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Abstract—Model Predictive Controllers, specifically Dynamic
Matrix Controllers (DMCs), have become widespread in industry.
However, they have some drawbacks, particularly when it comes
to their tuning and their application to non-linear systems.
This paper explores several modifications to the canonical DMC
algorithm which aim to improve its performance and applicability
in these situations. The formulation of each modification is
presented and contrasted to the canonical formulation, and then
each is tested against the other in simulation on a variety of
linear and non-linear systems.
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I. INTRODUCTION

Predictive control algorithms have been widely adopted in
industry due to their ability to effectively control a wide
array of real world plants and processes [1]. One of the most
common of these is Dynamic Matrix Control, otherwise known
as DMC [2]. This process, as the name implies, utilizes a
dynamic matrix to capture system dynamics, and uses this
knowledge to predict future system behaviours along with a
cost function to determine optimal control actions to track
its given setpoint. While this is a powerful control algorithm
which is able to control a wide array of systems (including
multi-variable systems), it does have some drawbacks, par-
ticularly when it comes to control of non-linear systems [3].
Additionally, the algorithm can require some expertise in order
to tune properly for satisfactory performance. As such, many
attempts have been made to address these shortcomings in
performance and ease of effective tuning.

The following paper is organized such that the basic DMC
algorithm will be introduced [3], and then the modifications
that have been proposed in research will be presented. Once
the standard DMC algorithm has been formulated, the research
presented in [4] will be presented, as it is the most logical first
extension to DMC to explore. It addresses the conditionality
of the dynamic matrix in DMC in order to provide better
performance, and to facilitate tuning of the controller. Next,
[5] presents a multi-model adaptive modification which serves
to improve the performance of the algorithm for non-linear
processes. Finally, [6] introduces a more rigorous approach to
control of non-linear processes using a non-linear regression
to re-evaluate the estimated dynamic matrix at each time step
based on the current system operating point. Once the theory
of each modification has been presented, each method will be

tested in simulation against one another, and these results will
be presented and discussed.

II. CONTROL THEORY

A. Dynamic Matrix Control
Dynamic Matrix Control (DMC) is a popular Model Pre-

dictive Control (MPC) algorithm. MPC uses a dynamic model
of the plant, along with the current state of the plant to predict
the future response. The control algorithm then compares this
predicted output to the desired setpoint trajectory to calculate
the control action. The DMC algorithm uses a step response
of the plant to predict the future response and minimizes
the future error over a set prediction horizon [7]. DMC is
characterized by its dynamic matrix, A, which is defined in
[3] as

A =



a1 0 · · · 0
a2 a1 · · · 0
...

...
. . .

...
anu

anu−1 · · · a1

...
...

. . .
...

aN aN−1 · · · aN−nu+1


N×nu

(1)

where N is the prediction horizon, and nu is the control
horizon. The dynamic matrix A is constructed using the
vector, a, of length N that contains the normalized open loop
response of the system to a step input. The future output of
the system, ŷ, is then predicted as [8]

ŷ|t = ŷ|t−1 + A∆uc + φ|t (2)

where ŷ is a vector of length N , the dynamic matrix A
consists of N rows and nu columns, and ∆uc is a vector of
length nu. φ is a model correction factor defined as:

φ|t = ym(1)− ŷ(1)|t (3)

This model correction factor is calculated at each time step
and is used so that the prediction, ŷ, begins at the previously
measured output. This is used to help with model mismatch
and shifts the predicted output accordingly.

The control action for DMC control, ∆uc, is optimized
using the following cost function to minimize the future errors
along the prediction horizon [8].



J =

N∑
j=1

[ŷ(t+j|t)−ŷsp(t+j)]2+

nu∑
j=1

λ[∆uc(t+j−1)]2 (4)

where ŷsp is the setpoint, λ is a move suppression factor,
and the error to be minimized, e, is between the predicted
output and the setpoint,

e = ŷ − ŷsp (5)

The solution to this unconstrained optimization problem
gives the following control action, ∆uc:

∆uc = (ATA + λI)−1ATe (6)

Though ∆uc is a vector that contains nu future control
actions, only the first would be implemented on a practical
plant. At each time step a new control action, ∆uc, is
computed using equations 5 and 6 and a new predicted plant
response, ŷ, is computed using equations 2 and 3.

