
Proceedings of the Canadian Society for Mechanical Engineering International Congress 2020
CSME Congress 2020

June 21-24, 2020, Charlottetown, PE, Canada

JORDAN FORMS IN VEHICLE DYNAMICS

BP Minaker PhD PEng
Department of Mechanical, Automotive, & Materials Engineering

University of Windsor
Windsor, Ontario, Canada
bminaker@uwindsor.ca

Abstract— In the ongoing search for mathematically efficient
methods of predicting the motion of vehicle and other multi-
body systems, and presenting the associated results, one of
the avenues of continued interest is the linearization of the
equations of motion. While linearization can potentially result
in reduced fidelity in the model, the benefits in computational
speed often make it the pragmatic choice. When representing
the governing equations of any linear system, one of the relevant
problems is the determination of the mathematically equivalent
formulation of the smallest size, and solving this system is
the most mathematically efficient manner. This paper discusses
and explores the potential of an approach based on modal
identification, and the Jordan form of the system matrix. The
paper includes an example where the method is applied to the
classic linear bicycle model.
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I. INTRODUCTION

In the ongoing search for mathematically efficient methods
of predicting the motion of vehicle and other multibody systems,
and presenting the associated results, one of the avenues of
continued interest is the linearization of the equations of motion.
While linearization can potentially result in reduced fidelity in
the model, the benefits in computational speed often make it the
pragmatic choice. When representing the governing equations
of any linear system, one of the relevant problems is the de-
termination of the mathematically equivalent formulation of the
smallest size, and solving this system is the most mathematically
efficient manner.

This work relates to the ongoing development of a multi-
body dynamics based vehicle motion simulation, based on the
equations of motion generator code EoM, developed by the
University of Windsor Vehicle Dynamics and Control research
group [1], although the results would be equally applicable
in any similar implementation. The EoM software is able to

generate equations of motion for complex three dimensional
multibody systems, but restricts the result to linear equations.

When generating the linearized equations of motion as
ordinary differential equation (ODEs), many authors will choose
to present them in the traditional linear second order form shown
in Eqn. (1).

Mẍ+Lẋ+Kx= f (1)

In this form, the matrices M, L, and K represent the mass, damp-
ing, and stiffness respectively, x is the vector of translational
and rotational motions, and f is the vector of applied forces and
moments. Another arguably more useful alternative is to prepare
the equations in linear first order, or state space form, as shown
in Eqn. (2).

{
ẋ
y

}
=

[
A B
C D

]{
x
u

}
(2)

where vectors x, y, and u represent the states of the system,
the outputs, and the inputs, respectively. The state vector may
be the translational and rotational displacements and velocities,
but there are other possibilities. The A, B, C, and D matrices are
the system, input, output, and feed-through, respectively. The
second order form can be easily reduced to state space form with
standard mathematical manipulation, such as:

A =

[
0 I

−M−1K −M−1L

]
, B =

[
0

M−1

]
(3a,b)

The C and D matrices depend on the selection of outputs that
one wishes to consider. One possibility is that the outputs would
be the vector of position coordinates. In that case:

C =
[
I 0

]
, D =

[
0
]

(4a,b)

In fact, the previously mentioned EoM code generates the
equations in the descriptor state space form, where the state
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equation is slightly different, as shown in Eqn. (5). Nevertheless,
they can be converted to the standard state space form. The
process is somewhat complicated if the E matrix is singular, as
in the case of differential algebraic equations (DAEs), but the
result is the same.

[
E 0
0 I

]{
ẋ
y

}
=

[
A B
C D

]{
x
u

}
(5)

II. JORDAN FORMS

This work explores the potential of a solution approach
based on modal identification, and the Jordan form J of the
system matrix. The existence of the Jordan form is well known,
but it is still the subject of active study, in hopes of utilizing
its properties for efficient numerical solutions[2]. The Jordan
form has potential to speed up the calculation of the time history
solution of an ODE, as it gives many zero entries in the system
matrix, allowing the use of sparse matrix algebra.

To illustrate the advantages of sparse matrix computing
using the Jordan form, a simple experiment was conducted. A
discrete time solution to a set of linear differential equations was
computed using a matrix exponential approach. The solution
was implemented in the Julia programming language. Two
systems were simulated: a small 4× 4 system, and a larger
14× 14 system. In the smaller system, 9 of 16 entries in the
state transition matrix were zero, while in the larger system, 168
of 196 entries were zero. In both cases, the simulations were
conducted using standard matrix multiplication, and repeated
using sparse arrays.

