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Abstract— The safety and reliability of Lithium-ion batteries 

are increasingly critical, especially as more products on the 

market are powered by them. The core temperature of batteries 

is one of the important factors to consider when improving 

safety, longevity, and performance. To overcome the inability 

to practically obtain direct core temperature measurements, this 

paper proposes a neural network-based estimation method 

using a gated recurrent unit. This approach can estimate the core 

temperature to a high level of accuracy using commonly 

measured signals such as voltage, current, state of charge, 

ambient and surface temperatures. Experimental results 

demonstrate excellent estimation performances over cycling 

and between different batteries of the same type. The proposed 

method does not require a strenuous parameter tuning 

operation, model derivation and simplification, or a deep 

understanding of the electrochemical processes in the battery. It 

should be also highlighted that, compared to the other available 

options in literature, this technique has the advantage of easy 

implementation.  

Keywords- core temperature estimation, lithium-ion, recurrent 

neural networks, GRU 

I.  INTRODUCTION 

The modern awakening to the consequences of climate 
change is causing an increase in demand for sustainable products 
as seen with electric vehicles (EVs) and renewable energy 
sources. The most popular energy storage system for this 
application is the Lithium-ion (Li-ion) battery due to its 
relatively higher specific power density and energy density 
when compared to other chemistries [1, 2]. Li-ion batteries, 
however, have drawbacks that depend on temperature. 
Temperature outside the optimal operating range has been found 
to affect battery safety, longevity [3–7] and performance [8–10]. 
The effects of operating a battery outside these limits could 
develop into thermal runaway, reduction in capacity and cycle 
life, as well as internal impedance variation. This poses a 
problem with electric vehicles since they often require high 
discharge or charge currents that generate heat. 

In order to prevent these consequences, an accurate 
observation of battery temperature is crucial. A popular method 
of measuring battery temperature is with surface-mounted 
temperature sensors such as thermocouples, thermistors, or 
resistance temperature detectors (RTDs). The issue, however, 
arises with the realization that the core temperature of a cell can 
differ from the surface temperature at high C-rates [11] which 
renders the surface temperature measurement imprecise to what 
it actually is in the cell. This awareness has piqued interests and 
attention in core temperature estimation and predictions. Some 
attempts involve the use of adaptive observers [2, 12–14] to 
estimate the core temperature based on data and models. 
Richardson et al proposed an electrothermal-based algorithm 
that associates electrochemical impedance spectroscopy (EIS) 
with surface temperature measurements for core temperature 
estimation [15]. Other literatures have also proposed predicting 
the temperature distribution with high fidelity models [16, 17]. 
Although these methods solve the problem of core temperature 
estimation, they can be quite involved for researchers in the field 
due to the intense parameter estimation requirement and 
complexity of such an approach, as well as the need for an in-
depth understanding of electrochemistry. 

This paper introduces an easy to implement neural network 
approach that removes this barrier to entry, thereby, allowing 
researchers and engineers alike to focus on improving safety and 
reliability in Li-ion batteries and the products they power. The 
proposed technique is a data-driven approach that uses a 
recurrent neural network (RNN) known as the gated recurrent 
unit (GRU). This neural network (NN) model receives 
commonly measured battery signals such as current, voltage, 
SOC, ambient and surface temperatures and delivers highly 
accurate estimations of the core temperature in real time. The 
use of the GRU for estimation does not involve any thermal 
models, their derivations or simplification, nor does it require an 
expertise in electrochemistry. Estimations are accomplished by 
training the NN to learn the non-linear relationship between the 
variables, and then testing the network on measurements from 
processes like constant current constant voltage (CC-CV) cycles 
or drive cycle current profiles. This NN approach is able to: 



 

   

• Accurately learn the non-linear thermal relationship 
between the voltage, current, state of charge, surface 
temperature and the core temperature  

• Maintain a high level of accuracy over cycling  

• Extend this estimation experience to other batteries of 
the same form-factor and chemistry 

To summarize the key contributions of this study, this 
approach enables its users to easily set up and estimate core 
temperature without an in-depth understanding of the intricacies 
of the battery nor the need for model derivation, model 
simplification or a strenuous parameter estimation process. It is 
a neural network model able to learn the non-linear relationship 
between a multivariate input and the core temperature. It has the 
potential of scale since only one model needs to be trained with 
data from one battery in a pack and beyond.  

