
   

Proceedings of the Canadian Society for Mechanical Engineering International Congress 2020 

CSME Congress 2020 

June 21-24, 2020, Charlottetown, PE, Canada 

 

 

MODELING AND NONLINEAR OPTIMAL CONTROL OF 

 N-ROTOR VTOL UNMANNED AERIAL VEHICLES  

Zahra Samadikhoshkho (student) 1,*, Shahab Ghorbani (student) 2, Farrokh Janabi-Sharifi3 
1, 2, 3 Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada 

*corresponding author’s e-mail: : zahra.samadikhoshkho@ryerson.ca 

 

 

Abstract— Quadcopters, hexa-copters and multi-rotor 

unmanned aerial vehicles (UAV) in general have become one 

of the most common types of vertical take-off and landing 

(VTOL) aerial vehicles where the thrust vectors of all the rotors 

are usually parallel. These UAVs are typically under-actuated 

meaning that the number of actuators is less than the degrees of 

freedom of the vehicle and because of that they cannot achieve 

holonomic motion. Recently, new designs for multi-rotor 

UAVs are proposed where the thrust vectors of the rotors are 

not necessarily parallel, and the rotors can have specific 

orientations with respect to the body of the vehicle. These new 

designs can achieve holonomy by manipulating thrust forces 

and moments of individual rotors which results in independent 

control of attitude and position of the UAV. In this paper, 

modeling of forces and moments of rotors is presented first. 

Second, translation and rotation model of the vehicle is 

presented, followed by nonlinear optimal control design for 

attitude and position of the vehicle. Attitude controller is 

designed according to the state dependent Riccati equation 

(SDRE) in nonlinear optimal control. Using input-state 

feedback linearization technique, we simplify the problem and 

then an analytical solution - utilizing quaternion parameters - 

for the SDRE is presented. Similarly, a linear quadratic 

regulator (LQR) for controlling the speed and position of the 

vehicle is designed. In addition, using Lyapunov theory, proofs 

for global asymptotic stability of all controllers are provided. 

Finally, simulations verifying the results are presented. 
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I.  INTRODUCTION  

Vertical Take-Off and Landing (VTOL) unmanned aerial 
vehicles (UAVs) have received significant attention both in 
academia and industry in recent years. Low maintenance and 
production cost, simplicity and maneuverability are of the few 
reasons why these vehicles have become so popular in both 
research and industry area. Multi-rotors (including quadcopters 
and hexa-copters) are one of the most common type of these 
UAVs where they have individual rotors generating thrust forces 

and moments with their parallel thrust force vectors. These 
UAVs are usually under-actuated meaning that only a subset of 
all degrees of freedom can be independently manipulated. In 
multi-rotors usually altitude and attitude degrees of freedom are 
controlled independently and the remaining two translational 
degrees of freedom are controlled indirectly by manipulating the 
attitude of the vehicle [1, 2, 3]. For such under-actuated systems, 
usually a cascaded control strategy is developed where the 
output of the inner control loop is the input of the outer control 
loop. 

Although during the past decades different control 
algorithms have been developed to cope with the limitations of 
actuators and improving flight performance [3, 4, 5], they still 
cannot achieve holonomy using the common under-actuated 
multi-rotor UAV design. To solve this issue, multi-rotor UAVs 
with tilting rotors are proposed [6, 7]. Multi-rotors with fixed but 
tilted rotors are proposed in [8] where the thrust force vectors of 
all rotors are not parallel. In [9, 10], a new design is introduced 
where the rotors could tilt on the fly. The work in [11] uses 
ducted fans to design a holonomic UAV. Also, a quadcopter 
with tilting rotors is presented in [12]. The work in [13] shows 
that using a single central motor and 3 tilting rotors holonomic 
motion can be achieved. Similarly, the method in [14] uses two 
counter rotating central rotors in addition to three tilting ducted 
fans to achieve holonomy. 

 Although papers in the literature addressed under-actuation 
problem of VTOL UAVs, their modeling and control methods 
are limited to the specific cases with the specified number of 
rotors and tilting angles. Therefore, the general formulation for 
both modeling and control parts which is not dependent on the 
specific type or number of rotors is still remaining. This paper 
addresses this issue and presents the first general modeling and 
control method for multi-rotors. In this way, Newton-Euler 
method and some novel nonlinear optimal controllers with 
stability proof are used for modeling and control parts of the 
UAV, respectively.  

The rest of this paper is organized as follows. The general 
nonlinear dynamic model of multi-rotor is presented in section 
II. Sections III and IV include details of the control design 



   

process and simulation results, respectively. Finally, section V 
concludes the work.  

