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Abstract- The use of Belleville springs has been proven to be 

beneficial in tackling the problems related to elastic 

interaction, creep, differential thermal expansion or in the 

isolation of seismic vibrations in bolted joints. Because of its 

high and easily variable spring rates, the use of these springs 

can also be observed in passive vibration assisted rotary 

drilling (VARD) tools. Because of relative movement of 

spring with respect to supporting surfaces and the mating 

spring surfaces, frictional losses in the spring take place during 

each compression and relaxation cycle leading to a slightly 

different load-deflection curve from what has been defined in 

the literature. The geometry of the spring combined with 

different stacking configurations complicate the study of 

frictional losses in these kinds of springs.  

This work presents a new method to calculate the 

displacement of different points of Belleville springs during its 

loading and unloading using linear interpolation method. The 

results of spring displacement are then used to develop a 

model to calculate frictional load as a function of spring 

deflection, which is used to analyse load-deflection curves of 

springs with different dimensional and frictional parameters. 

The developed methodology is used to plot and understand 

characteristics curves of four different kind of Belleville 

springs; High Load, Standard, Force Limiting and Force 

Adjusting Belleville springs by plotting the graphs for 

different free-height to thickness and diameter ratios. In the 

later section of the paper, the proposed methodology has been 

used to visualize the load-deflection characteristics of 

Belleville springs used in the p-VARD tool of the Large 

Drilling Simulator, one of the state-of-the-art drilling 

simulators at Memorial University of Newfoundland. Results 

show that understanding of the characteristic curves of 

different spring configuration helps to plan to drill with desired 

WOB using a p-VARD tool. 
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NOMENCLATURE 

t spring thickness 

r1 spring inside radius 

r2 spring outside radius 

H total height 

h free height 

∅ spring angle 

θ angle of neutral line 

δ spring deflection 

P spring load 

E Young’s modulus 

ϑ Poisson’s ratio 

I number of springs in series 

J number of springs in parallel 

us surface sliding displacement 

ue edge displacement 

μs surface friction factor 

μe edge friction factor 

 

I. INTRODUCTION 

Belleville spring, patented and named after the inventor 

Julien Belleville in France in 1867 is one of the frequently used 

springs to support very large load with a small installation 

space. Although many works have been performed for better 

understanding of the load-deflection curve of the Belleville 

springs, the first equation proposed by Almen-Lazlo [1] is the 

most cited and tested approach by several researchers and 

laboratories including General Motors Corporation. Almen-

Laszlo’s equation was dependent on three major assumptions: 

1) Small angular deflection takes place at the spring cross-

section. 

2) Spring deflection takes place by mere rotation about a 

neutral point. 

3) Loads are concentrically distributed, and radial stresses 

are negligible.  

Researches which followed were mostly centered around 

the modification of the basis assumptions of Almen-Laszlo’s 

theory [2]. In a paper by Rosa et. al. 2001 [3], they have based 

their discoveries on the ground that the radial stresses are 
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linked to the tangential stresses by the equilibrium equation 

and designed a spring with variable thickness to obtain wide 

range of constant force over a range of deflection. Similarly, 

with the development of experimental and simulation tools, 

new researches focused on the numerical analysis and FEA 

simulations of Belleville springs. In one of the works by 

Karakaya [4] the effect of material non-linearity was studied 

to enable the manufacturing of springs with composite 

material instead of conventional steel. Simulation techniques 

have made it possible to study the effect of tapered-ness in the 

spring design. Results from the work by Rosa et. al. [3] have 

shown possibility of manufacturing springs that are radially 

tapered thus increasing the linear region of the load-deflection 

curve, meaning that springs can be operated with higher range 

of constant loads. Apart from these, studies have also been 

done to study the effect of having slotted Belleville springs [5]. 

Although much work has been done in the field of 

Belleville springs, study of effect of friction in Belleville 

springs is very limited. Curti and Montanini [5] in their 

approach to generate more accurate spring characteristics 

studied the effect of friction between spring edge and the 

supporting surface. The theoretical formulation was verified 

by comparing the results with that from the FEA. However, 

their work was limited to the study of friction between the 

spring and supporting surfaces only. This limited the 

implementation of this work as Belleville springs are always 

stacked in series, parallel or the combination of both.  