The remainder of this paper is organized as follow. First, we 
introduce the neural network model for estimating core 
temperature as well as the training process. Then, a detailed 
description of the experiment set up and data collection process 
is introduced. Next, several test cases are investigated, and the 
results and observations are discussed. Finally, we conclude the 
paper. 

II. NEURAL NETWORK MODEL FOR CORE TEMPERATURE 

ESTIMATION 

A. The Gated Recurrent Unit (GRU) 

Recurrent Neural Networks (RNNs) are a class of artificial 
neural networks that are used for time-varying or sequential data 
predictions. The main purpose of an RNN is to allow data to 
persist, thereby recognizing patterns from past data and using 
those patterns to make estimations or future predictions. An 
RNN is a subset of the supervised learning family because of its 
ability to learn the relationship between its inputs and the 
required output(s). A supervised neural network learns this 
relationship by minimizing a loss function with respect to the 
model weights. Therefore, as the model learns, the loss decreases 
towards a local or absolute minimum following a gradient and 
updating the weights. Although a vanilla RNN is able to learn 
these sequential relationships, it is unable to maintain 
dependencies or intuitions with data further in the past. This 
limitation is caused by two issues known as the exploding and 
vanishing gradient problems [18–20]. These problems occur 
when training with the backpropagation through time (BPTT) 
method. The exploding gradient drives the weights responsible 
for reflecting long-term dependencies to oscillate, while the 
vanishing gradient drives these same weights to a norm of zero 
(not substantially changing with each new epoch), making 
learning incredibly time-consuming or impossible. Gated 
recurrent units and long short-term memory neural networks are 
variations of the vanilla RNN because they solve the problem of 
the exploding and vanishing gradients. They are, hence, better 
suited for capturing long-term contexts. The similarity between 
both is their ability to remember features from further in the past 
without being affected by the gradient problems mentioned 
earlier. This found immunity is due to their memory feature and 
gates which allow them to easily control the flow of data from 
the past. The difference between both, however, is that the GRU 

trades off a better memory for faster training due to the reduced 
number of weights. Unlike language translation, for example, 
the superior memory of the LSTM over GRU is not as important 
for core temperature estimation since the context needed for its 
estimation need not extend as far into the past. 

RNNs have seen rapid growth in research for predicting 
sequential data. They can be found in natural language 
processing, language translation, music compositions and many 
more. RNNs are also experiencing growth in battery research. 
Some applications are seen in the prediction of capacity fade [21, 
22] and state of charge (SOC) estimation [23, 24]. These 
examples are proof that this method is indeed accepted with 
confidence in research. 

The structure of the GRU neural network is shown in Figure 
1. The GRU takes in a number of samples (n) that are 
reformatted from the dataset. These samples are formed by 
applying a sliding-window across the sequential data obtaining 
one new datapoint in every sample. Each sample (𝑋𝑘 ∈ ℝ𝑚𝑥4,
𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝑛) is a matrix made up a number of timesteps 

(m) consisting of previous and present voltage (𝑉⃗ ), current (𝐼 ), 

ambient temperature (𝑇𝑎⃗⃗  ⃗)  and the surface temperature (𝑇𝑠⃗⃗  ⃗ ) 
inputs represented as column vectors by the arrows above the 
terms. These inputs along with the previous hidden state or 
previous output (ℎ𝑘−1). are used to estimate the current hidden 
state (ℎ𝑘) which is either sent to another GRU layer or a fully 
connected layer as the output. The memory of the GRU layer is 
kept in the hidden state and is propagated to subsequent 
timesteps. 

In a GRU layer, there are 2 gates: the update gate and the 
reset gate. The gates are represented by the sigmoid function (𝜎). 
These functions squash elements in vectors to a range between 
0 and 1 thereby allowing or preventing data from flowing further 
on. The update gate is responsible for updating entries in the 
hidden state, it chooses what part of the hidden state to replace 
with the new concatenated inputs. The reset gate is responsible 

 