II. MODELING 

To derive a 6 degree-of-freedom (DOF) equation of motion, 
two reference frames should be defined. First, an inertial 

reference frame denotes ℱ𝐼 which is attached to the earth 

surface. Second, body reference frame which is indicated by ℱ𝐵 
and is fixed to the center of gravity of the aerial vehicle. Six DOF 
motion can be divided into two separate translational and 
rotational motion. Therefore, the equation of each motion is 
derived based on Newton-Euler method in the following 
sections. 

A. Rotational Motion 

Rotational motion equation for the multirotor can be written as 

∑𝑀 =
𝑑𝐻

𝑑𝑡
|
𝐼
=

𝑑𝐻𝐵

𝑑𝑡
|
𝐼
+ ∑

𝑑𝐻𝑟
𝑖

𝑑𝑡
|
𝐼

4
𝑖=1 ,            (1) 

where ∑𝑀 is the total external torques implied on the aerial 

vehicle and 𝐻, 𝐻𝐵 and  𝐻𝑟
𝑖  are total angular momentum of the 

system, angular momentum of the UAV body and total angular 

momentum of motors and their propellers, respectively. All 

derivatives in (1) are derived with respect to ℱI frame. Using the 

derivation relationship in rotational frames, (1) can be rewritten 

as 

∑𝑀 =
𝑑𝐻𝐵

𝑑𝑡
|
𝐵

+ ∑
𝑑𝐻𝑟
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+ 𝑆𝜔(𝐻𝐵 + ∑ 𝐻𝑟
𝑖4

𝑖=1 ) = 𝐽𝐵�̇� + 𝑆𝜔𝐽Β𝜔 +4
𝑖=1

∑ �̇�𝑟
𝑖4

𝑖=1 + ∑ 𝑆𝜔 4
𝑖=1 𝐻𝑟
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where 𝐽𝐵 is the moment of inertia of UAV in ℱB frame and 
remains constant in this frame. Vector 𝜔 = [𝜔1 𝜔2 𝜔3]𝑇 is 
the angular velocity of UAV at ℱI , �̇� is the time derivative of 𝜔 
and 𝑆𝜔 is the skew symmetric matrix of 𝜔 vector defined as 

𝑆𝜔 = [

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
].             (3) 

      After some simplification of (2), �̇� can be written as  

�̇� = 𝐽𝐵
−1(∑𝑀 − 𝑆𝜔𝐽Β𝜔 − ∑ �̇�𝑟

𝑖4
𝑖=1 − ∑ 𝑆𝜔 4

𝑖=1 𝐻𝑟
𝑖).                  (4) 

To calculate ∑𝑀 the governing equations of motors and 
propellers are needed to be derived as (5). 

𝐷𝑝𝑟𝑜𝑝  
𝑖 = 𝜏𝑠𝑡𝑎𝑡𝑜𝑟

𝑖 − ℎ̇𝑟
𝑖 ,              (5) 

where 𝐷𝑝𝑟𝑜𝑝  
𝑖 is aerodynamical torque implied on each propeller 

while 𝜏𝑠𝑡𝑎𝑡𝑜𝑟
𝑖  and ℎ̇𝑟

𝑖  are a torque generated by each brushless 

motor and a rate of angular momentum change for each set of 

motor and propeller, respectively. ℎ̇𝑟
𝑖  can be defined as (6). 

ℎ̇𝑟
𝑖 = 𝐽𝑟

𝑖 �̇�𝑟
𝑖 .                             (6) 

Using (5), (4) can be rewritten as 

�̇� =  𝐽𝐵
−1(∑𝑈(4: 6) − 𝑆𝜔𝐽Β𝜔 − ∑ 𝑆𝜔 4

𝑖=1 𝐻𝑟
𝑖).            (7) 

where 𝑈(4: 6) denotes the control input for attitude and is 
derived in section C. To derive rotational kinematics, quaternion 

parameters are used. The quaternion attitude equation set can be 
written as (8). 

𝜖̇ =
1

2
(𝜂𝜔 + 𝑆𝜖𝜔), 

�̇� = −
1

2
𝜔𝑇𝜖,                                                         (8) 

where 𝜖 = [𝜖1 𝜖2 𝜖3]𝑇 is the vector part of quaternion 
parameters, while 𝜂 is the scalar part of that, and 𝑆𝜖 is the skew 

symmetric matrix of  𝜖.    

B. Tansitional motion 

Using Newton’s second law, translational equation of 
motion for UAV can be written as (9). 

