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Abstract— In this paper, the attitude control of a model 
CubeSat was simulated using the nonlinear control techniques 
of feedback linearization and sliding mode control. The 
dynamic model of the CubeSat was derived based on a reaction 
wheel actuation system, which was presented in two 
configurations. The performance of the controllers on the 
CubeSat were compared in a nominal mode of operation and a 
faulty mode of operation. The benefit to combining a controller 
with a specific reaction wheel configuration was also evaluated 
based on the root mean squared error of the CubeSat attitude 
and angular velocities. Results show that a sliding mode 
controller performs better than a feedback linearization 
controller with a pyramid configuration in a fault mode. 
However, using attitude error as the evaluation metric for any 
potential controller-configuration relationship is tenable and 
other evaluation parameters should be considered 
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I.  INTRODUCTION 

The attitude control system, which determines the ability to 
achieve and maintain a desired orientation, is a mission critical 
subsystem in any spacecraft. Reaction wheels are a popular type 
of attitude control actuator that offer a high degree of pointing 
accuracy and three degree of freedom control authority. As of 
late, increased pointing accuracy is desired of small satellites, 
such as CubeSats. Typical control architectures on these small 
spacecraft currently employ magnetorquers, which function in 
low earth orbit, at the cost of less accurate pointing. 
Implementation of  reaction wheels on CubeSats has been 
challenging due to size and weight constraints, as well as the 
presence of faults upon launch [1]. Therefore, investigation into 
reaction wheel performance on CubeSat attitude control is 
warranted. 
 

Satellites are often equipped with three reaction wheels for 
three axis control, with additional wheels added for redundancy. 
Various wheel configurations exist and are the focus of several 
studies, including [2], which studied reaction wheel 

configurations in three- and four- wheel schemes, in an attempt 
to optimize reaction wheel orientation for minimal power 
consumption. As moving mechanisms, reaction wheels are 
subject to actuator failure, including loss of efficiency, float, or 
lock-in-place faults [3]. Research by [4], in which multiple four- 
wheel configurations were subjected to float failures, seems to 
suggest that some configurations are more robust to failures 
than others. Thus, pairing certain reaction wheel orientations 
with selected control methods seems beneficial.  
 

This study will investigate the benefits of controller and 
reaction wheel configuration pairings by evaluating controller 
performance on a model CubeSat with two reaction wheel 
configurations. Two nonlinear control techniques will be 
employed: sliding mode control and feedback linearization 
control. Although proportional-derivative controllers are 
conventionally employed for attitude control, nonlinear control 
techniques are applied to maintain the nonlinearity of spacecraft 
dynamics [5]. Sliding mode control has been widely used for 
attitude control due to its robustness in the face of uncertainty 
[6] [7] [8] [9]. Feedback linearization has also found application 
in attitude control in the works of [10] [11] [12]. Controller 
performance will be evaluated based on attitude errors. The goal 
of the controller is attitude regulation to the identity quaternion 
in a no-fault scenario and with a float fault scenario applied on 
one reaction wheel. 

II. MATHEMATICAL MODEL OF SATELLITE SYSTEM 

A. Satellite Kinematics and Dynamics 

The attitude of a satellite can be represented by the 
quaternion, q=[q1 q2 q3 q4]T, which has vector part q1:3 and 
scalar part q4. This parameterization is used to avoid 
singularities that would be present using Euler angle notation. 
A rotation from the inertial frame to the body frame of a satellite 
can be described by a quaternion parameterized attitude matrix: 

 A q = q4
2– q1:3

2
I3+2q 1:3 q1:3

T –2q4 q1:3×  (1) 

   
Where a skew-symmetric matrix is described as: 



   

 y× =

0 –y3 y2

y3 0 –y1

–y2 y1 0
. (2) 

   
The kinematic and dynamic equations of a rigid body spacecraft 
with reaction wheels in the absence of external disturbances can 
be defined as: 

 𝐪=
1

2
Ω ωb q, (3) 

   
 ωb  =Ib

-1[Tc – ωb× Ibωb+hw ]. (4) 
   

Where ωb is the angular velocity of the satellite body in the 
body frame, Ib is the moment of inertia of the satellite body 
represented as a 3×3 matrix, hw is the reaction wheel angular 
momentum vector with respect to the body frame, the control 
torque input is Tc=–hw, and the operation Ω(y) equals 

 Ω y =
- y× y
-yT 0

. (5) 

Equations 3 and 4 can be expressed in state space form as: 

 x=f x,Tc =f x +g x Tc 
z=h x  

(6) 

   
Where the states are defined x= q ωb

T. 
 