In a work by Ozaki et. al. [6], in addition to the edge 

friction between the spring and the supporting surfaces, the 

surface friction that exists between the mating surfaces of two 

or more parallelly stacked springs was also incorporated. The 

authors have shown a comparison between Almen-Laszlo’s 

equation and the results from the FEA which clearly show the 

missing frictional component in Almen-Laszlo’s equation 

during loading and unloading of the springs, thus highlighting 

the need of more research in this field. They use a link type 

connection that neglects the spring rotational moment to 

calculate the displacement of spring edge with respect to the 

supporting surface and the displacement of spring surfaces of 

parallelly stacked springs. The hysterics loss during one spring 

cycle is then calculated in parts as a summation of frictional 

loss at the edges and that on the spring surfaces. The work 

further extends to formulate a generic equation which can be 

used to determine the hysterics losses during loading and 

unloading of the springs.  

In this paper, a new approach of interpolation is used to 

calculate the relative displacements that takes place in the 

springs during its loading and unloading cycle. The 

methodology proposed in this paper stands as an alternative to 

the methodology of rotational matrix proposed by Ozaki et. al. 

[6] for calculating the displacement components of different 

points in the spring. In the sections that follow, calculation of 

spring displacements is presented in section II. This section 

also provides a breakdown for the derivation of edge friction 

loss and surface friction loss. In section III, the characteristics 

curves are generated for different free-height to thickness 

ratios and diameter ratios followed by the study of different 

spring configuration of LDS p-VARD tool in section 5. The 

basic trends that are identified in the plotted results are 

discussed on more detail in section V along with some 

concluding remarks.  

 

II. CALCULATION OF SPRING DISPLACEMENTS 

This section describes the proposed methodology to 

calculate the displacement of spring edge with respect to the 

supporting surface and the relative displacement of the mating 

surfaces of springs stacked in parallel. The derivations made 

in this section of the report are based upon the fundamental 

assumptions of Almen-Laszlo’s work, i.e. the cross-section of 

the spring doesn’t deform but rather rotates about a neutral 

point when it is deformed. This deformation phenomenon is 

illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from Figure 1 that when the spring is 

compressed, the points which are in contact with the 

supporting surfaces will slide equal distances in transverse 

directions, without any deformation in the spring cross-

section. Moreover, the distance travelled by the top point is 

equal and opposite to the distance travelled by the lower point. 

When the spring is fully compressed, the total transverse 

displacements of these points in opposite direction can be 

estimated using below formula.  

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑒𝑑𝑔𝑒 (𝐴𝐴′)
= 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑜𝑝 𝑒𝑑𝑔𝑒 (𝐵𝐵′) 

=  

𝑡
tan(𝜃 − ∅)

− 𝑟2 + 𝑟1 + 2𝑡 sin ∅

2
 

Figure 1: Showing rotation of spring cross-section about the 
neutral point during compression 



Where ∅ and 𝜃 are the initial inclinations of the spring and 

neutral line with the horizontal. The angles ∅ and 𝜃 are related 

to spring parameters by below relations. 
 

tan ∅ =
𝐻 − 𝑡 cos ∅

𝑟2 − 𝑟1 − 𝑡 sin ∅
 

𝜃 = tan−1
𝐻

𝑟2 − 𝑟1 − 2𝑡 sin ∅
 

 

The free height(ℎ), which is also equal to the maximum 

deflection of the spring can be estimated using below formula. 

ℎ = 𝐻 − 𝑡 cos ∅ 

The next step after determining the initial and the final 

condition is to interpolate the values of lateral displacement as 

a function of spring deflection(𝛿). 

 
Table 1: Interpolation table for intermediate edge displacement 

 Initial 

point 
Final point 

Intermediate 

points 

Deflection 0 ℎ = 𝐻 − 𝑡 cos ∅ 𝛿 

𝒖𝒆 0 

𝑡
tan(𝜃 − ∅)

− 𝑟2 + 𝑟1 + 2𝑡 sin ∅

2
 

𝛿 ×
𝑢𝑒_𝑓𝑖𝑛𝑎𝑙

ℎ
 

 

A similar concept can be applied for determining the 

displacement of spring surface with respect to the mating 

spring surfaces when they are stacked in parallel. Figure 2 

shows a schematic diagram of two springs stacked in parallel 

and subsequently flattened. From the understanding of 

geometrical relationships of Figure 2, it can be concluded that 

the mating surfaces of two springs will produce a maximum 

sliding displacement (𝑢𝑠) which is equal to 𝑡 sin ∅. Using a 

similar interpolation method, sliding displacement can be 

calculated as a function of spring deflection(𝛿). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Interpolation table for intermediate surface displacement 

 Initial 

point 
Final point Intermediate points 

Deflection 0 ℎ = 𝐻 − 𝑡 cos ∅ 𝛿 

𝒖𝒔 0 𝑡 sin ∅ 𝑡 sin ∅ × (
𝛿

𝐻 − 𝑡 cos ∅
) 

