fraction of minerals can have far-reaching effects at
the organ level as bone diseases such as osteomalacia and
osteogenesis imperfecta arise because of abnormal degree
of mineralization within the bone [8, 10]. Therefore, it is
important to characterize the relationship between the volume
fraction of minerals and the elastic properties of collagen
fibrils.
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Fig. 1. The hierarchical structure of bone, from the macrostructure on the far
left to the sub-nanostructure on the far right [1]



To estimate the elastic properties of the MCF, most previous
studies have employed analytical, numerical, or computational
methods. Analytical methods involve the use of mathemat-
ical formulations, based on either the strength of materi-
als or micromechanics theories, and model the properties
of bone at the level of individual constituents. The Mori-
Tanaka (MT) scheme, for instance, was developed [11] for
calculating the average internal stress in a matrix containing
homogenous inclusions. The MT theory was later reformulated
[12] for two-phase composite materials containing aligned or
randomly oriented ellipsoidal inclusions. In addition to the
matrix-inclusion interactions, the MT scheme also accounts
for inclusion-inclusion interactions [4]. Similarly, the Self-
Consistent scheme (SCS), which was originally developed in
[13] and [14], predicts the elastic properties of crystalline
aggregates with randomly oriented grains and no matrix.
Like the MT scheme, the SCS was reformulated in [15] and
[16] for predicting the elastic moduli of two-phase composite
materials, where the phases are required to be a homogenous
matrix and ellipsoidal or spherical inclusions. Although these
models are formulated in terms of the volume fraction of
minerals, they are typically based on simplified assumptions
and cannot accurately account for the geometrical arrangement
of the collagen and HA crystals relative to each other [4].

In recent years, numerical and computational methods like
the Finite Element Method (FEM) have found application
in the analysis of the MCF [2, 9]. The FEM can more
accurately account for the geometric arrangement of individual
constituents of the MCF [4]. For instance, Yuan et al [2]
utilized the FEM to show the effects of HA crystal thickness,
length and spacing on the apparent modulus of the collagen
and mineral phases. Recently, techniques like computational
electrodynamics [17] and molecular dynamics simulations [18]
have been applied in the study of the MCF. However, these
approaches are beyond the scope of this paper.

In light of the preceding discussion, this paper will investi-
gate the relationship between the volume fraction of minerals
and the elastic modulus of the MCF by using the FEM to
analyze a two-dimensional (2D) model of the collagen fibril.
A differentiating element of this study is the modelling of
the HA crystals as inclusions in the collagen matrix (like
the MT scheme and the SCS but accounting for the geomet-
ric arrangement of the individual constituents), as opposed
to longitudinally growing platelets [19]. By comparing the
FEM results to the results of micromechanics-based analytical
models, this study aims to deepen the understanding of the
behaviour of bone at the nano-mesoscale.

II. METHODOLOGY
A. Assumptions and Fibril Finite Element Model

Fig. 2 shows the two-dimensional (2D) model of the min-
eralized collagen fibril (MCF) that was created for this study.
The 2D structure has been shown to provide a sufficient under-
standing of the elastic properties of bone at the nanoscale, even
with its simplicity compared to a three-dimensional model [2].

The model considers the MCF as a two-phase composite
consisting of a homogenous collagen matrix and HA crystals.
This assumption is made for simplicity. It is also a reasonable
assumption to make, as the collagen matrix makes up about
90% of the bone organic content and the mineral crystals
make up around 90% of the bone inorganic content [10]. As
summarized in Table I, the length of the overall structure of the
model is 300 nm, representing the length of a tropocollagen
molecule (Fig. 2), whereas the width of the model was set
to 100 nm. The collagen matrix is modelled as a homogenous
matrix and the effects cross-linking are not considered. On the
other hand, the HA crystals are modelled as fixed-sized platelet
inclusions in the collagen matrix, as opposed to lengthwise-
growing minerals as in [19]. The dimensions of the minerals
were fixed at 40 nm x 3 nm, which falls within the range of
reported values in the literature [4, 7]. Although recent studies
have shown evidence of HA crystals both inside and outside of
the collagen fibril [17, 21, 26], extrafibrillar mineral crystals
are not considered in this study.