𝑑𝑉

𝑑𝑡
|
𝐼
=

∑ 𝐹

𝑚
,  

𝑑𝑃

𝑑𝑡
|
𝐼
= 𝑉,                             (9) 

where ∑𝐹 is the total external force implied on UAV, whereas 
𝑉 and 𝑃,respectively, are velocity and the position of UAV’s 
center of the gravity in inertial reference frame. External forces 
implied on the UAV include gravity and thrust of motors are 
presented as. 

∑𝐹 = 𝐺 − 𝑓,               (10) 

where 𝐺 = [0 0 𝑚𝑔]𝑇 is the gravity vector in inertial 
reference frame in which 𝑚 is the mass of the UAV. In addition, 
vector 𝑓 is the thrust control vector in inertia frame defined in 
(12). Therefore, the translational equation can be rewritten as: 

�̇� = 𝐺 −
𝑓

𝑚
,  

�̇� = 𝑉,                (11) 

where 𝑓 can be defined as (12): 

𝑓 = 𝐶𝐼
𝐵𝑈(1: 3), 
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2
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2 − 𝜖2

2 + 𝜖3
2

], (12) 

Here vector 𝑈(1: 3) is a control vector for position which is 
determined by using the motors thrust in the body frame (in the 
next section) and 𝐶𝐼

𝐵 is the rotation matrix between inertia and 
body frame. 

C. Motors and propellers model 

To complete the dynamic modeling of the multirotor UAV, 
sets of motors and propellers should be modeled. Note that in (5) 

𝐷𝑝𝑟𝑜𝑝  
𝑖 is an external torque implied on each propeller, while 

𝜏𝑠𝑡𝑎𝑡𝑜𝑟
𝑖  which causes rotational motion of the UAV is implied on 

the center of gravity of the vehicle. For simplicity, instead of 

considering ℎ̇𝑟
𝑖 , a first order transfer function with the time 

constant of 𝜎 is considered as motor’s model in (13), where 𝑀𝐶
𝑖  

is assumed as control input.  

𝐷𝑝𝑟𝑜𝑝  
𝑖 (𝑠) =

𝑀𝐶
𝑖 (𝑠)

1+𝜎𝑠
.               (13) 

Furthermore, ℎ𝑟
𝑖 (𝑠) can be simply calculated as (14). 



   

ℎ𝑟
𝑖 (𝑠) =

𝐷𝑝𝑟𝑜𝑝
𝑖 (𝑠)

𝑠
.              (14) 

Transfer function in (14) can also be used for modeling the 
thrust of motors as follows. 

𝑇𝑖(𝑠) =
𝑇𝐶

𝑖(𝑠)

1+𝜎𝑠
.                           (15) 

To calculate the relationship between the thrust of motors 𝑇 
and their produced torques 𝑈(4: 6) and forces 𝑈(1: 3), in the 
body reference frame, it is assumed that the nth motor is located 
at the front of the UAV on the x axis of the body frame. The 
other motors are located at angles θ, 2θ, 3θ, …, (𝑛 − 1) θ with 
respect to the x axis. Angle θ depends on the number of motors 

(𝑛) and is equal to 𝜃 =
2𝜋

𝑛
.  Figure 1 illustrates the configuration 

of motors in horizontal plane.  

 

Figure 1.  Motors arrangement in the horizontal plane 

In the suggested arrangements of the motors in Figure 1, 
motors numbered with odd numbers rotate clockwise, whereas 
motors with even numbers rotate counterclockwise. Moreover, 
in the body frame's horizontal plane, thrusts of the odd motors 
are perpendicular to the radius of their located circles and they 
are deviated to the left side of their radiuses by the amount of 
installation angle (φ) in the vertical plane, while even motors are 
deviated to the right side. 

Considering the suggested motors configuration, forces and 
torques resulted from even motors’ thrust can be calculated in 
the body frame as (16). Note that 𝐹𝑓 denotes the force generated 

by the motor while 𝐹𝜏 and 𝜏𝜏 present the torque resulted from the 
motor's force and torque respectively. 

[
 
 
 
 
 
𝐹𝑥𝑖

𝐹𝑦𝑖

𝐹𝑧𝑖

𝜏𝑥𝑖

𝜏𝑦𝑖

𝜏𝑧𝑖 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝐹𝑓𝑥𝑖

𝐹𝑓𝑦𝑖

𝐹𝑓𝑧𝑖

𝐹𝜏𝑥𝑖
+ 𝜏𝜏𝑥𝑖

𝐹𝜏𝑦𝑖
+ 𝜏𝜏𝑦𝑖

𝐹𝜏𝑧𝑖
+ 𝜏𝜏𝑧𝑖 ]
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− sin(𝜃𝑖) sin(𝜙)

cos(𝜃𝑖) sin (𝜙)

cos (𝜙)
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𝑑 sin(𝜙) + 𝑘cos (𝜙) ]
 