Figure 1. A GRU architecture unfolded in time 
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for resetting or forgetting irrelevant features in the network. The 
mechanics of a GRU cell can be described by the following set 
of equations: 

where r and z are the reset and update activations, while h and ℎ̃ 
are the hidden state and its candidates for each sample k. 𝑊 is 
the set of weights for input (𝑥𝑘) and 𝑈 is the set of weights for 
the previous hidden state (ℎ𝑘−1), while the hyperparameter 𝑏 is 
the bias applied to the results from each gate. The tanh function 
is similar to the sigmoid activation function except it squashes 
the vector element between -1 and +1. The neural network (NN) 
model used in this paper uses two GRU layers and a fully-
connected layer that receives the hidden state of the last GRU 
layer and reduces it to one neuron which becomes the estimated 
core temperature (𝑇𝑐) for that timestep. Two layers are used here 
to allow the NN to easily extract some abstract relationships 
among the inputs. The numbers of neurons for the two GRU 
layers are 256 and 128 respectively. Figure 2 illustrates the NN 
model layered next to each other. 

III. DATA COLLECTION AND TEST CASES 

A. Specifications and experiment Setup 

Two 2.5Ah lithium iron phosphate (LiFePO4 or LFP) battery 
cells from A123 (Batt-A and Batt-B) were chosen for this 
experiment. The batteries were put through both driving cycle 
current profiles and constant charge/discharge cycles. Data 
acquisition was carried out on an in-house test system shown in 
Figure 3(A). The test system recorded voltage, current, state of 
charge, ambient temperature, surface temperature, and core 
temperature data. Temperature measurement was accomplished 
by attaching and inserting two T-type thermocouples onto the 
surface and into a perforation created at the centre of the positive 
terminal of the battery. The test equipment consisted of one 
programmable power supply capable of 80V and 60A, an 
electronic DC load capable of sinking up to 40A, voltage, 
current, and temperature sensing units, a relay module for 
switching between the power supply and the electronic load. A 
computer is also included for control. 

 

 

 

An illustration of the connection of the experimental set up is 
presented in Figure 4.  

B. Data collection process 

Data collection for training and validation is comprised of 
multiple cycles of constant charge and discharge while data for 
testing was obtained from current profiles based on popular 
driving cycles. The training data collection process starts with 
charging the battery to maximum capacity, and waiting until the 
core and surface temperatures converge (𝑇𝑠 ≈ 𝑇𝑐). A discharge-
charge cycle is then applied to bring the SOC from 100% to a 
target SOC and back to 100%. After each charge and discharge 
step, the battery is allowed to cool down until 𝑇𝑠 ≈ 𝑇𝑐. The target 
SOCs differ in each cycle - they range from 10% to 90% in 10% 
increments. This charge-discharge-cooldown cycle for all target 
SOCs is regarded here as a set. Six sets are carried out for a 
complete dataset. Each set is run at a different C-rate ranging 
from 1C – 6C.  

The testing data is comprised of data collected from running 
5 current profiles derived from the EUDC, HWFET, LA92, 
UDDS, and US06 driving cycles. All profiles applied to the 
battery are applied starting at 80% SOC and within 1C and 6C. 
The data collection procedure for the testing data is similar to the 
procedure for training and validation data collection. The battery 
is initially charged to full, then discharged to 80% SOC, the 
system waits to allow the core and surface temperature values to 
converge then begins running the current profiles. Each profile 
run is also followed by a cooldown period, and then a recharge 
to 80% SOC. All five profiles begin at 80% SOC because EV  

 

𝑟𝑘 = 𝜎(𝑈𝑟ℎ𝑘−1  𝑊𝑟𝑥𝑘  𝑏𝑟)

𝑧𝑘 = 𝜎(𝑈𝑧ℎ𝑘−1  𝑊𝑧𝑥𝑘  𝑏𝑧)

ℎ̃𝑘 = 𝑡𝑎𝑛ℎ(𝑈ℎ (𝑟𝑘 ∘ ℎ𝑘−1)  𝑊ℎ 𝑥𝑘  𝑏ℎ )

ℎ𝑘 = ((1  𝑧𝑘)ℎ𝑘−1  𝑧𝑘ℎ̃𝑘)

 (1) 

 

Figure 2. The neural network (NN) model 
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Figure 3. (A) Battery test system; (B) thermocouple placements 
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Figure 4. Connection Diagram of the Battery Test System. 
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manufacturers typically set a maximum of 80-90% SOC to 
prolong battery life. 