B. Reaction Wheels 

Satellites are often equipped with more than three reaction 
wheels for redundancy. Wheel configuration changes how the 
wheel torque is distributed to the spacecraft body. This is 
accounted for with a distribution matrix, L, which maps the 
torque from the wheel frame into the satellite body frame. This 
can be expressed as: 

 hw=Lhw
W

 (7) 
   

where the superscript W represents the wheel coordinate frame. 
Two separate wheel configurations are considered in this paper: 
the NASA standard and the Pyramid configuration. The 
distribution matrix for the NASA standard configuration is: 

 L=
1 0 0 α
 0 1 0 β
0 0 1 γ

, (8) 

   
which represents a wheel aligned along each body axis and a 
fourth wheel placed skew to each axis (Fig. 1). Here, α, β, and 
γ  are user specified values that follow the constraint 
α2+β2+γ2=1. The Pyramid configuration distribution matrix is: 

 L=
a –a 0 0
b b c c
0 0 d –d

, (9) 

   
which represents wheels skew to all primary axes, with 
preferential alignment to the Y-axis (Fig. 2). The values a, b, c 
and d follow the constraints a2+b2=c2+d2=1 and indicate the 
degree of skew of each wheel, represented by the angle β in Fig. 
2. Reaction wheels are subject to several failure modes. In this 
paper, the float failure, where actuation is zero, is explored. A 
fault can be modeled mathematically as [13]: 

 Ta=Tc+σ[Ti-Tc] (10) 
   

where Ta is the torque actuated by the wheels, Tc is the torque 
commanded by the control law, σ=diag(σ1 σ2 σ3 σ )  is the 
actuator failure indicator, and Ti is the actuator failure.  

C. Tracking Error Dynamics 

The tracking error for the system can be defined as the 
difference between the actual and desired values: 

 qe=q⊗qd
-1, (11) 

   
 ωe=ωb-δAωd. (12) 

   
where q is the actual quaternion, qd is the desired quaternion,   
ωb is the actual angular velocity of the body, ωd is the desired 
angular velocity of the body, and 𝛿A=A q Ad

T qd  is the  

Figure 1.  NASA Standard configuration for redundant reaction wheels [6]. 

quaternion parameterized attitude error matrix that resolves the 
angular velocity error in body frame coordinates. The operator 
q⊗ represents: 

 q⊗=
q4I3– q1:3× q1:3

–q1:3
T q4

. (13) 

   
A tracking controller’s goal is to follow a desired reference 
trajectory such that qe,1:3 → 0  and ωe → 0 . Regulation is a 

special form of tracking where the goal is to drive the 
quaternion to identity, q= 0 0 0 1 T, and drive the body 
angular velocities to zero, ωb= 0 0 0 T [6]. In this case, the 
error dynamics of Eqs. 11 and 12 reduce to:  

 qe=
1

2
Ω ωb qe (14) 

   
 ωe=Ib

-1[Tc – ωb× Ibωb+hw ] (15) 
 



   

 

Figure 2.  Pyramid configuration for redundant reaction wheels [14]. 

III. CONTROLLER DESIGN 

A. Feedback Linearization Controller 

Feedback linearization requires a system of governing 
equations in the form 

 x=f x +b x ⋅u (16) 
   

where f(x) and b(x) are nonlinear functions of the state variable 
and time and u is the control input. u is designed such that f(x) 
and b(x) are eliminated, therefore: 

 u=
1

b x
(-f x +v) (17) 

   
where v  is an auxiliary variable and is designed to impose 
stability on the system. A common design for v is modeled 
using error dynamics: 

 v=xref
n –K1en-1–…-K n-1 e. (18) 

   
Applied to the satellite dynamic model this yields: 

 v=ωd– kdωe– kpsign(qe,4)q
e, 1:3

 (19) 

where kp and kd are proportional and derivative feedback gains, 

respectively. The sign qe,4  term is added to ensure that the 

shortest route possible is taken from the current to the desired 
quaternion [6]. Using Eq. 19, the feedback linearized control 
torque is:  

 
u=Ib[-Ib

-1 -ωb× Ibωb+hb +ωd - kdωe 

   -kpsign qe, 4 qe, 1:3] 
(20) 

