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Abstract - The present paper describes a force model based on 
the Oxley’s extended machining theory to predict cutting forces 
during milling of hardened steels. In this paper, an indexable 
milling tool with both roughing and finishing edge is analyzed. 
The accuracy of the cutting force model is verified by a series 
of face-milling experiments on hardened steel AISI 4340.  
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I.  INTRODUCTION 

The ability to predict the cutting forces generated during 
machining operations is valuable to further the understanding of 
these processes. By their nature, machining operations are non-
linear and complex processes to model and simulate. Among 
commonly used approaches to analyze milling processes, many 
methods rely on several experiments to determine empirical 
constants that are unique to that combination of work material 
and cutting tool. Therefore, these methods are normally time-
consuming to utilize because cutting constants for each 
combination of tool and workpiece material must be determined 
exclusively through experimentations. Oxley’s extended 
machining theory does not require these empirical constants, 
making it more versatile. Oxley’s model is compatible with the 
Johnson-Cook constitutive equation, which allows the cutting 
force model to use material properties to determine the cutting 
forces. This is extremely beneficial because only the Johnson-
Cook parameters for a certain material are needed in order to 
predict the cutting forces during the machining of that material. 
Implementing such a method saves computational and financial 
resources compared to time-consuming experiments to 
determine specific empirical constants for each tool-workpiece 
combination. In addition to the cutting parameters such as 
cutting speed and feed rate (or alternatively feed/tooth), the 
material properties of the workpiece being machined must also 
be known. Since Oxley’s extended machining theory utilizes a 
material’s Johnson-Cook parameters, those values must also be 
found. The Johnson-Cook parameters for hardened steel AISI 
4340 are available in the literature [1].  

Oxley’s predictive machining theory was first described as a 
method of predicting cutting forces and temperatures by 
considering the high strain-rate nature of machining processes 

[2]. This theory was originally developed considering an 
orthogonal cutting process. Many factors regarding an 
orthogonal cutting model can be carried over from the Merchant 
cutting model [3]. Other developments have been made to alter 
this model to apply to oblique cutting operations as well, such as 
the work done by Hu et al. [4], however this paper will focus on 
the application of the orthogonal model. Other works have been 
published modifying Oxley’s machining theory to consider other 
geometrical parameters of the tool. One such work is the 
consideration of the effect of a tool’s nose radius on the chip 
flow direction, done by Arsecularatne et al. [5].  

Hastings et al. [6] verified the validity of the orthogonal 
cutting model through a series of turning experiments under 
different rake angles and cutting speeds. Regarding the 
application of this model to the milling process, the work done 
by Young et al. [7] further transformed the model to consider a 
single-tooth cutter. This work divided the chip and cutting zone 
into a series of radial elements, allowing for a greater fidelity in 
the investigation of stress distributions. The extension of 
Oxley’s model to accept Johnson-Cook material properties 
allowed the model to be applied to any material for which these 
parameters are known [8]. Prior to this, the machining theory 
would be used backwards to determine material properties from 
cutting data gathered from experiments. An example of this can 
be seen from Bao and Stevenson [9]. This paper will consider 
the orthogonal model presented in Oxley’s machining theory, 
and apply it to a cutter with two different cutting edges. One edge 
is used for rough cuts, while the other is used for finishing cuts.  

II. MATHEMATICAL MODEL 

Oxley’s extended machining theory is based on a parallel 
shear zone model for machining [8, 10]. The chip formation 
model proposed by Oxley is shown in Fig. 1. In the present 
paper, this model is applied repeatedly for every increment of 
the tool rotation to describe parameters like the tool geometry 
effects, uncut chip thickness, and shear zone location for that 
particular position.  

TABLE I. VARIABLE RANGE 

Variable Range 
𝜙 10° െ  45° 
𝐶଴ 2 െ  8 
𝜁 0.01 –  0.4 



   

 
 

Figure 1.    Chip formation model  

 
Three parameters that cannot be exactly calculated for this 

model are the shear plane angle 𝜙, the ratio of shear plane length 
𝐴𝐵 to primary shear zone thickness 𝐶଴, and the ratio of tool-chip 
interface plastic zone thickness to chip thickness 𝜁 . Oxley’s 
model states that these values will change so that the cutting 
force during the operation is minimized. Therefore, a range of 
possible values for each of these variables is defined. Each range 
is set such that all solutions still result in proper cutting of the 
material. The model is run in several loops, until the values for 
all three variables are determined. The ranges for each of these 
variables are displayed in Table 1. At the beginning of the 
analysis, all variables are set to their minimum value. 