To obtain optimal results using a DMC controller, four
parameters can be adjusted for tuning: the move suppression
factor λ, the prediction horizon N , the control horizon nu,
and the time step, dt.

B. Well Conditioned Dynamic Matrix Control

Well-conditioned dynamic matrix control is designed to
improve upon some of the inherent ill-conditioning of the
matrix (AT A + λI)−1 that is present in the standard DMC
formulation.

This ill-conditioning occurs when the inverse of the system
matrix AT A + λI is calculated due to excessive changes in
the manipulated variables caused by the structure of dynamic
matrix A. Traditional DMC utilizes the move suppression
factor λ with the intention of improving the conditionality
of the system matrix when inverted. This results in smaller
changes to the manipulated variable as λ increases. However,
determining λ is somewhat ambiguous process that requires a
more intimate knowledge of the process dynamics [9]

In traditional DMC, as sampling time gets smaller, the
difference in corresponding columns in the dynamic matrix
A gets smaller leading to the system matrix being severely
ill-conditioned when evaluated [9].

In well conditioned DMC, the prediction and control time
steps are decoupled. This is done by introducing a new tuning
variable m where the prediction time step is m − 1 samples
longer than the control time step. To implement this shift,
m needs to be defined and is applied to the dynamic matrix
where the second and subsequent columns are shifted down
by m > 1 (because of this shift, this DMC variant is often
referred to as M-Shift DMC, or simply M-Shift). Thus the
new dynamic matrix should take the form [4],

A =



a1 0
...

...
am
am+1

...
am+N

0
a1

...
aN


(N+m)×nu

(7)

Compared to the dynamic matrix in standard DMC,

A =


a1 0
a2 a1

a3

...
aN

a2

...
aN−1


N×nu

(8)

This shifting factor removes the need for the move sup-
pression factor λ and is very easy to implement. Shifting
factor m is chosen based off the process open loop responses
and the subsequent conditioning number of the system matrix.
As the condition number approaches unity, the system matrix
becomes well conditioned [4].

C. Multi-Model Adaptive Dynamic Matrix Control

The multi-model adaptive dynamic matrix control (MMAC)
presented in [5] uses the basic DMC algorithm as its base,
but in order to more effectively control non-linear processes
it combines several DMC’s tuned for varying operating sub-
regions to more accurately account for the differences in
plant dynamics over the entire operating region. A traditional
DMC uses a single step test to formulate its dynamic matrix,
which is adequate for a linear process whose dynamics are
simply linearly scaled throughout its operating range, but is
not sufficient for a non-linear process whose dynamics vary
non-linearly throughout its operating range. As such, MMAC
suggests instead splitting the operating range into an array
of sub-regions such that a step test in each region reasonably
approximates the actual non-linear dynamics throughout it [5].
This yields a set of controllers whose outputs are subjected to
a weighted average according to the current operating point
in order to yield a more suitable control move than would be
possible with a single DMC.

The formulation begins by dividing the operating range
into n sub-regions with boundaries y1, y2, ..., yn. Each sub-
region then has a distinct DMC generated for it according
to the standard methodology. During operation, at each time
step each controller (DMC1...n) receives the process output,
ym, and generates a control action ∆un. The outputs are then
averaged according to the following rules, presented here for
the specific case n = 3 [5].

The total control action ∆uadap is expressed as

∆uadap =

3∑
n=1

xn∆un (9)

Where xn is defined by the following rules [5]:



If ym ≥ y3 then

x1 = 0;x2 = 0;x3 = 1 (10)

If y2 < ym < y3 then

x1 = 0;x2 = 1− x3;x3 =
ym − y2

y3 − y2
(11)

If y1 < ym < y2 then

x1 = 1− x2;x2 =
ym − y1

y2 − y1
;x3 = 0 (12)

If ym ≤ y1 then

x1 = 1;x2 = 0;x3 = 0 (13)

The current time control action, ut is then

ut = ut−1 + ∆uadap (14)

which is analogous to the ut formulation in the standard
DMC.

