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Abstract—In linear elasticity, Poisson’s ratio is one of the 

physical constants which characterizes an isotropic material, 

as it describes its lateral contractive response in infinitesimal 

strain. It has been proved that the use of this constant is 

limited, for several application where a material is subjected to 

large deformation. In this case, a scalar function of 

deformation can be defined, known as Poisson’s function, but 

the strain tensor must be calculated first. Due to various 

existing strain tensors, several Poisson’s functions are 

calculated to describe the negative strain tensor in the 

orthogonal direction, divided to the strain tensor in the axial 

direction, where the force is applied. Selected experimental 

tests are performed for elastomers under simple tension and 

the resulting Poisson’s functions are shown for different strain 

tensors. 
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I.  INTRODUCTION 

In classic isotropic, linear theory of elasticity, the 
mechanical behavior of a material can be described by 
determining only two constants: Young's modulus and 
Poisson's ratio. Any other information concerning the material's 
response, can be calculated by using the above constants, 
obtained from common experimental tests. Isotropic linear 
elasticity is capable of describing small deformations, where 
the lateral contractive response of a material is linearly 
proportional to the axial tension or compression [1]. 
Unfortunately, the above theory fails to describe large 
deformations that many applications and several materials, 
such as biological or elastomers, exhibit to. The reason is that 
the relations between stress and strain are more complicated 
and the material's parameters are not constant. As a result, the 
use of nonlinear elasticity is demanded due to its ability to 
describe the mechanical behavior as a scalar function of the 
deformation gradient. The complexity of defining such 
functions arise from the fact that there are multiple ways to 
define strains and stresses in nonlinear deformations, giving 
rise to multiple nonlinear functions corresponding to the same 
linear parameter. Furthermore, the choice of these functions is 
depended on how an experiment is performed and how the 
experimental data are processed [2]. 

II. THEORETICAL BACKROUND 

A. Non-Linear Elastic Deformation 

For an isotropic, non-linear hyperelastic material, the stress 
tensor can be described by a strain-energy density function W= 
W = W (I1,I2,I3), which is expressed by the three invariants I1 

(i=1,2,3) of Cauchy-Green deformation tensor B. In the case of 

incompressible materials, namely I3= =  the 
constitutive equation becomes 

  = − pI  +  + −−  () 

where B is the left Cauchy-Green tensor, which has the squared 

stretches i
2 as principal values; I is the identity tensor, p is the 

unknown hydrostatic stress and 1=2W/I1, 2=-2W/I2, are 
two response functions depending on the stress invariants, 
determined by experiments [3]. In the present work, the case of 
simple tension in the first direction is studied, which can be 

expresses by Batra’s theorem [4], as  = diag(T,0,0), where 
diag(T,0,0) refers to a diagonal matrix, and T is the only non-
zero component of the stress tensor. When a simple tension is 
applied, a corresponding extensional deformation is produced, 
in the form   

 x1 = X1  x2 = k()X2,  x3 = k()X3,  () 

where (x1, x2, x3) and (X1, X2, X3) are the Cartesian coordinates 

for the current and reference position, respectively;  is the 
extension ratio in the direction of where the force is applied 

and k() the stretch ratio in the orthogonal direction. The 
deformation gradient, the right and left Cauchy-Green tensors 
are 

 F= diag(,k(),k()),  C= B = diag(2,[k()]2,[k()]2).  () 

For the special case of isochoric deformation, namely detF=1, 

the orthogonal stretch takes the form k()=-1/2  and the strain 

tensors becomes en = diag(en(), en(k()), en(k())), where the 
non-linear strain [2] is defined as 
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for any given stretch a>0. 

In Fig. 1, the values of different strain measures in the first 
direction appear, for several stretch ratios, when natural rubber 
is subjected to large deformation. Some of these tensors are 
commonly used, especially the ones that are independent of 
rotation, such as Hencky (logarithmic) strain tensor [5] e(H)=e0, 
the Biot strain tensor [6] e(B)=e1, the Green strain tensor [7] 
e(G)=e2, and the Almansi strain tensor [7] e(A)=e-2. The 
experimental data of a natural rubber, shown in Fig. 1, were 
compared with the different strain tensors, for examining their 
validity and the fitting was observed to be excellent. It must be 
noticed that, for small elastic deformations, the above strain 
tensors are equivalent to the infinitesimal strain from the linear 

elastic theory ẽ=(u+uT)/2, where the bar over a scalar or a 
tensor is used to denote a value appearing in the theory of 
linear elasticity [1]. Moreover, for small deformations, strain 
tensors are almost linear and equivalent to each other (Fig. 2).  

