
Proceedings of the Canadian Society for Mechanical Engineering International Congress 2020
CSME Congress 2020

June 21-24, 2020, Charlottetown, PE, Canada

Hardware and Software Project Management Best
Practices for Small Satellite Systems

1st Andrada Zoltan
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

andrada.zoltan@alumni.ubc.ca

2nd Richard Arthurs
Mechatronic Systems Engineering

Simon Fraser University
Surrey, Canada
rarthurs@sfu.ca

Abstract—The Command and Data Handling Team for the
ORCASat CubeSat project, funded by the Canadian Space
Agency, is responsible for delivering a space-ready on-board
computer, supporting testing infrastructure, and ground control
mission software in a three-year timeline by the launch date
in 2021. Members of this team are distributed across two
universities and consist of undergraduate students contributing
part-time to the project. Co-lead by two individuals, the team
has implemented several techniques and practices to handle the
challenges that come with managing remote work. We present
the methods that have been employed in the management of this
team, including meeting format, team communication software,
use of version control and task tracking software, and practices
for long-term planning. The standardization of a design process
methodology, from requirements definition to implementation, is
also discussed as it has greatly helped increase the efficiency of
the team as a whole.

Many of the methods employed in the management of this team
were originally based upon well-known software development
methodologies, adjusted to meet the needs of combined hardware
and software projects. Lessons learned from the management of
previous student design team projects were also incorporated into
the current management strategy. These techniques are tailored
to the rigorous demands of a small spacecraft development
program and have contributed to the rapid development of the
project and the successes of the team thus far. Employing similar
methods would be useful to any other program working under a
similar timeline and team composition to that of a student-driven
CubeSat development program like ORCASat.

Index Terms—management, design process, CubeSat

I. INTRODUCTION

ORCASat is a 2U CubeSat project, sponsored by the
Canadian Space Agency, with a three-year development time-
line launching in 2021. Its mission is to provide a known-
good optical reference for use in ground-based telescope
calibration. The project is a collaboration between multiple
universities, requiring a majority of the technical work to
be completed remotely at each school. The Command and
Data Handling (C&DH) team, in particular, has had members
working remotely since the beginning of the project. The team
is primarily composed of undergraduate students working on
a voluntary basis and is managed by two co-leads, leading a
team of six to seven members. The team has achieved unpar-
alleled member retention rates, with all members currently on
the team having been involved since project kickoff in 2018.

As well, the team has consistently been given high praise for
staying organized and meeting the milestones throughout the
project thus far.

Having now hit the halfway point of the project, the C&DH
team has come to recognize the techniques and management
strategies that have lead to the team’s success. This paper
discusses these strategies, including: the design and imple-
mentation process, team management details such as meeting
format and the role of the co-leads, and a discussion of lessons
learned. The purpose of this paper is to present the techniques
that have worked for this team in the hope that other teams
can learn from and adopt them for their own benefit.

II. DESIGN AND IMPLEMENTATION PROCESS

A. Concept Development

The start of any spacecraft project begins with the mission-
level concept design, where the objectives of the mission are
defined and the top-level requirements of the spacecraft are
formulated [1]. Without this initial definition of what the final
product needs to do, there is a high risk that what is actually
produced does not meet the initial intent. The C&DH team has
taken this philosophy and applied it down to the feature level
for any hardware or software component present in the system,
through the process of requirements flow down. This process
involves the extension of requirements from the mission level
down to the feature level, and is best performed by creative
individuals that have a solid understanding of the system and
its components.

Starting at the system level, mission requirements that apply
to C&DH are taken and broken down into detailed system
requirements. This process defines the responsibilities and
capabilities of C&DH needed to make the mission succeed.
During the critical design phase of the project, the same
process is repeated with interfacing requirements to ensure
that C&DH is developed to be compatible with the other
subsystems. The step of defining system requirements should
happen before beginning to prototype and design the system,
as it will heavily guide the features required.

At the next level, the system requirements are taken and
broken down into design requirements for each feature in
the system. The purpose of these requirements is to define
what the feature needs to do in order to meet the required



Figure 1. Requirements Flow Down Example

functionality of the C&DH system. Each requirement must be
verifiable, as they are used to drive testing and qualification
of the system later into the project. An example of the full
requirements flow down for a particular feature can be seen
in Figure 1.