D. Non-Linear Regression Dynamic Matrix Control

In order to react to nonlinear characteristics of a plant [6],
modifications must be made to the formulation of the canonical
DMC. As discussed above, the dynamic matrix A contains
the step response of the system at an operating point. The
assumption of a linear model in a specified operating range in
the formulation of the DMC means that A is an appropriate
representation of the dynamics of the system in this range.
In most industrial applications, it is not possible to assume
linearity over any substantial operating range. To represent
a given operating range of a nonlinear system, an infinite
set of piece-wise linear functions can instead be used. This
allows the reevaluation of the dynamic matrix at each time
step, enabling the use of the same techniques as noted for
DMC with a nonlinear process.

The formulation of the non-linear regression predictive
controller (NRPC) differs from the standard DMC primarily in
the construction of the dynamic matrix A [6]. Where a single
open loop test is sufficient to capture system dynamics for a
linear process, a series of open loop tests are performed to
capture the dynamics of a nonlinear plant over an operating
range. A curve-fitted approximation of the step responses,
Sk(ũ), is built using the open loop input signals ũ, which
takes the form

Sk(ũ) =

N∑
n=1

bk,nũ
hn k = 1...P (15)

This equation represents a scalar value of the fitted normal-
ized step response at time k∆t. The bk,n coefficients are the
polynomial coefficients of the step inputs, and the h values
represent the exponents which can be real or integer values.
The importance of choosing proper h exponential values is not
to be understated, as these will determine the accuracy of the

curve fit of the responses, directly affecting performance of
the controller [6]. This Sk(ũ) is for a single step input ũ.

In matrix form this appears as

S = B̃Ũ
T

(16)

The matrix B̃ contains the aforementioned coefficients,
while Ũ contains the step inputs and h exponents. Both are
expressed below as

B̃ =


b11 b12 · · · b1N
b21 b22 · · · b2N

...
...

. . .
...

bP1 bP2 · · · bPN

 (17)

Ũ =
[
ũh1 ũh2 · · · ũhN

]
(18)

In order to determine the B̃, a matrix containing m open
loop input tests and h exponents is defined as

Φ =


Ũ1

Ũ2

...
Ũm

 =


ũh1

1 ũh2
1 · · · ũhN

1

ũh1
2 ũh2

2 · · · ũhN
2

...
...

. . .
...

ũh1
m ũh2

m · · · ũhN
m


m×N

(19)

A matrix containing the m open loop normalized test
responses is also constructed as

Q =
[
Q1 Q2 · · · Qm

]T
P×m

(20)

The least squares optimization method is then used [10] to
construct B̃ as

B̃
T

= (ΦT Φ)−1ΦT Q (21)

Using the resulting Sk(ũ), a dynamic matrix A can be
evaluated at each time step [6] using the input ũ

A =


S1(ũ) 0 · · · 0
S2(ũ) S1(ũ) · · · 0

...
...

. . .
...

SP (ũ) SP−1(ũ) · · · SP−nu+1(ũ)


P×nu

(22)

As in the canonical DMC formulation, the calculation for
the control moves is performed by evaluating the change
in control moves ∆uc for the current time step within the
control loop. This is once again performed by minimizing the
objective function

min∆uc
J = [e− A∆uc]

T [e− A∆uc] + ∆uT
c λ∆uc (23)

Where λ is an additional term for move suppression, also
utilized in the standard DMC. The vector e represents the
future errors (difference between setpoint and prediction),
where the predicted output is calculated using:



ŷ(t+ k|t) = y0 +

k∑
v=(k−nu+1)

Sv(ũ)∆uc(t+ k − v|t)+

k+P−1∑
v=(k+1)

Sv(ũ)∆uc(t+ k − v|t) (24)

The result of the minimization of the objective function is
the change in control move

∆uc = (AT A + λI)−1AT e (25)

This is then added to the previous control action to acquire
the new control action, of which only the first term of each
manipulated variable is relevant [6].

III. RESULTS

Several tests were performed in order to compare the
performance of each controller on several different plants (both
linear and non-linear) and to highlight their specific advantages
and drawbacks. The test plants were modeled as first order
plus deadtime systems, as is standard practice when taking
step responses for formulation of dynamic matrices, and are
presented in their discrete forms.