C. Training Process 

The GRU neural network was trained on two Nvidia Tesla 
P100 GPUs supplied through a cluster on the Compute Canada 
(CC) system. The neural network was modelled on a python-
based neural networks library built on Tensorflow called Keras 
for training and inference. A mean square error loss function 

(𝑀𝑆𝐸 =  
1

𝑧
∑ (𝑌𝑖̂  𝑌𝑖)

2𝑧
𝑖=1 ) was used in conjunction with an 

optimizer known as RMSprop that works on the following 
principle: 

where γ is the momentum term (recommended value of 0.9), η 
is the learning rate (0.0001 in this study), ∇k is the gradient of 
the loss function (MSE) with respect to the weights at time step 
k, ϵ is a smoothing term that prevents division by zero, 𝐸[∇2]𝑘 
is called the moving average of the squared gradient and 
finally, θ is the set of hyperparameters including weights and 
biases. The optimizer is what performs the training by 
minimizing the loss. 

As previously mentioned, each dataset imported into the NN is 
sampled with a sliding window, 60 timesteps deep, where the 
last timestep is the current timestep to be estimated. In order to 
conserve memory, 128 batches of these samples were fed in 
each time to the NN for training. The training dataset was split 
into an 80%-20% grouping for the training and validation data 
respectively. During inference (testing), however, a single 
batch was fed in to induce real-time estimation. The neural 
network was trained for 200 epochs during which a 
contingency for overfitting was implemented simultaneously. 
In order to prevent overfitting, the weights of the epoch with 
least validation loss were saved and used. 

D. Test Cases 

1) Core temperature estimation performance: Since the goal 
of this study is to accurately estimate the core temperature, 
the first test case evaluates the performance of the network. 
The neural network’s performance is quantified by the 
maximum absolute error (MAE) and the maximum error 

(MAX). After validating the performance on the test 
dataset collected from Batt-A (dataset-A1), a number of 
other test cases are considered to further prove the 
capability of this approach. 

2) Estimation performance over cycling: The test data and 
result referred to earlier for Batt-A is used here as a 
benchmark before cycling. Therefore, after collecting the 
first iteration of the test dataset for Batt-A (dataset-A1) and 
verifying it on the NN model, the result is compared to the 
result after cycling. After dataset-A1, Batt-A is cycled 100 
times at 10 A and then subjected to a second iteration of 
data collection (dataset-A2). The ability of the NN model 
to accurately estimate core temperature is then verified on 
dataset-A2. In each iteration, a MAE of less than 0.1ºC is 
expected. 

3) Estimation performance on a second cell of the same type: 
In this test case, a second battery (Batt-B) of the same type 
and from the same manufacturer is tested. This battery is 
also put through the same driving cycle current profiles and 
the resulting test dataset is used on the NN model trained 
on Batt-A. The purpose of this is to examine the 
performance of a model trained once and used on other 
cells of the same type in a battery pack. 

IV. RESULTS AND DISCUSSION 

A. Core temperature estimation performance 

The neural network model based on the gated recurrent unit 
(GRU) is trained on the training dataset from Batt-A. Training 
and testing the network for 200 epochs lasted for less than 5 
hours. The chosen number of epochs, as with many other NN 
parameters, was an iterative process to ensure the best training 
and validation losses without overfitting too long or requiring a 
longer training duration. As mentioned earlier, the trained 
model weights with the least validation loss were chosen in 
order to enable the model to generalize well on unseen data. 
Immediately after training the NN model, the model is used for 
testing datasets one sample at a time (batch size = 1). The first 
iteration of the test dataset from Batt-A (dataset-A1) is fed 
through the NN model and the result is shown in Figure 6. In 
the figure, the residual or absolute error is plotted first, while 
the estimated and measured core temperatures are plotted 
below. In this illustration, the NN model is able to produce a 
MAE of 0.066ºC and MAX of 0.275ºC. The MAE attained here 
outperforms the expected result of 0.1ºC which signifies that the 
neural network was able to learn the relationship between the 
inputs and the core temperature while maintaining its ability to 
generalize on unseen data. The reason for the strong estimation 
performance is due to the presence of the surface temperature. 
The model is able to primarily take the current, SOC and surface 
temperature and infer the core temperature from them. This is 
what is meant when the model is said to have learned the 
thermal relationship. Without the surface temperature, the NN 
model will be unable to learn this thermal relationship. 