B. Non-Linear Poisson’s Function 

In isotropic linear elasticity, Poisson’s ratio describes the 
lateral contractive response of small deformations. When the 
deformation belongs to large scale, describing the mechanical 
behavior of the material with a constant, is not decent. As a 
result, Poisson’s ratio becomes a scalar function of deformation 
[8], describing the negative quantity of strain in the orthogonal 
direction divided to the axial strain of the material in the 
direction where the force is applied. Due to the variety of the 
strain tensors in non-linear elasticity, Poisson function can be 
defined in several ways [9]. By using (4), the non-linear 
Poisson functions are defined as follows 

 vn()  = − en(k()) / en(). () 

The nonlinear Poisson function, defined by (5), can be 
calculated directly from experimental measurements. 
Consequently, no prior determination of the strain-energy 
density function is needed. For small deformations, i.e. when 

→1, the Poisson functions coincide with the Poisson’s ratio 

from the linear elastic theory, namely ṽ=lim→1vn() =  

lim→1 dk()/d. If a material is incompressible, then k()=-1/2. 
Usually, Poisson’s ratio takes values between 0 and 0.5 [3], but 
for some materials it is noticed to be greater than 0.5. In Fig. 3, 
it is shown that Poisson functions can take similar values for 
finite deformations. 

III. NUMERICAL RESULTS AND DISCUSSION 

In order to check the validity of the theory presented above, 
some experiments took place concerning three different sample 
of natural rubber. The samples were exhibited to simple tension 
with 0.1mm/s speed, until they have reached their fracture 
point. The temperature that the experimental procedure took  
  

Figure 1.  Strain tensors versus axial stretch ratio of a natural rubber for large 

deformation.

 

Figure 2.  Strain tensors versus axial stretch ratio of a natural rubber for small 

deformation. 

 

Figure 3.  Poisson function versus axial stretch ratio for natural rubber. 



   

place was 23oC. With the obtained experimental data, the 
lateral contractive response to stretch was examined for every 
sample. Different strain tensors where used in order to describe 
the extension of the material and the lateral response to it. The 
arising results shown in Fig. 1, were used for calculating 

Poisson functions for several values of axial stretch  to natural 
rubber (Fig. 3). 

In Fig.1, it is observed that for small deformations the strain 
functions are linear and equal, but as the deformation grows the 
strain tensors describe the deformation of the material in 
different ways. For example, using the Hencky strain tensor, 
the description of the logarithmic strain is gained, but the 
Green strain tensor provides information about the material’s 
deformation in respect to the reference configuration. In Fig. 3, 
different Poisson functions are shown for different strain 
tensors. It is observed that, for small deformations, the different 
Poisson functions are equal to the constant value of Poisson 

ratio, namely when →1 then v→0.5. The experimental results 
agree with the ones obtained by [9]. Moreover, it is significant 
that axial strain increases with the increasing axial stretch, but 
only by using the Hencky (logarithmic) strain the 
corresponding Poisson function remains constant and equal to 
0.5. Namely, Poisson function using the Hencky strain tensor 
captures the remaining fixed volume, which is a significant 
characteristic property of natural rubber. In several 
applications, the use of constant material parameters is 
common when linear elastic models are used. 

IV. CONCLUSIONS  

In the case of non-linear elasticity, scalar functions of the 
deformation must be defined, which are similar to the classical 

constitutive parameters. In the present work, natural rubbers are 
examined under simple tension for finite strain. The results 
show that the mechanical response of the material differs for 
large deformation and depends on the selected strain tensor. 
For small deformations, the strain tensors are almost linear and 
equal to each other, but when the stretch ratio is increased and 
so is the strain, the strain tensors differ. As a result, for small 
strain regime the Poisson’s ratio is constant, but in finite strain, 
this ratio is converted to a scalar function of deformation. 
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