Plant 1, from [4], is a linear plant described as

yk = 0.9777yk−1 + 0.02362uk−1 (26)

with dt = 16 seconds and λ = 0.14. Additionally, its m
factor for the M-Shift controller is m = 2. Plant 2, also from
[4] is a linear plant described as

yk = 0.9842yk−1 + 0.01886uk−1 (27)

with dt = 16 seconds and λ = 0.15. Additionally, its
m factor for the M-Shift controller is m = 3. The process
for choosing m, λ, and dt are explained in greater detail in
[4]. When applying the non-linear regression dynamic matrix
control, both plants 1 and 2 used h = [0.5, 1, 1.5, 2, 2.5] as
their set of fitted exponents. This was determined by testing
various combinations of exponents against the set of step test
results until the combination resulting in the best overall fit
throughout the operating range was found.

Plant 3, from [11], is a non-linear plant described as

yk = y3
k−1 − 0.2|yk−1|uk−1 + 0.08u2

k−1 (28)

with dt = 0.003 and λ = 1.5. The set of fitted exponents
for the non-linear controller, from [6], is h = [0.5, 1, 2, 3, 4].
Finally, plant 4, from [12], is a non-linear plant described as

yk =
yk−1yk−2[yk−1 + 2.5]

1 + [yk−1]2 + [yk−2]2
(29)

with dt = 0.003 and λ = 2. The set of fitted exponents
for the non-linear controller, determined similarly to those for
plants 1 and 2, is h = [0.5, 2, 2.5, 3, 3.5].

The first test was implemented on plant 1, using a step
setpoint ysp = 5. The results of this test are presented in
figure 1 and table I. Table I compares percent overshoot,
mean squared error, and settling time (in seconds) for each
controller, as will all further performance tables.
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Fig. 1. Plant 1 results

TABLE I
PLANT 1 PERFORMANCE SUMMARY

Controller %OS MSE S.T.
DMC 11.2937 0.5296 1664
M-Shift 22.7254 0.1747 3648
MMAC 25.2240 0.7189 2752
NRPC -25.5654 2.9199 Inf

In this scenario, the two linear controllers (DMC and M-
Shift) drastically outperform the non-linear ones (NRPC and
MMAC). This is reasonable, as they are explicitly formulated
for linear plants and thus lack the additional overhead com-
putations present in the non-linear formulations which lead to
reduced performance in this scenario. Because it is essentially
a combination of linear controllers, MMAC was still able to
reach the setpoint, but because of its more general formulation
to allow for non-linear control, it is not able to reach the
desired setpoint as quickly as DMC or M-Shift. It should be
noted that in all of these experiments, the MMAC formulation
used three component DMCs. Additionally, M-Shift performs
better than standard DMC, a fact that is most likely due to
the improved conditionality of its dynamic matrix. However,
M-Shift does exhibit some odd behaviors which are almost
reminiscent of what would be expected from a disturbance
rejection once it has settled. This could be a result of either the
controller or the plant. This shows in its longer settling time.
Additionally, the NRPC’s settling time is listed as infinite in
this case as it never converges closely enough to the desired
setpoint to meet the settling criteria set out for this study (this
study considers a process to have settled once the process
output is within ±2% of the desired output for all future time
steps).

Tests on plant 2, whose results are presented in figure 2 and
table II, were conducted with a step setpoint ysp = 5.

These tests returned similar results to the tests on plant 1, as
expected. The only notable difference is in the performance of
the non-linear plants. The NRPC seemed to more closely track
the setpoint (although it was still subject to small oscillations
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Fig. 2. Plant 2 results

TABLE II
PLANT 2 PERFORMANCE SUMMARY

Controller %OS MSE S.T.
DMC 25.6063 1.7999 272
M-Shift 3.6389 1.5933 144
MMAC 0.5318 0.8657 4112
NRPC 26.2279 3.8456 Inf

about its operating point, causing it to once again fail to
meet settling criteria), and the MMAC took much longer to
reach the setpoint. These differences are most likely due to
the differences between the plants, though, as opposed to the
formulations of the given controllers. M-shift also did not
display the same odd oscillations after settling it showed on
plant 1 (allowing it to achieve a much faster settling time than
all other controllers), which suggest that these were more a
result of the system dynamics than the controller dynamics.
This result is also almost analogous to what could be expected
from an unstable plant with a persistent excitation condition,
which could be an interesting exploration for future work.