One might expect that as the system size grows larger,
the additional overhead in using sparse matrices would be
proportionally less, and as the sparsity of the matrix increased,
the advantage of using sparse matrix algebra would increase.
Nevertheless, the results showed that the sparse matrix imple-
mentation took approximately half the time for both systems.
While certainly not exhaustive, this simple experiment illus-
trates the potential of the Jordan form.

A. Definition of Jordan form

The Jordan form of the system matrix, shown in Eqn. (6),
is similar to the diagonal form that results from an eigen
decomposition.

J =

J1
. . .

Jq

 where Ji =


si 1

si
. . .
. . . 1

si

 (6)

where:

J = T−1AT (7)

The matrix T represents a coordinate transformation, and si
represents the ith eigenvalue of A. The primary distinction of
the Jordan form is in the case of repeated eigenvalues, and in
particular the case where the eigenvectors fail to form a basis.
The Jordan form utilizes the concept of generalized eigenvectors
to complete the basis.

A diagonal system matrix is useful as it shows directly the
contribution of each input to each mode, and the contribution of
each mode to each output. Off-diagonal terms in the system ma-
trix couple two state equations, and complicate the assessment
of the the coupling of each input to each mode. The amount
of off-diagonal coupling in the Jordan form of a general matrix
varies, and is dependant on the number of repeated eigenvalues;
it requires a distinction between the algebraic multiplicity and
geometric multiplicity of the eigenvalues.

If an eigenvalue appears multiple times as a root of the
characteristic equation, its algebraic multiplicity is simply the
number of times that it appears. If the eigenvalues are unique,
they all have an algebraic multiplicity of one. The geomet-
ric multiplicity of the eigenvalue is the maximum number
of linearly independent eigenvectors associated with it. The
maximum value of the geometric multiplicity of an eigenvalue
is of course its algebraic multiplicity, but it may be less.

Note that Eqn. (6) does not describe the effect of complex
eigenvalues on the Jordan form. If the eigenvalue is real, it
is simply placed on the diagonal as shown. If any complex
eigenvalues are found, they are used to form a 2× 2 matrix,
with the real parts of the eigenvalues on the main diagonal. The
imaginary parts arranged such that they fill out the 2×2 block,
with the positive imaginary part, as a real (i.e., the i is dropped),
in the upper right corner, and the negative imaginary part, also
as a real, in the lower left corner. In the case that the system
equations represent the equations of motion of a multibody
system, the form of the off-diagonal elements can be predicted,
and used to simplify the determination of the contribution of
each mode. Those modes that are shown to be non-contributing
can be eliminated from the equations of motion.

B. Calculation of Jordan form

The process of computing the Jordan form begins with
an eigenvalue/eigenvector decomposition of the system matrix,
using a process such as that given in [3], i.e., the solution of the
matrix X such that:

XΛX−1 = A (8)

where Λ is the matrix formed by placing the eigenvalues si
along the diagonal, and X is the matrix formed by using the
eigenvectors Xi as columns. The eigenvectors are found by
solving Eqn. (9),

[Is−A]Xi = 0 (9)

which requires prior solution of the values si from Eqn. (10).
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det[Is−A] = 0 (10)

After the decomposition, the Jordan form can be found by
analyzing each eigenvalue in turn, to identify the real and com-
plex conjugate eigenvalues. This task is simplified by assuming
the eigenvalues are returned with the conjugates in sequential
locations in the eigenvalue list, as is typical.

The complex eigenvalues are broken apart and rewritten
into the appropriate entries in the new system matrix. The
resulting system matrix will be real and tridiagonal, with the first
superdiagonal being the negative of the first subdiagonal. At the
same time as the eigenvalues are placed in the system matrix, the
eigenvectors are modified as well. The real eigenvectors remain
unchanged, while the complex conjugate vectors are replaced
with a pair of vectors, the first containing the real part of each
entry, the second containing the imaginary part (again, as a real
number). Consider the example shown in Eqns (11)– (14).

A =

−2 0 0
0 0 1
0 −2 −2

 (11)

Λ =

−1+ i 0 0
0 −1− i 0
0 0 −2

⇒ J =

−1 1 0
−1 −1 0
0 0 −2

 (12)

X =

 0 0 1
−0.41−0.41i −0.41+0.41i 0

0.82 0.82 0

 (13)

T =

 0 0 1
−0.41 −0.41 0
0.82 0 0

 (14)

A quick calculation will confirm that TJT−1 = A. Once the
complex eigenvalues have been replaced, the repeated roots
must be considered. In the event that there is a repeated root,
the geometric multiplicity of the root must be considered. The
effect will be demonstrated with an example.