B. Sliding Mode Controller 

A sliding mode controller is designed using the quaternion 
error. The sliding surface is: 

 S=(
d

dt
+λ)e= ė+λe = ωe+λqe,1:3. (21) 

   
Differentiating the sliding surface with respect to time results 
in: 

 S= ωe+λqe,1:3. (22) 

   
To solve for the estimated control torque, Tc, Eq. 15 is plugged 
into Eq. 22 and then the equation is set equal to zero, producing: 

 Tc= ωb× Ibωb+hw –Ibλqe,1:3 (23) 
 
The total input, Tc, is found by adding a discontinuous term 
across the sliding surface: 

 Tc=Tc–IbKsign(S) (24) 
   

where K is a diagonal 3×3 matrix. 

IV. SIMULATIONS AND RESULTS 

This paper modified an example from [6], which performed 
a regulation attitude maneuver, and implemented it in 
MATLAB®. Note that the identity quaternion is equivalent to 
an attitude in Euler angles of ϕ θ ψ T= 0 0 0 T degrees. 
System parameters and initial conditions are provided in Tab. 
1. Values of the inertia matrix and maximum torque are based 
on those found in [15] for a 3U CubeSat with Microwheel 
reaction wheels. The initial attitude is set to 
ϕ0 θ0 ψ0

T= 60 20 40 T degrees while the initial values 
of body angular velocity remain unchanged from [6]. Gain 
values were tuned manually based on the nominal operation of 
the system. They remained unchanged for failure testing. 

Two operating modes were considered: nominal and float 
fault. Nominal mode was characterized by σ=diag 04  while in 
fault mode σ=diag(1,0,0,0), indicating a float failure of one 
reaction wheel (Wheel 1). In both modes, Ti= 0 0 0 0 T. 
Simulation time is equivalent to t=5min. 

The root mean squared errors (RMSE) for the roll, pitch, 
yaw, and corresponding body angular velocities were used to 
evaluate controller performance. Tab. 2 displays these values 
for both configurations in nominal mode. Figs. 3-6 display the 
attitude maneuvers in nominal mode for both controllers and 
both configurations. Similarly, metrics for fault mode are 
presented in Tab. 3 and graphical representations of the fault 
mode responses are represented in Figs. 7-10. The attitude is 
displayed in Euler angles for ease of presentation, analysis, and 
intuition. 

TABLE I.  SYSTEM PARAMETERS 

Parameter Value 
Ib 0.0056 0 0

0 0.026 0
0 0 0.0026

kgm2 

λ, 
 K 

0.07 
 0.007×I3 

Kp 
Kd 

4 
1 

α,β, γ  
1

√3
 

 
a,b,c,d 

 
1

√2
 

Tc,max 4.0mNm 

[ϕ0,θ0,ψ0]T 60 20 40 Tdeg 

ωb,0 0.57 0.57 0.57 Tdeg/s 

 

 



   

TABLE II.  NOMINAL MODE PERFORMANCE 
 

Pyramid Configuration 

 Attitude Error (deg) 
Angular Velocity Error 

(deg/s) 
Controller ϕ θ ψ ωx ωy ωz 
FL 3.33 2.78 1.99 1.20 1.93 3.61 

SMC 14.5 6.56 9.18 0.189 0.280 0.374 

NASA Standard Configuration 

 Attitude Error (deg) 
Angular Velocity Error 

(deg/s) 

Controller ϕ θ ψ ωx ωy ωz 

FL 3.35 2.84 2.0 1.08 1.97 3.59 

SMC 14.5 6.56 9.18 0.189 0.280 0.374 

 
Both controllers perform the same across wheel 

configurations in the nominal mode, i.e. performance is 
identical in either configuration. This can be seen graphically in 
Figs. 3 & 5 and also Figs. 4 & 6, where the performances appear 
identical regardless of configuration, suggesting no benefit in 
application of one controller over another for either 
configuration. The feedback linearized controller (FLC) 
outperforms the sliding mode controller (SMC) in terms of 
attitude error but underperforms in terms of angular velocity 
error based on the values in Tab. 2. Further, the FLC settles 
much sooner than the SMC, at less than 1min compared to 
around 2min.  

 
When the fault is present, fewer similarities are present 

across the configurations. Failing Wheel 1 corresponds to a 
different impact based on the configurations discussed 
previously. In the NASA standard configuration, this causes the 
wheel aligned on the X-axis to lose control authority. For this 
orientation, the RMSE values for both controllers are still 
comparable to the nominal condition. The similarity in 
performance is because Wheel 4 allows the CubeSat to maintain 
3-axis control. 