Figure 3 and table III show the results for the first of
the non-linear plants, plant 3 with a setpoint ysp = 0.5. It
should be noted that the results presented therein only show the
performance of the NRPC and the MMAC, as neither standard
DMC or M-Shift methodologies were able to achieve stable
performance. This instability is most likely due to the fact that
the non-linear system dynamics over its operating range make
it such that control moves calculated at operating points far
from that at which the step response was calculated would be
inappropriate, resulting in unpredictable behavior.
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Fig. 3. Plant 3 results

TABLE III
PLANT 3 PERFORMANCE SUMMARY

Controller %OS MSE S.T.
MMAC 44.9558 0.0016 0.2430
NRPC 0 0.0054 0.0810

In this instance, NRPC quite clearly outperforms the
MMAC controller. This is most likely due to its method of
handling non-linearities being much more rigorous than the
MMAC’s strategy of simply using a combination of models at
different operating points to approximate the non-linearities.
While MMAC does eventually settle to the desired setpoint,
the oscillations it shows about this operating point would
almost certainly prove undesirable in a real application.

Finally, the results for plant 4 (using a setpoint ysp = 0.75,
presented in figure 4 and table IV, show an interesting set of
results for non-linear control.
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Fig. 4. Plant 4 results

TABLE IV
PLANT 4 PERFORMANCE SUMMARY

Controller %OS MSE S.T.
MMAC 69.9039 0.0609 Inf
NRPC 791.7361 0.7783 0.4170

For this specific plant, NRPC converges almost exactly to
the desired setpoint, resulting in zero steady state error, as
opposed to MMAC which does reach the desired setpoint but
exhibits significant oscillations about. However, in converging
to the setpoint, the NRPC experiences a very large and dra-
matic transient. While it was able to maintain system stability
in this scenario, this behavior could prove dangerous when
applied to real-world system. It is worth noting though that
this behavior is most likely due to a poor non-linear regression
fit in the control formulation due to a sub-optimal choice
of h exponents. This could be addressed by using a more
rigorous method of h selection, perhaps using a local or global
optimization method such as genetic algorithms [13]. These
results make it difficult to say conclusively that one controller
is better than the other in this scenario, as both could most
likely achieve better performance with more rigorous tuning.



IV. CONCLUSIONS

The aim of this paper was to show various improvements
to the canonical DMC algorithm that have been developed,
and compare them against each other in order to determine
their individual advantages and disadvantages. It is clear that
for linear plants, M-Shift is the superior choice. It settled
most quickly and accurately, and exhibited less overshoot and
oscillations than any of the other controllers. MMAC was
able to to also effectively control the system, however it did
so much more slowly than any others. Thus, for a linear
system, although MMAC may be a functional option, it is
not necessarily the optimal choice. For linear systems, the
NRPC was easily the least effective. This could be due to
it attempting to to account for perceived non-linearities which
could appear in the regression analysis that may not actually
be present in the system dynamics. Thus, not only is it not an
effective choice for control of linear plants, due to its extensive
regression analysis required in its formulation it is also an
overly complex solution.

For non-linear plants, canonical DMC and M-Shift algo-
rithms failed outright. This could be addressed in practice
by using them in a much smaller operating range for which
the system dynamics can be approximately expressed a linear,
or by using some manner of feedback linearization. While
MMAC and NRPC were able to control the systems, nei-
ther of them was able to do it perfectly. NRPC displayed
aggressive transients while it moved through the smallest
operating ranges. This is most likely due to the non-linear
regression fits not being as good at small ranges (analysis of
the fits does usually show this), but could also be a result
of sub-optimal choices for the h exponents. This could be
addressed in practice with better methods for selecting h, or
by increasing the resolution for the range of open loop test
inputs, ũ. MMAC, meanwhile, was able to reach the setpoint
but exhibited significant oscillations in both cases. This is most
likely a flaw in the tuning of its individual component DMCs,
as well as their inability to truly effectively capture non-linear
dynamics. This could be remedied with more careful tuning
of the component DMCs, as well as by increasing the number
of component DMCs such that the linear approximations of
each of their respective operating ranges are improved.
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