B. Estimation performance after cycling 

After training the neural network model on the training 
dataset collected from Batt-A and testing the model on dataset-
A1, Batt-A was put through 100 cycles of charge-discharge 
cycles. After cycling, another test dataset was gathered (dataset- 
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Figure 5. Batt-A train dataset 



 

   

 

A2) and validated on the NN model. The resulting plot is shown 
in Figure 7. The performance of the NN model on dataset-A2 is 
very close to that on dataset-A1. The MAE and MAX values of 
0.074ºC and 0.365ºC respectively are only a fraction less 
accurate than those seen in the first test case despite 100 cycles 
in-between them. Nevertheless, the result is within the expected 
maximum absolute error (MAE) of 0.1ºC. The experimental 
results demonstrate the performance of the NN model over 
cycling.  

A way to potentially improve the capability of the model to 
accurately estimate the core temperature irrespective of the 
cycle life spent is to include the dataset from cycling during 
training, in other words, using both the regular training data and 
the data from cycling 100 or more times to train the model. This 
will enable the model to learn the long-term relationship 
between the change in voltage and core temperature. Therefore, 
as the impedance of the battery increases with longer cycles, 
and the voltage variation changes, the model is able to adapt and 
accurately estimate core temperature.  

 

C. Estimation performance on a second battery of the same 
type 

The purpose of this subsection is to test the capability of the 
model on other batteries of the same type. Successfully 
accomplishing this means that data from only one battery is 
needed to train the model in practice. To test this hypothesis, 
data collected from Batt-B is put through the NN model trained 
earlier (on data from Batt-A). The result is shown in Figure 8. 
It is evident from the plot that the NN model is still able to 
accurately estimate the core temperature of another battery 
achieving a MAE of 0.063ºC and MAX of 0.297ºC. This 

outcome confirms the ability of the NN model to generalize, 
thereby performing well on different datasets. The good 
performance is, however, limited to datasets from batteries of 
the same type. The reason for this is the similar elements 
batteries of the same type share such as dimensions, materials, 
assembly, and manufacturing process. These physical attributes 
add to the thermal properties of the batteries such as heat 
capacity, therefore, enabling them to consistently produce 
similar temperature curves given the same input. 

In light of this, the NN approach has the potential to be 
scaled to battery modules and packs provided they are of the 
same type and supply the required data needed for inference. To 
implement on other battery chemistries or formfactors, it would 
be more appropriate to train the network on data from the new 
battery type. 

 

V. CONCLUSION 

The temperature of lithium-ion batteries is a critical factor 
affecting the safety and reliability in battery-powered devices. 
Since the internal or core temperature of a lithium-ion battery is 
often higher than that of the surface, the accurate estimation of 
core temperature is essential in battery management. This paper 
proposes a solution that uses a neural network model based on 
the gated recurrent unit to make precise estimations of the core 
temperature. This data-driven approach has the advantage of 
easy implementation because it does not involve any model 
derivation, reduction, or a strenuous parameter tuning 
operation, as demonstrated by experimental results. The neural 
network model showed the ability to learn the relationship 
between the surface and core temperature as well as the impact 
of the voltage, current, SOC and ambient temperature on its 
estimations. The neural network model was also found to 
perform well over cycling as well as on other batteries of the 
same type and build. This simple but effective structure 
highlights the possible extension of the proposed model to 
battery modules (and even packs). The results from these test 
cases are proof of the capability and viability of this method in 
research and production. 

VI. FUTURE WORK 

Although the neural network has a strong ability to estimate 
the core temperature of a lithium-ion cell, there are areas of 
improvement that will be explored in future work. One of which 
is the increased robustness to cycling over the entire life of a 
battery. One possible solution mentioned in the paper is to train 

 

Figure 6. Core estimation result trained and tested on Batt-A 

 

 

Figure 7. Batt-A core estimation result after 100 cycles 

 

Figure 8. Estimation result trained on Batt-A and tested on Batt-B 

 



 

   

the model on both the data allocated for training and the data 
collected during cycling. Training the model with these two will 
possibly help the model learn the relationship between voltage 
and core temperature better. Another possibility is to train and 
save multiple models based on the number of cycles exhausted 
by the battery. Hence, as the battery operated in practice is 
cycled, a model that has been trained for its specific cycle range 
is used. Another area of improvement is to test the NN model 
in different harsh environments such as hot and frigid 
conditions as well as a scaled-up test with multiple batteries in 
a battery pack. 
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