By definition, some idea regarding the design of the feature
is needed in order to write the design requirements. However, it
is important to not dwell on the implementation details at this
point. If implementation is defined too early in the project, it
is likely to be changed as the system design matures. This will
lead to wasted time and a redo of prior work. When writing
design requirements, consider: how the system requirement
will be satisfied by the respective technology, what constraints
are imposed by the rest of the system, what level of control or
autonomy the feature should have, and how the requirement
may be tested.

B. Design Proposal

At this stage, requirements have been written for all features
defining their role and what they must do in the system. With a
clear idea of the intent of each feature, it becomes possible to
create a design that meets these requirements. There is no more
concern regarding what needs to be done, but rather how it
should be done. This stage of the process involves developing
a document that outlines the implementation details for a
particular feature. In the case of a software feature, information
included in these documents may be: high-level structure and
components of the feature, major data structures and thread-
safe primitives needed, API definition, and integration with
other features in the system. Whereas the hardware design
documents consist of: trade-off analysis between acceptable
parts, relevant calculations, application schematic, and a liter-
ature review of the reliability of such a part.

Focus of this discussion will be placed on software design,
as it spans for a longer duration of the project and requires
more iterations. In a software feature design document, the
details of the design are broken out over different development
phases to conceptually split the implementation into manage-
able pieces. The phases are typically as follows:

• Phase 1: Core functionality of the feature is imple-
mented, which includes the foundation needed to make
the feature functional at a basic level.

• Phase 2: Advanced capability is added that was not ini-
tially required for a basic implementation, but is needed
in the final system.

• Phase 3 & 4: Health check capabilities and error handling
are included to allow for detection and response to error
scenarios in flight.

It is naturally difficult to know all the details of how a
feature will work in the different development phases from
the start of the project. It is acceptable to not fully flesh out
the design of the feature in phase 2 onward, but keep the
description brief and high-level. These documents are meant
to act as working documents and should be updated with more
details at every phase as the feature matures. The goal of the
documents is to outline the work that is to be done over the
course of the next phase and brainstorm improvements for
future phases. In general, a team member should be able to
take the current phase in this document and implement it to
the specification that is described.

The design phase may need to be done by leadership during
the start of the project to set a standard for what is expected for
these documents. Additionally, document templates should be
made available to ensure a consistent level of documentation
across the system. Team members who are interested in doing
design work are able to do so, but may require some leadership
intervention to help kick-start the work. Typically, a meeting
will be held with the lead developer to clarify any questions
and discuss the deliverables needed for the next phase.

Once the design has been written down, it undergoes a week
of review in which team leads and other members look over
the document. This early design and review process allows
for fundamental flaws to be discovered without the large time
investment of a full implementation. Countless hours have
been saved through finding these problems early and adjusting
a design accordingly. Once the design is approved, the team
leads take the current phase and divide it into individual tasks
that are referenced in GitLab issues. These issues serve as
the unit of work when assigning to team members and should
roughly span one to two weeks of work, as it ensures tasks do
not draw on for too long, giving members a sense of progress
and accomplishment for completing them.



C. Implementation and Review

With tasks documented in GitLab issues, team members
are able to take an individual task and begin working on the
code implementation for the respective feature. Programming
is typically executed as an independent task, but members
are recommended to reach out frequently for help regarding
implementation details and debugging assistance.

Prior to submitting their work for code review, the im-
plementer must complete a series of tasks preparing their
implementation to be merged back to the master branch.
These tasks include: re-basing the working branch with master,
ensuring the code compiles on all platforms without warnings,
and passing a series of automated tests that verify software
functionality. These steps, along with the review process, are
aimed at minimizing the issues introduced in the main code
base, and keep the master branch functional at all times.
Once these items are complete, members must submit a merge
request and the code review process is started.

The code review is typically handled by one reviewer, but
may be looked at by multiple people if the changes are
significant. Reviewers are cycled through to ensure an even
distribution of work among members, and provide everyone
with the experience to give and receive feedback. The code
review process is intended to be thorough and impose a high
level of quality to all code going into the master branch. The
items that reviewers look for are:

• Coding Standards: A selection of MISRA-C rules and
custom formatting rules are used to enforce consistency
in the code base [2]. The MISRA-C rules are also verified
by the compiler tool-chain, which generates warnings for
non-compliant code. Our coding standard includes coding
style, or format rules designed to produce a readable code
base and prevent certain errors. Adoption of a consistent
coding style is recommended when working on mission-
critical software, as it can help make certain errors more
easily visible [3].