In the 2D model, isotropic properties are assumed for the
collagen matrix and the HA crystals. As outlined in Table
I, a Young’s modulus of 114 GPa and a Poisson’s ratio of
0.23 were used for the HA crystals [21]. These values were
experimentally derived for a single crystal [22]. Also following
[21], the Young’s modulus and Poisson’s ratio of the collagen
matrix were set to 2.4 GPa and 0.28, respectively.

In terms of geometrical arrangement, a staggered pattern of
arrangement of the HA crystals has been shown to be mechan-
ically superior compared to a strictly parallel arrangement [3].
As such, the staggered arrangement is employed in the model
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Fig. 2. A representative model of the mineralized collagen fibril consisting
of hydroxyapatite platelet inclusions in a collagen matrix. a) shows the model
at a mineral volume fraction of 39.2% while b) shows the mineralized model
at 73.3% volume fraction of minerals.



TABLE I
GEOMETRIC AND MATERIAL PROPERTIES OF CONSTITUENTS OF
MINERALIZED COLLAGEN FIBRIL [21], WHERE E IS THE YOUNG’S
MODULUS AND v IS THE POISSON’S RATIO.

Material Length (nm) | Width (nm) E v
Collagen Matrix 300 100 24 | 0.28
HA Crystals 40 3 114 | 0.23

presented in this paper (Fig. 2). However, for this study, the
minerals are not staggered with the typical 67 nm period. This
is done to expand the range of volume fractions that the model
can simulate beyond the limits posed by the natural arrange-
ment of the minerals in the MCF. A combination of the fixed-
size platelets and the staggered arrangement pattern results
in a 73.3% volume fraction of minerals at full mineralization
(Fig. 2b). Jager et al [3] proposed a 56% limit to the volume
fraction of minerals for a model of the collagen fibril with a
staggered arrangement of minerals incorporating the periodic
boundary condition. Since the MCF is a “universal” structure
found in tendons, enamel, and dentin, simulating a wider range
of volume fractions may give insights into the behaviour of
those materials.

B. Finite Element Implementation

The model in Fig. 2 was constructed and analyzed in
ANSYS Mechanical APDL 18.1. Both the collagen matrix
and the mineral crystals were modelled as plane stress/strain
elements with up to 8 nodes and 2 degrees of freedom at
each node. To simulate the variation of volume fractions
of minerals in the model, the fix-sized HA crystals were
systematically added as inclusions to the collagen matrix using
the overlap Boolean operation. This operation sums multiple
entities to create new entities that include all the parts of the
original but maintains the boundaries at the overlap zones
[20]. Compared to lengthwise-growing platelets, modelling
the mineral crystals as inclusions eliminates the length of the
minerals as a potential confounding factor in the results.

To simulate tensile testing, the model was fixed at the
bottom edge while displacement boundary conditions were
applied to the top edge. The displacement boundary conditions
were applied in 10 load steps for displacements ranging from
0.1 nm to 1 nm, with a 0.1 nm increment at each step. For
each volume fraction, the Young’s modulus of the MCF is
determined from the slope of the corresponding stress-strain
curve. Prior to the mechanical testing, a mesh convergence
study was conducted to minimize the effects of mesh size on
the accuracy of the results. The reaction force at the bottom
surface was the variable of interest in the convergence study.

The results of the FEM simulations were compared with
the Mori-Tanaka (MT) scheme and the Self-consistent scheme
(SCS). These analytical methods were chosen because they
are closely related to the inclusion approach used in the finite
element analysis. The calculations for the MT scheme and the
SCS were performed using MMTensor, an open-source col-
lection of MATLAB scripts for performing micromechanical

computations [23]. The Voigt and Reuss models were also
included in the comparison to represent the upper and lower
bounds of the elastic modulus of the composite material. The
Voigt-Reuss bounds are based on strength of materials and are
formulated for analyzing multi-phase composites, assuming
uniform strain and uniform stress in the material [4].