 
 
 
 
 

[𝑇𝑖] =

𝑀𝑖𝑇𝑖.                                                             (16)    

where d is the distance of each motor from the center of gravity 
of the UAV and 𝑇𝑖 , 𝑖 = 1,2,… , 𝑛 denotes the thrust of each 
motor. Also, k is the ratio of the torque to thrust produced by 
each motor. Similarly, for each odd motor one can write: 
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−cos(𝜃𝑖) sin (𝜙)
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                                        (17) 

Therefore, total forces 𝑈(1: 3) and torques 𝑈(4: 6) produced by 
the motors can be derived in body frame as 

𝑈 =

[
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𝐹𝜏𝑧1
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+ ⋯+
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= [𝑀1 …𝑀𝑛]
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.
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𝑇𝑛]

 
 
 
 

=

𝑀𝑇.                                                                                              (18) 

Equation (18) is invertible and therefore using the achieved 
control input from the controller, thrusts of the motors can be 
calculated as (19). 

𝑇 =

[
 
 
 
 
𝑇1

.

.

.
𝑇𝑛]

 
 
 
 

= 𝑀−1

[
 
 
 
 
 
𝐹𝑥

𝐹𝑦

𝐹𝑧
𝜏𝑥

𝜏𝑦

𝜏𝑧]
 
 
 
 
 

= 𝑀−1𝑈.                        (19) 

III. CONTROL 

In this section, control problem of rotational motion along 
with translational motion will be investigated.  

A. Attitude control 

Most previous works on attitude control of UAV adopted 
Euler angles as a feedback in control loop. This method needs 
some simplification to make the control process possible.  
Applying quaternion parameters, without any simplification, can 
lead to obtaining optimal attitude error in contrast with 
employing Euler angles. In addition, in control methods with 
quaternions, control law is a linear function of quaternion 
parameters. Therefore, working with quaternion is easier than 
Euler angles and adopting this easiness and simplicity, we 
suggest some analytical solutions, in this paper.   

Another advantages of quaternions over Euler angles is that 
quaternions do not face singularity issue, while Euler angles may 
encounter singular points, and this can bring about some 
complexities in nonlinear control designs. In this paper, SDRE 
method is adopted for attitude control purpose. SDRE is a semi-
optimal nonlinear control method and despite all advantages of 
this method, its stability analysis remains challenging. Although 
the global stability of such method is not determined, range of 
stability is estimated.    

1) Analytical solution for SDRE 
Generally, the input-state linearization method is used to 

design some nonlinear control systems. In these designs, all 
equations and state variables are commonly used, but here with 



   

the inspiration that comes from this technique, first, some 
nonlinear equation of motion for UAV are simplified. In the next 
step, simplified equations are written in the forms of SDRE 
method and subsequently, an analytical solution is suggested.  
Finally, by suggestion of Lyapunov candidate function, 
asymptotic stability of the closed loop system is proved.  

a) Simplification of the attitude equations by input-state 

linearization method 

Considering (7), control input 𝜐 can be redefined as 

𝜐 = 𝐽𝐵
−1(∑𝑢 − 𝑆𝜔𝐽Β𝜔 − ∑ 𝑆𝜔 4

𝑖=1 𝐻𝑟
𝑖),             (20) 

and using this, the rotational dynamic of the system can be 
simplified as (21). 

�̇� = 𝜐.                (21) 

Therefore, control input u can be obtained from (20) as 

𝑢 = 𝐽𝐵𝜐 + 𝑆𝜔𝐽Β𝜔 + ∑ 𝑆𝜔 4
𝑖=1 𝐻𝑟

𝑖 .             (22) 

b) Forming semi-linear state equation 

Equations (8) and (21) form state equation of the system. UAV’s 
angular velocity and vector part of quaternion parameters are set 
as states of the system. Therefore, on can write 

𝑥 = [
𝜔
𝜖
],   �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

𝑓(𝑥) = [
0

1

2
(𝜂𝜔 + 𝑆𝜖𝜔)] , 𝑔(𝑥) = [𝐼

0
],            (23) 

where 𝐼 is a 3 by 3 identity matrix, and 𝑓(𝑥) is a continuous 
function which 𝑓(0) = 0. Therefore, all conditions to form a 
semi-linear equation can be addressed as (24). That is: 

�̇� = 𝐴(𝑥)𝑥 + 𝐵(𝑥)𝑢, [
�̇�
𝜖̇
] = [

0 0
𝐴𝜖 0

] [
𝜔
𝜖
] + [𝐼

0
] 𝜐,           (24) 

where 𝐴𝜖  is defined as: 