• Efficiency and Correctness: Are there any improve-
ments that can be made to make the implementation more
efficient? Are there any missed corner cases in the logic?

• Ease of Use: Is the feature easy to integrate with the rest
of the system (i.e. is the API suitable)? Are there com-
mands to control and enable this feature? How testable
is this feature?

Although the code review process may seem lengthy and
exhaustive, it is very critical to the development process [4].
Peer reviews can catch coding mistakes and major flaws in
the design [3], expose multiple members to how a particular
feature works, and enforce consistency across the entire code
base. The code review process also provides a great learn-
ing experience for both the reviewers and the implementer,
preparing team members for work in industry.

III. TEAM MANAGEMENT

A. Software and Tools

A standard set of software tools has been adopted by the
team for managing development. Many are also used project-
wide at ORCASat, but when the C&DH team has a choice,
low-cost and cross-platform tools are preferred, allowing them
to be used without the need for university networks or licenses.

• GitLab: GitLab is used to host git repositories for all
software and hardware projects. Unlike other teams, the
ORCASat C&DH team uses version control on all soft-
ware projects, starting at the beginning of development
[5]. Our software development operates on a continuous
cycle - there are no experimental or side projects, all
development is integrated in the main code base, even if
the code may not have its phase 3 features implemented
yet. The focus within the design process on producing
features that will integrate well with the existing system
makes this possible.

• GitLab Issues: Software bugs and development tasks
are tracked in the appropriate repository using GitLab
Issues. Many issues are grouped into “milestones,” which
represent a phase of development of a feature, or a catch-
all grouping for miscellaneous issues, such as “bugs” or
“nice to have.” Milestones provide at-a-glance snapshots
of progress on a particular feature.
Many issues are created from the tasks identified during
the in-document design of a feature. Others arise as a
result of bugs, or from ideas that may need to be inves-
tigated further. Issue detail varies, but before assignment
to a team member, the issue is checked and if necessary,
updated with relevant details. Tracking tasks using issues
that are close to the code base and can easily reference
other issues, merge requests, or code, enables the code
and the task list to stay synchronized. When working on
multiple software projects at once, the ability to link the
work and the task tracking becomes very important, and
is something that cannot be done easily with more generic
task management or kanban board tools.

• Wiki: GitLab Wikis associated with each repository are
used for static information such as coding standards, how-
to guides, and procedures. Since edits to wikis are not
visible live, they have proven to be difficult to use for
documentation that may change a lot during its creation,
such as design documentation for software features. Addi-
tionally, the lack of support for comment-based reviews
of wiki content means wikis are not well-suited to our
design process, where review is crucial.

• Code Composer Studio: The integrated development
environment provided by Texas Instruments is used for
programming firmware, and interactive debugging. Lever-
aging manufacturer-provided tools ensures that a cross-
platform development environment is straightforward to
set up, and removes the need to maintain a build system
and its installation instructions for all platforms.



• G Suite: The Google Docs and Google Sheets tools
from G Suite by Google are used extensively for design
documentation, requirements tracking, and meeting notes.
The document review comment tools are used exten-
sively during design review, and documents are organized
strictly in a directory hierarchy that is shallow, which
aids in finding documents easily. Additionally, the Google
Sheets API is used by custom tools to generate code
from items tracked in a spreadsheet, and to synchronize
the test plan definition spreadsheet with the actual test
implementations in code.

• Slack: As with many other CubeSat programs, Slack is
used for project-wide communication [5]. More specifi-
cally, the C&DH channel is used only for technical and
administrative discussion. Public but on-topic discussions
are encouraged as they allow all team members the
opportunity to track and contribute to the discussion.
Other channels exist for each subsystem, as well as
one dedicated to systems engineering. Team members
are encouraged to ask questions relevant for a specific
subsystem in the associated channel, which helps keep
a record of the conversations and allows input from
multiple relevant parties.

B. Meeting Format

Online meetings are held weekly in the evenings, with the
time being adjusted at the beginning of every semester to
account for changing school schedules. During the meeting,
a set of meeting notes is updated while being presented on a
shared screen, making it easy for participants to follow along.
The notes from the previous week’s meeting are used as the
base for the current week, ensuring items on the agenda from
previous weeks cannot get overlooked.