TABLE III.  FAULT MODE PERFORMANCE 
 

Pyramid Configuration 

 Attitude Error (deg) 
Angular Velocity Error 

(deg/s) 
Controller ϕ θ ψ ωx ωy ωz 
FL 350.8 11.4 353.5 21.8 4.51 21.4 

SMC 16.2 7.63 24.4 0.606 0.409 0.201 

NASA Standard Configuration 

 Attitude Error (deg) 
Angular Velocity Error 

(deg/s) 

Controller ϕ θ ψ ωx ωy ωz 

FL 3.86 2.52 11.7 6.77 1.76 4.40 

SMC 14.4 6.80 11.51 0.175 0.30 0.358 

 

Numerically, the controllers follow the same trend as 
nominal mode, but the FLC’s RMSE for the angular velocities 
has increased while the SMC’s values are approximately the 
same. This response indicates that, despite redundancy, the FLC 
is more sensitive to the failure of Wheel 1 than the SMC. FLC’s 
sensitivity is displayed in Fig. 7, where it has high initial attitude 
and angular velocity errors before settling at around 1.5min. 
Though it settled faster than the SMC, as seen in Fig. 8 the SMC 
acts without large initial errors for attitude or angular velocity, 
providing a smoother attitude maneuver. The smoothness of the 
SMC is not surprising, however, given that it is known for being 
robust in the presence of disturbances. 

 
The greatest difference in performance is seen in the 

controllers’ fault mode pyramid configuration RMSE values. 
The SMC significantly outperforms the FLC, which has RMSE 
values nearly one hundred times its nominal mode values in roll 
and yaw. These are indicative of the fact these values fail to 
regain the target attitude as displayed in Fig. 9. Though the 
SMC sees some increase in its RMSE values, it still maintains 
error values similar to its nominal case. Failing Wheel 1 for the 
pyramid configuration affects control of the roll and pitch axes. 
Given the data, it seems the FLC is more susceptible to this 
failure than the SMC. This can be visualized in the figures, 
where again the FLC has large initial errors prior to settling 
whereas the SMC does not. Though the FLC settles in its 
angular velocity at around 1min, sooner than the SMC at around 
3min, again the SMC provides a smoother attitude maneuver to 
the desired states than the FLC.  
 

 
 
Figure 3.  Attitude Error with FLC applied to NASA Standard Configuration 

(Nominal Mode) 



   

 
 
Figure 4.  Attitude Error with SMC applied to NASA Standard Configuration 

(Nominal Mode) 

 
 

Figure 5.  Attitude Error with FLC applied to Pyramid Configuration 
(Nominal Mode) 

 
 

Figure 6.  Attitude Error with SMC applied to Pyramid Configuration 
(Nominal Mode) 

 
 
Figure 7.  Attitude Error with FLC applied to NASA Standard Configuration 

(Fault Mode) 

 
 
Figure 8.  Attitude Error with SMC applied to NASA Standard Configuration 

(Fault Mode) 

 
 
Figure 9.  Attitude Error with FLC applied to Pyramid Configuration (Fault 

Mode) 



   

 
 
Figure 10.  Attitude Error with SMC applied to Pyramid Configuration (Fault 

Mode) 

V. CONCLUSIONS 

This paper investigated the application of two nonlinear 
controllers to a model CubeSat bearing two separate reaction 
wheel configurations. The performance of the controllers was 
evaluated in the absence and presence of a float fault in an 
attempt to determine any benefit to pairing specific controllers 
and wheel configurations. In terms of error, the FLC and SMC 
performed identically in the absence of faults, with the FLC 
responding faster than the SMC by way of settling time. In this 
case, choice of controller and accompanying configuration 
made no difference in performance. In the presence of a float 
fault, however, controller-configuration pairing was significant 
on performance. This is best highlighted by the FLC’s 
performance in pyramid configuration, where it failed to 
achieve the target attitude and had large initial attitude errors 
when compared to the SMC. However, because the SMC is 
known to be robust, it is difficult to conclude that there is a 
direct benefit to pairing specific controllers with reaction wheel 
configurations using this evaluation. Future explorations of a 
potential relationship between controller and configuration 
could examine power consumption, control effort, rise time, 
settling time, and steady state errors as a more indicative 
evaluation metric. 
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