In all milling processes, the uncut or undeformed chip 
thickness 𝑡ଵ changes as the milling tool rotates. Thus, 𝑡ଵ is equal 
to the instantaneous chip thickness at a certain tool position. In 
milling operations, this chip load can be calculated using (1). 

𝑡ଵ ൌ 𝑐 sin 𝜃 (1) 
 

For the Sandvik Coromant milling tools R390-020A20-11L 
that are utilized for experiments in this paper, the finishing edge 
experiences a smaller chip load than the roughing edge. This is 
due to the roughing edge being located slightly farther from the 
axis of rotation. This difference was measured as 50 microns. In 
the case of the finishing edge, the uncut chip thickness is 
calculated using (2). 

𝑡ଵ ൌ ሺ𝑐 െ 0.05ሻ sin 𝜃 (2) 
 

The link between the Johnson-Cook constitutive equation 
and Oxley’s extended machining model is a modified strain 
hardening exponent 𝑛௘௤ , which can be calculated using the 
known Johnson-Cook parameters, shown in (3) [8]. 

𝑛௘௤ ൌ
𝑛𝐵𝜀஺஻

௡

𝐴 ൅ 𝐵𝜀஺஻
௡  (3) 

 

Where 𝐴 is the yield stress of the material, 𝐵 is the hardening 
stress, and 𝑛  is the strain-rate hardening exponent. With the 
inputs completely defined, the length of the shear plane 𝑙 and 
shear velocity 𝑉௦௛can be calculated using (4) and (5). 

𝑙 ൌ
𝑡ଵ

sin 𝜙
 (4) 

𝑉௦௛ ൌ
𝑉௖ cos 𝛾

cosሺ𝜙 െ 𝛾ሻ
 (5) 

 

    Using von Mises criteria, the equivalent plane strain and 
strain rate are found by (6) and (7) [10]. 

𝜀஺஻ ൌ
𝜂஺஻

√3
ൌ

1

2√3

cos γ
sinϕ cosሺ𝜙 െ 𝛾ሻ

 (6) 

𝜀ሶ஺஻ ൌ
𝜂ሶ஺஻

√3
ൌ

1

√3

𝐶଴𝑉௦௛

𝑙
 (7) 

    As previously stated, Oxley’s machining theory 
accounting for changes in temperature during the operation. 
First, a non-dimensional thermal number 𝐸் is determined using 
(8) [10]. 

𝐸் ൌ
𝜌𝐶௣𝑉௖𝑡ଵ

𝐾
 (8) 

 

    Where 𝜌  is the workpiece density (kg/m3), 𝐶௣  is the 
specific heat of the workpiece (J/kgK), and 𝐾  is the thermal 
conductivity of the workpiece (W/mK). With 𝐸்  known, the 
heat partition coefficient 𝜉 can be calculated using either (9) or 
(10) [10]. 

 (9) 

𝑖𝑓 0.04 ൑ 𝐸் tan 𝜙 ൑ 10 → 𝜉 ൌ 0.5 െ 0.35logሺ𝐸் tan 𝜙ሻ 

 (10) 

𝑖𝑓 𝐸் tan 𝜙 ൒ 10 → 𝜉 ൌ 0.3 െ 0.15logሺ𝐸் tan 𝜙ሻ 
 

    Considering the plastic work being done in the primary 
shear zone, the average temperature 𝑇஺஻ can be found using (11) 
[10]. In this paper, it is assumed that the value of the sensible 
heat coefficient 𝜆 is 0.9 [10]. This value is chosen to follow the 
assumption that that sensible heat to latent heat ratio is 90% in 
favour of sensible heat.  