The weekly meeting is used to provide project-wide updates,
facilitate verbal discussion of new issues, and to transfer tasks
between stages in the development or implementation process.

The meeting format is as follows:
• Management Update: Updates from the previous week’s

project-wide meetings, typically attended by C&DH team
leads. These updates are intended to provide project-wide
context, and emphasis is placed on how any updates may
affect the development of the C&DH system.

• Review of Timeline: The C&DH four-month timeline is
consulted and updated to reflect changes to the plan, and
to mark completion of key tasks. At the end of every
month, a retrospective is also held to gain feedback from
team members about efficiency improvements.

• Per-Person Task Update: A table is maintained with the
ongoing tasks that each team member is working on. For
each task and person, the status of work from the past
week is updated, and a plan is agreed upon for what will
be attempted during the next week. At this stage, tasks
often move from the individual implementation stage into
the code review stage.

• Assignment of New Tasks: Once the status of the current
tasks has been assessed, the process of assigning new

tasks begins. Code reviews are first assigned to anyone
who is interested in reviewing the new work. Team
members are always encouraged to volunteer to take on
reviews if their interests and time allow. Otherwise, a
review queue is maintained, and members are assigned
to complete reviews based on their position in the queue.
Overall, flexibility is maintained; if members have a busy
week coming up, or would prefer instead to act as a
secondary reviewer, accommodations are made willingly
by team leads. Tasks are often presented to members with
a focus on what could be learned by reviewing the work,
and pairs of reviewers may be assigned if the area of
development is particularly complex or new to one of
the reviewers.

C. Team Leadership

The ORCASat C&DH team is lead by two co-leads with
equal responsibility, accountability, and technical ability. This
structure allows for completion of all the required management
tasks while remaining flexible to availability from week to
week. It also provides a level of peer review for all decisions,
not just technically but in management as well. The role of the
two co-leads is to drive the design of the system, delegate tasks
to members, and define best practices. The co-leads define how
the team is run and the process by which work gets completed.

The management strategy employed is very hands-on, in
which the co-leads are also heavily involved in day-to-day
programming, design work, and testing. In this way the co-
leads are able to acquire a strong understanding of the system
and how to develop for it, which allows team members to
benefit from this added expertise. The co-leads often provide
guidance to members where it is needed, and it is the leads’
job to kick-start tasks so they may easily be picked up by any
member. The leads are also involved in reviewing the work
that members have done and providing advice for ways to
improve it. Leadership divided among two people has been
a very rewarding process, as working collaboratively allows
the leads to learn from each other and ensures maximum
knowledge transfer. This technique is one employed by many
student teams, and can be highly productive with frequent
communication [5].

D. Timeline Planning

Long-term planning is required to ensure the team is work-
ing on the most critical tasks and subsystem deliverables are
completed on time. Planning is executed on a four-month
basis, as it aligns with school semesters, and it is driven
by: required deliverables, needs of other subsystems, and
dependencies between features. Towards the later stages of
the project, task planning may also be driven by testing
requirements and the infrastructure needed to execute a pre-
defined test plan.

Features should be developed as they are needed to the
point that they are useful elsewhere in the system. It is not
necessary, and it is possibly detrimental, to develop features
beyond what is needed at the time. There are always higher



priority features that require the development time instead. As
well, over-developing features often leads to wasted work that
becomes obsolete by the time the feature is needed.

When assessing the priorities of different tasks, there are
three important factors to consider. The first factor, which is
of particular concern to the C&DH system, is the development
level and timeline of other subsystems. Due to the close
integration of C&DH with the rest of the satellite, timeline
delays in the development of other subsystems may negatively
impact the C&DH team’s timeline. Expectations for other
subsystems should be laid out well in advance to mitigate
this risk. Secondly, dependencies between features and the
importance of each item must be considered. Working on
dependent features in parallel can lead to large delays when
trying to coordinate the work of different people. An important
note is that tasks that are closely related to hardware take much
longer than purely software tasks. And thirdly, it is a good idea
to account for extra time in the plan for software bug fixes and
other overhead that may come up.

IV. LESSONS LEARNED

A. Remote Work

Effective remote working requires modifications to a typical
engineering development cycle, and considerations in the
development of team culture. The C&DH design process relies
on well-supported software tools, and emphasizes unfettered
hardware access for all developers. These practices allow
troubleshooting to occur quickly, reducing friction within the
development cycle. In terms of communication management,
openness and flexibility are the key traits.