Consider a unit point mass, restricted to motion in the plane,
with orthogonal coordinates x1 and x2. Suppose that the point
mass is acted upon by two orthogonal actuators, aligned with the
coordinate axes, and that both coordinates are measured. Two
cases will be used to illustrate the effect of repeated roots. In the
first case, the motion of the point mass will be resisted by a unit
damping in both coordinate axes. In the second, no resistance
forces act in the x2 direction, but both a unit stiffness and twice
a unit damping force act in the x1 direction.

If the state vector is chosen as x=
[
x1 x2 ẋ1 ẋ2

]′, then
in the first case, the system matrix becomes:

A1 =


0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 −1

 (15)

Reduction to Jordan form gives:

T =


1 0 −1/

√
2 0

0 1 0 −1/
√

2
0 0 1/

√
2 0

0 0 0 1/
√

2

 (16)

J =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 (17)

An eigen analysis will show a repeated zero root, and a second
repeated root of negative one. Nevertheless, an examination of
the eigenvectors will show that they have full rank (four), so
in this case, the eigenvector decomposition is equivalent to the
Jordan decomposition. In the second case, the system matrix
becomes:

A2 =


0 0 1 0
0 0 0 1
−1 0 −2 0
0 0 0 0

 (18)

An eigen analysis will show that the second case returns iden-
tical eigenvalues, a pair of zeros, and a pair of negative ones.
However, in this case, the eigenvectors have a rank of only two.

Λ =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 (19)

X =


0 0 1/

√
2 −1/

√
2

1 −1 0 0
0 0 −1/

√
2 1/

√
2

0 0 0 0

 (20)

In this case, in order to create the Jordan form, the unit
superdiagonal entries must be added, and the corresponding re-
dundant eigenvectors are replaced with generalized eigenvectors
Yi, defined as:

[Isi−A]Yi =Xi (21)

Evaluation of the expression will confirm the resulting decom-
position.

T =


0 0 1/

√
2 1/2

√
2

1 0 0 0
0 0 −1/

√
2 1/2

√
2

0 1 0 0

 (22)
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J =


0 1 0 0
0 0 0 0
0 0 −1 1
0 0 0 −1

 (23)

Clearly, although the eigenvalues themselves are identical
between the two cases, the multiplicity is not. In the first
case, both the roots have both an algebraic and a geometric
multiplicity of two. In the second case, both roots retain their
algebraic multiplicity, but both fall to a geometric multiplicity
of one. As a result, the Jordan form requires the calculation of
generalized eigenvectors, and the unit off-diagonal entries to be
placed in the system matrix.

In the general case, the size of the individual Jordan blocks
depends on the specifics of the repeated root. For example, if a
root appears four times, the Jordan form may contain four blocks
of size one, or two blocks of size two, or a block of size three
and a block of size one, or a block of size two and two blocks
of size one. However, in most cases where state space model
represents the equations of motion of a multibody system, the
maximum size of any Jordan block will be 2×2. This is stated
without mathematical proof, but relies on the requirement that
the system contains only stiffness, damping, and mass terms,
i.e., that the equations can be expressed in a traditional linear
second order form. This excludes systems that require higher
order differential equations, e.g., those with active PID feedback
control in place. The only way that a repeated root can appear
in the equations of motion is either by symmetry of the physical
system itself, or coincidence between two arbitrary modes, or
through an exactly critically damped mode. The most common
case of repeated roots is anticipated to be repeated zeros when
one or more rigid body modes are present in the system.

Often in the case of vehicle dynamics, the equations of
motion will be augmented with a set of kinematic differential
equations, relating the velocities to the rate of change of posi-
tions. The relationship may not be a simple differentiation, in
the event that multiple coordinate systems are used to describe
the motion. In the case that the state space model contains these
additional kinematic relationships, the 2×2 limit on the size of
the Jordan block will not hold, as will be shown.