 

Determining the frictional dissipation during the loading 

and unloading of the spring is the next objective. Following 

the methodology proposed by Ozaki et. al. [6], frictional 

dissipation is calculated as product of frictional force and 

corresponding displacement, which can then be converted to 

equivalent load increment by dividing by the equivalent 

displacement. Thus, corrected load-deflection curve for the 

Belleville spring as proposed by Ozaki et. al. [6] can be used 

which undertakes the effect of frictional losses as follows: 

𝑃 = 𝐽𝑃𝑚 + ∆𝑃  

𝑃𝑚 =
𝐸𝛿̅

(1 − 𝜗2) 𝑟2
2

[(ℎ − 𝛿̅) (ℎ −
𝛿̅

2
)

𝑡

𝑀
+

𝑡3

𝑁
] 

1

𝑀
= [

𝛾 + 1

𝛾 − 1
−

2

ln 𝛾
] 𝜋 (

𝛾

𝛾 − 1
)

2

 

1

𝑁
=

𝜋

6
ln 𝛾 (

𝛾

𝛾 − 1
)

2

 

𝛾 =
𝑟2

𝑟1

 

𝛿̅ =
𝛿

𝐼
 

∆𝑃 =
∆𝐸𝑓𝑒 + ∆𝐸𝑓𝑠

∆𝛿̅
 

∆𝐸𝑓𝑒 = 2𝑃𝑚𝜇𝑒∆𝑢̅𝑒 

∆𝐸𝑓𝑠 = 𝐼(𝐽 − 1)𝑃𝑚 cos ∅′ 𝜇𝑠∆𝑢̅𝑠 

 

The notation ∅′ in above equation is different from the 

angle ∅ which was defined earlier. ∅′ is the measure of 

intermediate angle between the spring and the horizontal and 

can be calculated from interpolation method as a function of 

spring deflection(𝛿). 

 
Table 3: Interpolation table for intermediate spring angle, ∅’ 

 Initial 

point 
Final point Intermediate points 

Deflection 0 ℎ = 𝐻 − 𝑡 cos ∅ 𝛿 

Spring angle 

(∅′) 
∅ 0 ∅ × (1 −

𝛿

𝐻 − 𝑡 cos ∅
) 

 

Figure 2: Showing the compression of two springs stacked in parallel 



It can be observed from the equations that equivalent 

displacement (𝛿̅) is used to calculate the Almen-Laszlo’s load 

approximation and frictional losses instead of total deflection 

(𝛿), where equivalent displacement (𝛿̅) is the displacement 

per series stack. This is because when Belleville springs are 

stacked together, 𝐼 number of springs in series stacking 

multiplies the total deflection by 𝐼 and 𝐽 number of springs in 

parallel stacking multiples the total load by 𝐽 [7]. Thus, when 

the total deflection of the spring stack is 𝛿, deflection of each 

series stack will be 𝛿̅ = 𝛿/𝐼. 

 

III. RESULTS 

So far, the methodology to calculate the displacement of 

different points of spring during deflection has been derived 

from the simple way of interpolation. The formulae can be 

extended to calculate frictional dissipation as a function of 

spring deflection. Figure 3 shows a load-deflection curve 

obtained from above interpolation method which is similar to 

that proposed by Ozaki et. al.[2, Figure 9 c]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the paper studies of effect of spring parameters on 

frictional loss in Belleville springs. One of the spring 

parameters used in specifying the Belleville springs is free 

height to thickness ratio, ℎ/𝑡. A set of ℎ/𝑡 ratios [1, 1.4 and 

2.4] were plotted for the 𝐼 = 2, 𝐽 = 2 spring configuration 

with constant edge friction coefficient (𝜇𝑒 = 0.3), and varying 

surface friction coefficient (𝜇𝑠 = 0, 0.1, 0.3). Different sets of 

ℎ/𝑡 ratios were obtained by keeping total height of the spring 

constant at 𝐻 = 1.7 𝑚𝑚 and changing the thickness, 𝑡. Figure 

4 is the graph obtained by plotting the load-deformation 

diagram of these spring configuration, which is identical to the 

one plotted by Ozaki et. al  [2, Figure 10 a].  