Hardware
The requirement to use custom-designed hardware has not

presented a challenge to C&DH team work. All team members
are given either a copy of the custom OBC hardware, or a low-
cost development board with the same micro-controller used
on the OBC, which can run similar firmware. The firmware
for the development board implements simulated versions of
hardware features that are only present on the complete OBC.
From a user interface perspective, when sending commands,
these boards perform identically. Since every team member
has hardware, every team member can implement, debug, and
test firmware features independently. This allows development
work to be parallelized, and affords team members flexibility
in when and where they complete development tasks.

Copies of custom hardware are allocated to team members
with better access to lab equipment, or to team members
working on firmware features that require custom hardware,
such as low-level drivers. The custom hardware prototypes
are designed to operate without lab equipment, ensuring
work can be done without a well-equipped electronics lab.
For example, all power supplies required during day-to-day
firmware development are derived from power provided over
the USB port. This USB port also provides a debug serial
connection to the OBC. Lab equipment is sometimes required
for specific tests, in which case a board will be tested in
a university lab. However, especially in the earlier phases

of firmware development, minimal lab equipment is needed
relative to development time. Where lab equipment is required,
the team also prefers portable and low-cost tools, such as
small logic analyzers for debugging communication interfaces,
rather than oscilloscopes. These techniques and preferences
enable the software development, which has been recognized
as a previously underestimated time sink on other projects [6],
to be completed without the use of many special tools. This
allows it to be completed anywhere, increasing productivity
when most development is remote.

Communication
With remote work being completed by members at different

times of day, most communication becomes asynchronous. Ef-
fective asynchronous communication requires consistent mon-
itoring from all who are able to answer questions. Frequently
encouraging all team members to post and answer questions
in the team-wide Slack channel is an effective technique to
ensure that questions are answered promptly. The importance
of allowing developers to ask questions openly, and to receive
responses, is well-understood in the context of educational
CubeSat development programs [7]. This communication, be-
ing public to the team, is also available as a reference for
anyone who needs it in the future. This is another important
benefit of public communication. There is also very little non-
technical or non-administrative communication in the channel.
This feature of the C&DH channel increases the value of
everything in it; if members see a notification from the
channel, they can be quite sure that the discussion is important.

Effective remote work also requires flexibility in scheduling
synchronous communication. Scheduling ad-hoc video chats
is encouraged and is done frequently. These meetings are
often held between team leads and a team member, and rarely
include more than three people, though the entire team is
always notified and invited. The agenda is flexible, but often
consists of design or document review, co-troubleshooting, or
review of a list of questions or pain points. Meetings of this
format usually last less than an hour, but are an extremely
effective way to get tasks progressing. Team members are
often grateful for the opportunity for a focused discussion after
they have been stuck on a problem. The key to getting this
form of meeting to become frequent has been to encourage
team members to consider it as an option. During task review
at weekly meetings, a short, focused discussion is often an
option suggested as a next step.

B. Team Retention

Team member retention is a problem that many CubeSat
programs struggle with, especially those who incorporate
CubeSat development into coursework [5] [6] [7]. Often, the
use of professors or graduate students to provide multi-year
continuity is used [5]. Strict documentation practices are also
cited as a knowledge transfer tool for students coming in and
out of the project [7], [5]. However, little effort seems to be
placed into promoting retention of current members.



Team Motivation
Motivation, particularly in a team setting, can be a difficult
thing to achieve. Every person is motivated in a different way,
so using a generic method to promote team motivation may
not always be successful. The first step in motivating members
is discovering what people are interested in working on and
finding opportunities for them to do so. C&DH members
are not given tasks that they are uninterested in working
on, which leads to faster completion time and higher quality
of work. People also like to work with different levels of
independence. Some people enjoy the challenge of designing
a new feature and seeing it through to completion, whereas
others would prefer to follow instructions for implementing
a task. It is important to work with members and find the
right balance of independence and guidance for each one. Too
much independence can be demotivating if the individual is
unclear on how to approach a given problem. This issue also
arises when assigned tasks are large in size and open-ended.
It is difficult to make progress on a task when there are no set
deliverables, leading to unmotivated team members that may
leave the project over time.