III. RESULTS AND DISCUSSION

In this section, the link between collagen fibril elasticity
and the volume fraction of minerals, resulting from the finite
element analysis, is presented. This relationship is explained
considering the methodology used to obtain the results and
compared to previous research. Possible limitations of the
study and recommendations for future research are also out-
lined.

A. Convergence Study

To minimize the effects of mesh size on the accuracy of
the results, the element edge size of the fully mineralized
model was refined until the solution to the reaction force
converged. As shown in Table II, convergence is reached at
the point where a decrease in the element edge size results in
a negligible change in the reaction force. A smaller element
edge size means that the model is being approximated by
more elements and nodes, increasing the accuracy of the
solution. However, the higher the number of elements used to
approximate the model, the more time it takes to discretize
the model and find a solution. Therefore, to maintain the
balance between computational time and the accuracy of the
solution, an element edge size of 0.5 was selected for the FEM
simulations.

B. Finite Element Modelling Results

The 2D model of the collagen fibril was analyzed under
tensile loading in the longitudinal direction, while the volume
fraction of minerals varied from 0% to 73.3%. Fig. 3 shows the
observed relationship between the fibril elasticity and the vol-
ume fraction of minerals resulting from the FEM simulations
compared with other analytical solutions. The elastic modulus
of the MCF increases monotonically as the volume fraction
of mineral increases. The results show a gradual increase in

TABLE I
RESULTS OF THE MESH CONVERGENCE STUDY WITH THE CHOSEN
ELEMENT EDGE LENGTH HIGHLIGHTED IN BOLD.

Element Edge | Number of | Number of | Reaction Force
Length Elements Nodes (N)
5 3579 10554 1.2750E-09
3 5627 17136 1.2575E-09
2 11704 35557 1.2508E-09
1 30413 91912 1.2464E-09
0.9 42684 128967 1.2440E-09
0.8 49160 148505 1.2443E-09
0.7 69508 209715 1.2443E-09
0.6 89586 270107 1.2424E-09
0.5 122225 368256 1.2412E-09
0.4 206175 620564 1.2405E-09
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Fig. 3. Comparison of the relationship between mineralized collagen fibril elastic modulus and volume fraction of minerals predicted by the finite element
method simulations and other analytical models. For all models shown, the elastic modulus of the collagen matrix is 2.4 GPa, while the elastic modulus of

the hydroxyapatite crystals is 114 GPa

fibril elastic modulus between 0% and 39.2% volume fraction
of minerals, followed by a sharp gain in elasticity. In fact, the
volume fraction of 39.2% is important because, beyond that
point, the axial distance between additional platelet inclusions
and existing HA crystals decreases from 42 nm to 1 nm.

A closer look at the strain distribution in the model reveals
why the fibril elastic modulus increased so rapidly as the
axial spacing between the HA crystal inclusions shrunk. For
instance, the von Mises strain distribution in the model at a
volume fraction of 39.2% shows that the large axial spacing
between the minerals allows the strain to be dissipated through
the collagen matrix, which reduces the stress on HA crystals
(Fig. 4). After the inclusion of four HA crystals, increasing
the volume fraction of minerals to 40.3%, strain concentration
regions can be observed in the 1 nm spacing near the newly
added mineral crystals (Fig. 5). These strain concentration
regions increase the magnitude of the strain transferred be-
tween the HA crystals. Since the minerals are stiffer than the
collagen matrix, the large strain transfer increases the stress in
the mineral phase. This, in turn, increases the elastic modulus
of the composite MCF.