Figure 4 can also be used to identify the type of Belleville 

spring by the nature of its load-deflection curve. As grouped 

by most of the manufacturers, Belleville springs can be 

categorized into High Load, Standard, Force Limiting and 

Force Adjusting Belleville springs [8]. The springs that 

produce curves similar to ℎ/𝑡 = 0.5 can be categorized as 

High Load Belleville springs. These springs are very thick and 

have high load capacity. The load-deflection curve for these 

springs is mostly linear. Similarly, springs with curves similar 

to  ℎ/𝑡 = 1 are the Standard Belleville springs; these springs 

are known for their excellent fatigue resistance. Load-

deflection curve of the Standard Belleville springs are linear 

for small deflections. The third type of spring that can be 

identified by the load-deflection curve corresponds to  ℎ/𝑡 =
1.4, Force Limiting Belleville springs. The load-deflection 

curve for these types of springs is linear when the spring starts 

to deflect and becomes flat after certain amount of 

compression. Because of this nature, these types of springs are 

used in clutches, brakes or PSVs. The fourth category of 

Belleville spring is the Force Adjusting type. These springs 

have high ℎ/𝑡 ratios, 2.4 in this case. The load-deflection 

curve for these springs starts out linear, reaches a maximum 

value and then loses force after certain percentage of 

deflection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of diameter ratio, 𝛾 on the load-deflection curve 

can be observed in the similar manner. For this, three diameter 
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Figure 3: Load-deflection curve generated by proposed method 
[Spring parameters (mm): H = 1.7,  r1 = 18.08, r2 = 24.45, t = 0.5, I = 3, J = 2] 
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Figure 4: Effect of change of h/t ratio on frictional dissipation 
[Spring parameters (mm): H = 1.7,  r1 = 18.08, r2 = 24.45, I = 2, J = 2] 



ratios [𝛾 = 1.4, 1.6 and 2] were plotted for a spring with of 

𝑟2 = 24.45 mm, 𝑡 = 0.5 mm and 𝐻 = 1.7 mm. The value of 

𝑟1 was varied to match the corresponding diameter ratio. 

Figure 5 shows the curves plotted with these scenarios together 

with the variation in friction coefficients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curves plotted in Figure 5 show a decreasing pattern 

in frictional losses as the diameter ratio increases. Similarly 

when the overall pattern of the load-deflection curve is 

analyzed, it is observed that Belleville springs or stack of 

Belleville springs tend to become more compliant as the 

diameter ratio goes on increasing.  

 

IV. ANALYSIS OF LSD P-VARD SPRINGS 

The analysis of the Belleville springs used in LDS p-

VARD tool comprises of understanding of nature of their 

characteristics curves and the frictional losses in them. 

Specifications of the springs that are analyzed is listed in Table 

4.  
 

Table 4: Spring Specifications for LSD p-VARD 

Spring 

number 

ID OD Thickness Total height 
h/t 

d1 (in) d2 (in) t (in) H (in) 

1 1 2 0.065 0.13 1.00 

2 1 2 0.084 0.136 0.62 

3 1 2 0.097 0.145 0.499 

4 1 2 0.142 0.177 0.249 

 

Figure 6 shows the load-deflection curves for the 𝐼 = 2,
𝐽 = 2 configuration of all four springs with constant edge 

friction coefficient(𝜇𝑒 = 0.3), and varying surface friction 

coefficient(𝜇𝑠 =  0 & 0.3). The graph helps to predict how 

spring deflection is going to vary with increasing/decreasing 

load, which in the case of p-VARD tool is the drilling weight 

on bit. 

 

 

 

 

 

 

 

 

 

 

 

 

The load-deflection curves of Figure 6 can help us determine 

the nature of spring stiffness exhibited by the Belleville 

springs. Spring #1 with ℎ/𝑡 = 1.0 exhibit the characteristics 

of a Standard Belleville spring i.e. the deflection is 

proportional to load at the beginning of the stroke only. As the 

load increases further, the curve tends to become more cubic 

in nature. Because of this nature of spring #1, when 

configuring the p-VARD tool with this spring, care should be 

taken not to approach the full stroke of the spring compression. 

Similarly, spring #2 with ℎ/𝑡 = 0.62 appears to have more 

linear load-deflection relationship than spring #1. Spring #3 

and #4 on the other hand have fully linear load-deflection 

relationship.  