𝑇஺஻ ൌ 𝑇௪ ൅ 𝜆
ሺ1 െ 𝜉ሻ𝐹௦௛𝑉௦௛

𝑚௖௛௜௣𝐶௣
 (11) 

    
 Where, 𝑚௖௛௜௣ is the mass of the chip being removed. Using 

the average temperature at the primary shear zone, the average 
flow stress in the primary shear zone 𝜎஺஻ can found using the 
Johnson-Cook constitutive equation (12). 

𝜎஺஻ ൌ ሺ𝐴 ൅ 𝐵𝜀஺஻
௡ ሻ ൬1 ൅ 𝐶 ln ൬

𝜀஺஻ሶ
𝜀ሶ଴

൰൰ ቆ1 െ ൬
𝑇஺஻ െ 𝑇௪

𝑇ெ െ 𝑇௪
൰

௠

ቇ (12) 

    Where 𝑚 is the thermal softening coefficient, and 𝜀ሶ଴ is the 
reference strain rate. With the average flow stress now known, 
the angle between the shear plane and the resultant force ሺ𝜓ሻ can 
be determined using (13) [10]. 

 

tan 𝜓 ൌ 1 ൅ 2 ቀ
𝜋
4

െ 𝜙ቁ െ 𝐶଴𝑛௘௤ (13) 



   

 
    The average friction angle between the tool and the chip 

being removed 𝛽 can be calculated using (14) 
 

𝛽 ൌ 𝜓 െ 𝜙 ൅ 𝛾 (14) 
 
    Using these angles, the various force components can be 

calculated at any instance of the cut using (15)-(19) [10]. 

𝑅 ൌ
𝐹௦௛

cos 𝜓
 (15) 

𝐹௙ ൌ 𝑅 sin 𝛽 (16) 

𝑁 ൌ 𝑅 cos 𝛽 (17) 

𝐹௖௨௧ ൌ 𝑅 cosሺ𝛽 െ 𝛾ሻ (18) 

𝐹௧ ൌ 𝑅 sinሺ𝛽 െ 𝛾ሻ (19) 

 

    At this point, the value of the cutting force 𝐹௖௨௧ must be 
stored for later analysis. All of the possible values for 𝐹௖௨௧ are 
compared to determine the final value of 𝜁 . Meanwhile, the 
deformed chip thickness can be found using (20). 

 

𝑡ଶ ൌ
𝑡ଵ sin ψ

cosሺ𝜙 െ 𝛾ሻ
 (20) 

 

    In order to determine if these force values are accepted for 
the given inputs, various stresses must be calculated. To begin 
this section, the length of the contact area between the tool and 
the chip 𝐿௜௡௧ can be calculated using (21) [10]. 

 

𝐿௜௡௧ ൌ
𝑡ଵ sin 𝜓

cos 𝛽 sin 𝜓
൮1 ൅ ቌ

𝐶଴𝑛௘௤

3 ቀ1 ൅ 2 ቀ
𝜋
4 െ 𝜙ቁ െ 𝐶଴𝑛௘௤ቁ

ቍ൲ (21) 

 
    The shear stress along the tool-chip interface ሺ𝜏௜௡௧ሻ  is 

calculated using (22). 
 

𝜏௜௡௧ ൌ
𝐹௙

𝐿௜௡௧𝑤
 (22) 

 

    Next, the maximum shear strain and the shear strain rate 
at this interface must be determined using (23) and (24) [10]. 

 

𝜀௜௡௧ ൌ
𝜂௜௡௧

√3
ൌ

1

√3
൬2𝜂஺஻ ൅

0.5𝐿௜௡௧

𝜁𝑡ଶ
൰ (23) 

𝜀ሶ௜௡௧ ൌ
𝜂ሶ௜௡௧

√3
ൌ

1

√3
൬

𝑉௖௛௜௣

𝜁𝑡ଶ
൰ (24) 

 

    Where 𝜂஺஻ can be calculated by rearranging (6).  
 