The observations from the strain and stress distribution in
the finite element model suggest that the decrease in the axial
spacing between the mineral crystals has a significant effect
on the fibril elastic modulus. This is also applicable in the

model of the MCF with longitudinally growing minerals — as
the HA crystals grow, the axial spacing between the mineral
phase decreases, leading to an increase in both the volume
fraction of minerals and the fibril elastic modulus. However,
due to the periodic boundary condition in collagen fibril, there
may be a limit to how close minerals can get in the longitudinal
direction. Nevertheless, the FEM simulation results provide a
deeper understanding of the possibly abnormal case where HA
crystals grow beyond the gap regions.

C. Comparisons

The comparison between theoretical predictions and FEM
simulations is illustrated in Fig. 3. The Voigt and Reuss models
serve as a sanity check, as they represent the theoretical
upper and lower bounds for the elastic modulus of composite
materials, respectively. The FEM results fall well within these
bounds, suggesting that the results are reasonable, at least from
a strength of materials perspective.

The Mori-Tanaka (MT) scheme and the Self-Consistent
scheme (SCS) both model matrix-inclusion interactions, like
the approach used in this study. Whereas the predictions from
both the MT scheme and the SCS diverge significantly from
those of the finite element analysis, especially at larger volume
fractions of minerals, a more similar trend can be observed
between the results of the SCS and the FEM simulations. The
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Fig. 4. Von Mises elastic strain distribution in the model at a volume fraction
of 39.2% and a tensile deformation of 1 nm.

differences between the results of the FEM and the inclusion-
based analytical models may be attributed to the differences
in the shape of the inclusions — while the HA crystals are
modelled as rectangular platelet inclusions in the finite element
model, they are considered as ellipsoidal/spherical inclusions
in the MT scheme and the SCS. These differences are further
accentuated by the fact that the analytical models cannot
accurately account for the geometrical arrangement of the
constituents with respect to each other [4]. Nonetheless, the
similarities in the trends of the predicted results show the
promise of using the FEM approach.

D. Limitations

To keep the model simple, constituents of the MCF such
as non-collagenous proteins and water were excluded. Al-
though these excluded components are not found in substantial
amounts in the MCF compared to the constituents considered
in this study, their interactions with the predominant con-
stituents may play a role in modulating the overall elasticity of
the MCF. For instance, Nyman et al [24] reported a decrease
in bone strength at a water loss above 9%. The researchers
speculate that water loss in the collagen matrix affects the
toughness of bone, while water loss in the HA crystals affects
the strength of bone. Similarly, recent experimental evidence
has shown that the HA crystals have amorphous domains,
which reduce the average modulus [25]. Consequently, the
investigation of fluid-solid interaction and non-linear material
properties are likely to yield more realistic results even though
they may lead to more complex analyses.

The model presented in this paper also excludes extrafib-
rillar minerals, which, as recent evidence suggests, may be a
crucial element of the MCF. For instance, using the FEM,
Abueidda et al [9] found that a model of the MCF with
mineral crystals on the outside of the collagen phase produced
results that are closer to results from micropillar mechanical
tests, compared to a model where the minerals are inside the
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Fig. 5. Von Mises elastic strain distribution in the model at a volume fraction
of 40.3% and a tensile deformation of 1 nm.

collagen phase. Other recent studies show that it is more likely
that both intrafibrillar and extrafibrillar mineral crystals act
together to determine the mechanical properties of bone [17,
21, 26]. Future research should look further into the role of
extrafibrillar minerals in determining bone strength, perhaps
using an axisymmetric model instead of a plane stress model to
simplify the three-dimensional structure of the collagen fibril.

IV. CONCLUSIONS

This study used the FEM to characterize the relationship
between the elastic modulus of the mineralized collagen fibril
and the volume fraction of minerals. The FEM simulations
involved varying the volume fraction of minerals from 0%
to 73.3% in a 2D model of the mineralized collagen fibril
consisting of a collagen matrix and hydroxyapatite platelet
inclusions under tensile loading. The results show a monotonic
relationship between the fibril elastic modulus and the volume
fraction of minerals and provide insights into the effects of
the axial distance between the mineral crystals on the fibril
elasticity.
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