Other methods for motivating a team can involve showing
members that they are valued and respected, by encouraging
feedback on all team process changes or design decisions.
Buy-in is important to getting the team working as a cohesive
unit. Additionally, it is a good idea to provide regular chances
for members to give feedback. Monthly retrospectives allow
everyone to voice their opinion for what is hindering and
helping their performance. The team can then discuss options
for solving the pain points, and implement these solutions.

Team Organization
From prior experience in past CubeSat programs, we have

found that team organization is another factor that can impact
member retention. Disorganized teams can cause members
to become disinterested in participating, and lower team
performance overall. Some attributes of a disorganized team
can include lack of direction, unclear or open-ended tasks,
no accountability, and no process standards. By defining and
following a design process, many of these issues can be
resolved. It is the role of the leads to ensure members have
good direction with their tasks, by communicating with them
and offering to discuss ideas when needed. Accountability is
another important factor for motivating members to complete
their tasks. If no one is held accountable for not completing
the work they were assigned, progress can heavily diminish.
One method C&DH has employed is the use of a weekly
counter to keep track of how long tasks have been in progress.
This counter provides a visual indicator for members to see
how much time has been spent on a certain task. The goal
of this method is not to be harsh when the counter grows,
but to emphasize the importance of upholding a member’s
responsibility to the team and completing their work.

V. CONCLUSION

Management of a technical team requires having a handle on
many different aspects of the team, from people management

to process development to technical design. A good team is
one which is formulated around structure and good communi-
cation, enabling members to do the work they are assigned and
learn in the process. It is important to work with the members
of a team and discover what motivates and enables them to
succeed in their work. Good organization and structure can
also make members see the importance of their contributions
to the project, promoting team enthusiasm and retention.

Alongside people management, a well-defined design pro-
cess helps ensure consistency, and increases the likelihood
that a high-quality system will be produced. It is crucial to
undergo the overhead of designing a feature prior to imple-
menting it. This allows for discussions around the proposed
implementation to form, leading to an overall better design
that is compatible with the existing system. An established
process also enforces good documentation and implementation
practices, which results in a solid final product.

Overall, it is important to find the methods that work best for
your team. Team management should be an iterative process,
aimed at achieving maximum efficiency and enjoyment of
all parties. The practices discussed in this paper are what
have been successful for the ORCASat C&DH team, but
many of the key concepts, such as structured processes, good
organization, and team communication, can be applied to
benefit other teams greatly.

ACKNOWLEDGMENT

This work is supported by the generous funding of the
Canadian Space Agency (CSA), as part of the Canadian Cube-
Sat Project. Authors are grateful for the technical guidance,
resources and time the CSA has donated to this project.

REFERENCES

[1] J. R. Wertz and W. J. Larson, Space Mission Analysis and Design, 3rd ed.
Hawthorne, California: Microcosm Press, 1999, ch. 1, pp. 1–18.

[2] G. J. Holzmann, “The power of ten - rules for developing safety critical
code,” Computer, vol. 39, no. 6, pp. 95–99, 2006. [Online]. Available:
https://ieeexplore.ieee.org/document/1642624

[3] B. O’Connor, NASA Software Safety Guidebook, nasa-
gb-8719.13 ed., NASA, 2004. [Online]. Available:
https://standards.nasa.gov/standard/nasa/nasa-gb-871913

[4] C. F. Kemerer and M. C. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on psp data,” IEEE
Transactions on Software Engineering, vol. 35, no. 4, pp. 534–550,
2009. [Online]. Available: https://ieeexplore.ieee.org/document/4815279

[5] L. Berthoud, M. Swartwout, J. Cutler, D. Klumpar, J. A. Larsen,
and J. D. Nielsen, “University cubesat project management for
success,” in Proceedings of the 33rd Annual AIAA/USU Conference
on Small Satellites. Utah State University, 2019. [Online]. Available:
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4362&context
=smallsat

[6] L. Berthoud and M. Schenk, “How to set up a cubesat
project - preliminary survey results,” in Proceedings
of the 30th Annual AIAA/USU Conference on Small
Satellites. Utah State University, 2016. [Online]. Available:
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3417&context
=smallsat

[7] J. A. Larsen, J. F. D. Nielsen, and C. Zhou, “On student motivation
in a problem and project-based satellite development and learning
environment,” in 2013 6th International Conference on Recent Advances
in Space Technologies (RAST). IEEE, 2013, pp. 923–928. [Online].
Available: https://ieeexplore.ieee.org/document/6581346