    The maximum temperature change in the chip during 
cutting 𝛥𝑇௠ can be calculated using (25) and (26) [10]. 

log ൬
𝛥𝑇௠

𝛥𝑇௖
൰ ൌ 0.06 െ 0.195𝜉ඨ

𝐸௧𝑡ଶ

𝑡ଵ
൅ 0.5 log ൬

𝐸்𝑡ଶ

𝐿௜௡௧
൰ (25) 

𝛥𝑇௖ ൌ
𝐹௙𝑉௖௛௜௣

𝑚௖௛௜௣𝐶௣
 (26) 

 
    The temperature at the tool-chip interface 𝑇௜௡௧  can be 

calculated using (27) [10]. 
 

𝑇௜௡௧ ൌ 𝑇௪ ൅
ሺ1 െ 𝜉ሻ𝐹௦௛𝑉௦௛

𝑚௖௛௜௣𝐶௣
൅ 𝛹𝛥𝑇ெ (27) 

 
    Where 𝛹 is the ratio of tool-chip interface temperature rise 

to the maximum temperature rise of the chip [11]. In this paper, 
this value was assumed to be 0.9. Using these temperatures, the 
Johnson-Cook constitutive equation is used again to determine 
the shear flow stress along the tool-chip interface. 

 (28) 

𝜏௖௛௜௣ ൌ
1
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ሺ𝐴 ൅ 𝐵𝜀௜௡௧

௡ ሻ ൬1 ൅ 𝐶 ln ൬
𝜀ሶ௜௡௧

𝜀ሶ଴
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𝑇௜௡௧ െ 𝑇௪
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௠
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    At this point, the values of 𝜏௜௡௧ and 𝜏௖௛௜௣ are compared. 
After running these calculations for every value of 𝜙, the final 
value of 𝜙 is chosen such that the difference between 𝜏௜௡௧ and 
𝜏௖௛௜௣ is minimized. For the next check, the normal stress at the 
tool-chip interface is calculated. This is done with two method: 
one using the resultant force 𝜎ே , and the other using stress 
boundary conditions at point B (𝜎ே

ᇱ ). These are given in (29) and 
(30) [10]. 

𝜎ே ൌ
𝑁

𝐿௜௡௧𝑤
 (29) 

𝜎ே
ᇱ ൌ 𝜎஺஻ ቀ1 ൅

𝜋
2

െ 2𝛾 െ 2𝐶଴𝑛௘௤ቁ (30) 

 

Similar to the determination of the value for 𝜙, the values of 
𝜎ே and 𝜎ே

ᇱ  are compared, and the value of 𝐶଴ is chosen such that 
the difference between them in minimized. 

The final determination that is needed is the value of 𝜁. As 
previously mentioned, all possible values of 𝐹௖௨௧ are compared. 
The value of 𝜁 is chosen corresponding to the minimum value of 
𝐹௖௨௧. At this point, the three variables discussed at the beginning 
of this analysis are determined (𝜙, 𝐶଴, and 𝜁), and the forces are 
known. 

 
Figure 2.     Image of milling tool R390-020A20-11L [12] 



   

However, this is only the solution for this position of the tool. 
To continue, the cutting force prediction is stored, the angle of 
the milling tool 𝜃  is incremented up, and the entire process 
repeats. 

III. EXPERIMENTAL VALIDATION 

In this work, the workpiece material is chosen to be AISI 
4340 steel, hardened to 47±1 HRC. The Johnson-Cook 
parameters for hardened alloy steel 4340 are available in the 
literature [1]. In the event that these parameters are not available 
for a given material, then the necessary experiments will need to 
be performed to determine the values. With these parameters 
known, the model presented in this paper can be applied to any 
workpiece-tool combination. 

The machining operation being performed is face milling of 
a rectangular block. This operation allows for tests to be 
conducted at half-immersion, without wasting a large amount of 
material for one pass. The model should maintain its validity 
when applied to shoulder milling cases, or operations with a 
different immersion, but only the half-immersion, face milling 
case was verified experimentally in this work. 

A. Milling Tool Selection 

The tool is a Sandvik-Coromant milling tool, R390-020A20-
11L. An image of this tool can be seen in Fig. 2. This tool has 
two cutting edges, with one of the edges designed to perform a 
roughing cut, and the other is designed to perform a finishing 
cut. This is accomplished by having the finishing edge 
experience a smaller chip load than the roughing edge. 