III. EXAMPLE

A. Yaw plane model

To explore the applicability of the Jordan form to vehicle
dynamics, a simple vehicle model is considered. Also widely
known as the bicycle model, the yaw plane model has been used
extensively for vehicle handling studies since its introduction,
and has appeared in many variations in the literature. The
nickname is applied because the effect of the width of the
vehicle is considered unimportant during a certain aspect of
the model development. When the vehicle is pictured in a
view from above with the width neglected, its appearance is
similar to a bicycle. The model itself has no connection to

bicycle dynamics. Of course, the vehicle width influences the
lateral weight transfer experienced while cornering, which in
turn affects tire performance, but this is a secondary effect, and
is ignored in the yaw plane model.

ur

v

Yf

Yr m, Izz

a

b

Figure 1. The yaw plane model treats the vehicle as a single rigid body, with
motion constrained to the horizontal plane. It is commonly referred to as the

bicycle model due the assumption about width effects. Figure reproduced from
Minaker[4]

The degrees of freedom of the yaw plane model are the
lateral velocity v, and the yaw velocity r of the vehicle. The
forward speed u is assumed to be under driver control, and held
constant, and as a result is treated as a parameter of the model
rather than a variable. The motion is assumed to take place on a
flat and level road, so all other motions, e.g., roll or heave, are
ignored. The constant forward speed is more precisely called a
nonholonomic constraint; this implies that despite having only
two degrees of freedom, three position coordinates are required
to fully specify the state of the vehicle: the (x,y) location of the
centre of mass, and the heading angle ψ . Despite using only two
degrees of freedom, the model provides a great deal of insight
into vehicle handling.

The mass m and yaw moment of inertia Izz are the relevant
inertial properties of the vehicle, while the distances from the
centre of mass to the front and rear axles, denoted a and b
respectively, provide the necessary geometric information. The
cornering stiffnesses of the front and rear tires (lumped) are
denoted cf and cr, respectively. The lateral forces acting at each
of the front and rear axles are Yf and Yr, respectively. The steering
angle of the front tires, assumed to be the same on the left and
right side, is δf. A schematic diagram is shown in Figure 1.

The equations of motion of the yaw plane model can be
found by summing lateral forces, and moments around a vertical
axis. The complete model, including the kinematic differential
equations, is presented in Eqn. (24); for a full development, see
Minaker[4].
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ẏ
ψ̇

v̇
ṙ

= A


y
ψ

v
r

+B{δf} (24)

where:

A =


0 u −1 0
0 0 0 −1
0 0 −(cf + cr)/mu −(acf−bcr)/mu−u
0 0 −(acf−bcr)/Izzu −(a2cf +b2cr)/Izzu

 (25)

and:

B =


0
0

cf/m
acf/Izz

 (26)

B. Result

An eigenvalue analysis of the model above reveals two
possibilities. A pair of repeated zeros, and a pair distinct real
roots, or a pair of repeated zeros, and a complex conjugate
pair. The repeated zeros correspond to the rigid body modes
associated with lateral displacement, and yaw. If the vehicle’s
initial conditions are a simple lateral shift, or an initial yaw
angle, both of these conditions will persist indefinitely unless
corrected by the driver. The non-zero roots correspond to the
well-known ability of the model to predict understeer, or over-
steer behaviour. A simplistic explanation of these terms is that
in the case of understeer, as forward speed increases, the vehicle
tends toward an increasing cornering radius for a fixed steer
angle, where for oversteer, the opposite is true. An understeering
vehicle will remain stable over the entire speed range, i.e,
the non-zero roots will have negative real parts, where an
oversteering vehicle will not display any oscillatory behaviour,
but may have unstable response, indicated by a positive real root.

While exploring the dynamics of the yaw plane model, a
special case was identified: where cf = 0, and b = 0, i.e., a
vehicle with only one wheel or axle, located precisely at the
centre of mass. While arguably physically impractical, it is
notable that a single wheel skateboard style vehicle called the
Onewheel is marketed by Future Motion Inc. While the motion
of any skateboard style vehicle is highly influenced by the rider,
and not well predicted by the bicycle model, considering the
single wheel case is mathematically interesting, as it results in
three repeated zero roots, and a single distinct non-zero real root.
In this case, the system matrix collapses to:

A =


0 u −1 0
0 0 0 −1
0 0 −cr/mu −u
0 0 0 0

 (27)

In this case, only two eigenvectors are identified, as shown in
Eqn. (28).