The other goal of the analysis is to study the nature of 

frictional losses in Belleville springs. From the graphs that 

have been plotted, it is observed that frictional loss is directly 

proportional to compressive force. Moreover, surface friction 

accounts for higher losses than the edge friction as soon as the 

number of parallel stacking is increased to 𝐽 = 2. This 

phenomenon is observed in all four springs. 
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Figure 5: Effect of change of diameter  ratio on frictional dissipation 
[Spring parameters (mm): H = 1.7,  r2 = 24.45, t=0.5, I = 2, J = 2] 

Figure 6: Load-deflection diagram of Belleville springs for LDS p-VARD 



V. CONCLUSION 

In this work, linear interpolation has been used to calculate 

the frictional losses in Belleville springs. This method relies 

on the basis assumptions put forth by Almen-Laszlo in their 

original work [1] to characterize these springs and on the 

modification of the work by Ozaki et. al. [6], which was based 

on the method of rotational matrix. Observation of the results 

plotted by this method shows that they closely match the ones 

predicted by Ozaki et. al. 

Frictional losses in the springs is dependent on type of 

spring stacking. When the number of springs stacked in 

parallel is less, edge friction accounts for most of the frictional 

loss. This is not hold true when the number of parallel springs 

is increased, where surface friction becomes more dominant. 

Similarly, as observed from the graphs, frictional loss is also 

dependent on the spring load or spring deflection. For the High 

Load and Standard Belleville springs, frictional loss increases 

with increase in spring deflection. However, for the Force 

Limiting Belleville springs, frictional loss becomes constant at 

the flat region of the load-deflection curve and for the Force 

Adjusting Belleville springs, frictional loss is maximum at the 

peak of load-deflection curve and starts to decrease as the 

spring is compressed more.  

It can be observed from the graphs that maximum load of 

these springs varies as per the type of spring or more 

parametrically, on the  ℎ/𝑡 ratio. More predominantly 

observed in the Force Limiting and Force Adjusting springs, 

increasing the load beyond the maximum load will cause the 

springs to lose force or provide steady resistance to 

deformation. Understanding the characteristic curve and the 

hysteresis loop of Belleville springs is crucial while designing 

components involving these springs as selection of spring with 

inadequate capacity may lead to unsatisfactory performance of 

the component and/or its failure.  

This approach of calculating the frictional losses can be 

experimentally validated. Based on the theoretical 

understanding of this phenomenon, it can be predicted that the 

experimental curve for spring compression will to be similar 

to the loading curve presented in Figure 3. Variation of the 

experimental results from this theory, if any, can be used in 

calibrating this model to improve or validate its accuracy.  

Similarly, as a further step to calibrate the p-VARD tool, 

the p-VARD index can be developed to readily make available 

the optimal spring configuration that will be able to work at 

the optimal WOB in drilling experiments. As far as the nature 

of the load-deflection curve is concerned, changing the spring 

configuration only scales up/down the values of maximum 

load and/or maximum deflection while maintaining the 

original characteristics of a single spring. Calculative selection 

of spring and spring configuration helps in preventing 

premature flattening of springs and maintaining desired 

compliance in the p-VARD tool. 

 

 

 

REFERENCE 

[1] J. O. Almen and  a. Laszlo, “The uniform-section disk 

spring,” Trans. Am. Soc. Mech. Eng., vol. 58, pp. 305–

314, 1936. 

[2] Y. Zhiming and Y. Kaiyuan, “A study of belleville spring 

and diaphragm spring in engineering,” J. Appl. Mech. 

Trans. ASME, vol. 57, no. 4, pp. 1026–1031, 1990. 

[3] G. La Rosa, M. Messina, and A. Risitano, “Stiffness of 

variable thickness belleville springs,” J. Mech. Des. 

Trans. ASME, vol. 123, no. 2, pp. 294–299, 2001. 

[4] Ş. Karakaya, “Investigation of hybrid and different cross-

section composite disc springs using finite element 

method,” Trans. Can. Soc. Mech. Eng., vol. 36, no. 4, pp. 

399–412, 2012. 

[5] G. Curti and R. Montanini, “On the influence of friction 

in the calculation of conical disk springs,” J. Mech. Des. 

Trans. ASME, vol. 121, no. 4, pp. 622–627, 1999. 

[6] S. Ozaki, K. Tsuda, and J. Tominaga, “Analyses of static 

and dynamic behavior of coned disk springs: Effects of 

friction boundaries,” Thin-Walled Struct., vol. 59, no. 

January, pp. 132–143, 2012. 

[7] M. Paredes and A. Daidié, “Optimal catalogue selection 

and custom design of belleville spring arrangements,” Int. 

J. Interact. Des. Manuf., vol. 4, no. 1, pp. 51–59, 2010. 

[8] “Types of Belleville Springs, Belleville International" 

Load vs. Deflection. [Online]. Available: 

https://bellevilleintl.com/engineering/load-vs-deflection/. 

[Accessed: 30-Nov-2019]. 