B. Input Parameters 

In order to analyze the cutting forces for a milling process, 
several input parameters must be known. First, the cutting 
conditions that describe the operation should be known. For this 
analysis, the cutting parameters and material properties are listed 
in Table 2 and Table 3 respectively. 

TABLE II. CUTTING PARAMETERS 

Parameter Value 

Tool Diameter (D) 20 𝑚𝑚 

Number of Cutting Edges (N) 2 

Tool Rake Angle (γ) 14.5° 

Axial Depth of Cut (a) 1 𝑚𝑚 

Entry Angle, Down Milling ሺ𝜃௦௧௔௥௧ሻ 90° 

Exit Angle, Down Milling ሺ𝜃௘௫௜௧ሻ 180° 

 
TABLE III. MATERIAL PROPERTIES [1] 

Property Value 

Yield Stress ሺ𝐴ሻ 950 𝑀𝑃𝑎 

Hardening Stress ሺ𝐵ሻ 725 𝑀𝑃𝑎 

Strain Hardening Coefficient ሺ𝐶ሻ 0.015 

Strain-Rate Hardening Exponent ሺ𝑛ሻ 0.375 

Thermal Softening Coefficient ሺ𝑚ሻ 0.625 

Reference Strain Rate ሺ𝜀ሶ଴ሻ 3500 

Specific Heat ሺ𝐶௣ሻ 477 𝐽/𝑘𝑔𝐾 

Thermal Conductivity ሺ𝐾ሻ 44.5 𝑊/𝑚𝐾 

A series of six tests were carried out to determine the validity 
of the mathematical model. The tests were performed on a 
HAAS VF-2 CNC milling machine. The forces were captured 
using a Kistler dynamometer, National Instruments data 
acquisition card 9250B. In these tests, different combinations of 
cutting speed and feed rate were used. Cutting conditions for the 
experiments can be found in Table 4. Figs. 3 to 8 show the 
comparison between the calculated cutting forces and the 
measured forces from the corresponding experiments, with 
respect to the angle of rotation of the milling tool. 

For each of the cutting tests, the measured cutting force data 
and the calculated cutting force from the model are compared. A 
total of two tool rotations are plotted for each test. It can be seen 
that each of the tests shows good agreement between the trends 
of the forces with respect to the tool position. The shapes of these 
graphs match what was expected, as the half-immersion down 
milling case has the cutting edge suddenly engage the workpiece 
material, resulting in a sudden large chip load. As the tool 
rotates, the chip load decreases, causing the cutting forces to 
decrease as well. The force reaches zero when the cutting edge 
disengages with the workpiece, and the chip is removed. When 
comparing the percent error between the calculated and 
measured forces, the largest error was found to be approximately 
19%. This shows good agreement between the model and the 
measured forces. 

 
TABLE IV. EXPERIMENTAL CONDITIONS 

Test No. Cutting Speed (m/min) Feed Rate (mm/min) 

1 125 800 

2 100 800 

3 75 800 

4 125 1000 

5 100 1000 

6 75 1000 

 

 
Figure 3.    Calculated vs. experimental resultant force (Vc = 125 m/min, f = 800 

mm/min) 

 



   

 

Figure 4.    Calculated vs. experimental resultant force (Vc = 100 m/min, f = 800 
mm/min) 

 

 

Figure 5.    Calculated vs. experimental resultant force (Vc = 75 m/min, f = 800 
mm/min) 

 

Figure 6.    Calculated and experimental resultant force (Vc = 125 m/min, f = 
1000 mm/min) 

 

Figure 7.    Calculated vs. experimental resultant force (Vc = 100 m/min, f = 
1000 mm/min) 

 

 

Figure 8.    Calculated vs. experimental resultant force (Vc = 75 m/min, f = 1000 
mm/min) 

IV. CONCLUSION 

This paper presents an Oxley based force model to predict 
the cutting forces during face milling of hardened steel 4340 
using indexable milling tool with two edges, one for roughing 
and one for finishing. The model is run in a series of iterative 
loops to determine the cutting forces at any given tool position. 
Therefore, the values can be plotted as a function of the tool’s 
rotation. Experiments considering six different combinations of 
cutting speed and feed rate are used to validate the mathematical 
model.  
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