X1 =


1
0
0
0

 ,X2 =


mu/cr

0
1
0

 (28)

The first vector (X1) corresponds to the zero root (i.e., s = 0),
and the second (X2) to the root:

s =− cr

mu
(29)

A solution of the generalized eigenvector using X1, as in
Eqn. (21), gives:

Y1 =


x1
x2
0
0

 (30)

where x1 and x2 are arbitrary. However, this is insufficient to
give an independent set of vectors, so a further iteration of the
generalized eigenvector is given by:

[Isi−A]Zi = Yi (31)

In this case:

Z1 =


x3
x4

−x5mu2/cr
x5

 (32)

where x3, x4, and x5 are arbitrary. The generalized eigenvectors
are chosen as:

Y1 =


0

1/u
0
0

 ,Z1 =


0

m/cr
mu/cr
−1/u

 (33)

This gives:

T =


1 0 0 mu/cr
0 1/u m/cr 0
0 0 mu/cr 1
0 0 −1/u 0

 (34)

J =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 −cr/mu

 (35)

Again, a calculation will confirm that TJT−1 = A.
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The repeated zero root implies that the transient solution will
contain terms of the form e0t , te0t , and t2e0t , or equivalently,
constant, linear, and quadratic in time, in addition to the expo-
nential decay term. The solution can be written in terms of the
columns of the T matrix, as given in Eqn. (36), where y0, ψ0, v0,
and r0 are arbitrary constants determined by the initial states,
and s =−cr/mu. The result can be confirmed by differentiation
and substitution into the state equations.


y
ψ

v
r

= v0


−1/s

0
1
0

est + y0


1
0
0
0

e0t +
r0u
2


1
0
0
0

 t2e0t

+
(

ψ0−
r0

s

)
u




0
1/u

0
0

e0t +


1
0
0
0

 te0t


− r0u




0
−1/su
−1/s
−1/u

e0t +


0

1/u
0
0

 te0t



(36)

Alternatively, the solution can be simplified, and broken
into individual expressions, as in Eqn. (37). In this form, the
expressions become more relatable to the physical system; for
example, if there is only one external force acting at the centre
of mass, clearly the yaw rate must remain constant, and thus
the heading angle must grow linearly with time. (Note that the
equations are derived using the SAE standard coordinate system,
where the body fixed z-axis points downward, so the heading
angle decreases with a positive yaw rate.)

y(t) = y0 +
(

ψ0−
r0

s

)
ut− r0

2
ut2− v0

s
est (37a)

ψ(t) = ψ0− r0t (37b)

v(t) =
r0u
s

+ v0est (37c)

r(t) = r0 (37d)

Similarly, if the forward speed and yaw rate are both held con-
stant, there will be a steady component to lateral acceleration.

The force generated due to the slip in the tire should produce
this force in the steady state. Finally, the lateral offset shows all
three of the terms due to the zero root: a constant initial offset,
a linearly increasing term due to heading angle, and a parabolic
increase due to steady yaw rate.

IV. CONCLUSIONS

The paper explores the application of the Jordan forms to
vehicle dynamics problems. It is shown by example that aug-
menting the equations of motion with the kinematic differential
equations, as would be common in a vehicle dynamics context,
results in a system with a Jordan block larger than the 2× 2
size that would normally be expected in a multibody vibration
problem.

This result is somewhat unfortunate, as the algorithm for
computing the Jordan form in the general case could be sim-
plified significantly with foreknowledge that the largest block
expected was 2×2. Also, when computing minimal realizations
(the smallest equivalent system matrix), one potential savings is
the removal of repeated roots. The calculation of the equivalent
system is quite straightforward if the blocks are only 2 ×
2. Accounting for the possibility of blocks of size three (or
potentially even larger?) imposes an extra layer of complexity.

The result leaves many unanswered questions, as to the most
effective way to compute the Jordan form, as clearly the algo-
rithm must be capable of accommodating triply repeating roots.
Nevertheless, the sparse nature of the Jordan form suggests that
it remains a promising candidate for efficient numerical solution
of the equations of motion, and further research into the area is
warranted.
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36, no. 3, 2018, pp. 81-88

[3] E. Davison, W. Gesing, and S. Wang, “An algorithm for obtaining the
minimal realization of a linear time-invariant system and determining if a
system is stabilizable-detectable”, IEEE Transactions on Automatic Control
23, no. 6, 1978, pp. 1048–1054

[4] B. Minaker, “Fundamentals of Vehicle Dynamics and Modelling: A
Textbook for Engineers with Illustartions and Examples”, Wiley, 2019

6