𝐴𝜖 =
1

2
[

𝜂
𝜖3

−𝜖2

−𝜖3

𝜂
𝜖1

𝜖2

−𝜖1

𝜂
],              (25) 

c) Closed solution for SDRE method 

To solve the closed loop solution of SDRE method for 
attitude control, first, two positive definite diagonal weight 
matrices 𝑸 and 𝑹 should be defined as  

𝑄 = [
𝑄1 0
0 𝑄2

], 

𝑄1 = 𝑑𝑖𝑎𝑔(𝑞1𝑖
2 ), 𝑖 = 1,2,3, 

𝑄2 = 𝑞2
2𝐼, 

𝑅 = 𝑟2𝐼,                                         (26) 

where 𝑟, 𝑞2 and 𝑞1𝑖 , ∀𝑖 = 1, 2, 3 are positive real numbers. 
Considering the response of Riccati equation in (27), as a 

positive definite matrix of 𝑃 defined in (28), one can derive (29)-

(32). 

𝐴𝑇𝑃(𝑥) + 𝑃(𝑥)𝐴(𝑥) + 𝑄(𝑥) − 𝑃(𝑥)𝐵(𝑥)𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥) = 0   

(27) 

𝑃 = [
𝑃1 𝑃2

𝑃3 𝑃4
].                (28) 

𝐴𝜖
𝑇𝑃2 + 𝑃2𝐴𝜖 −

1

𝑟2
𝑃1

2 + 𝑄1 = 0,              (29) 

𝐴𝜖
𝑇𝑃4 −

1

𝑟2
𝑃1𝑃2 = 0,             (30) 

𝑃4𝐴𝜖 −
1

𝑟2 𝑃2
𝑇𝑃1 = 0,              (31) 

−
1

𝑟2
𝑃2

𝑇𝑃2 + 𝑄2 = 0.            (32) 

It should be noted that (30) and (31) are equivalent. Here, using 

(33), (24), (26) and input state linearization method, 𝝊 can be 

obtained from (34).  

𝑢(𝑥) = −𝐾(𝑥)𝑥 = −𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥)𝑥                                        (33) 

𝜈 = −
1

𝑟2
(𝑃1𝜔 + 𝑃2𝜖).              (34) 

Therefore, it is important to calculate matrices 𝑃1 and 𝑃2 by 

solving (29) and (32). Fist, equation (32) can be rewritten as:  

𝑃2
𝑇𝑃2 = 𝑟2𝑄2.                          (35) 

This equation can be solved as 

𝑃2 = 𝜆𝑟𝑞2𝐼.             (36) 

Knowing 𝑃2, one can obtain 𝑃1 from (29) as 

𝑃1
2 = 𝑟2(𝐴𝜖

𝑇𝑃2 + 𝑃2𝐴𝜖 + 𝑄1).                         (37) 

Finally, knowing that 𝑃1 is positive definite, one can solve (37) 

to find 𝑃1 as (38) 

𝑃1 = 𝑑𝑖𝑎𝑔(𝑟√𝑞1𝑖
2 + 𝑟𝑞2𝜂)   , 𝑖 = 1, 2, 3                         (38) 

d) Asymptotically global stability of the closed loop 

attitude control system 

In this section, the global asymptotic stability of the attitude 
system is assessed using Lyapunov stability theory. Substituting 
(34) in (24), we have  

�̇� = −
1

𝑟2
(𝑃1𝜔 + 𝑃2𝜖).             (39) 

The following Lyapunov candidate is suggested for system 
in (39). 

𝐿 =
1

2
𝑟2𝜔𝑇𝑃2

−1𝜔 + 𝜖𝑇𝜖 + (1 − 𝜂)2,            (40) 

where 𝐿 is always positive (𝐿 > 0) and it is radially unbounded 

with respect to 𝜔. Therefore, lim
𝜔→±∞

𝐿 = ∞. The derivative of 

Lyapunov candidate can be attained as 

�̇� = −𝜔𝑇𝑃2
−1𝑃1𝜔.             (41) 

It is obvious that 

{�̇� < 0 ∀𝜔 ≠ 0 ̇

�̇� = 0 ∀𝜔 = 0
,                           (42) 

B. Translational velocity and position control 

In this section, LQR method is adopted to design position 
and velocity control for multirotor UAV. Similar to the attitude 
control design analytical solution of LQR is obtained using input 
state linearization. Subsequently, we prove the stability of the 
closed-loop system by applying Lyapunov stability theory.  



   

1) Analytical solution for LQR 

Considering (11), new control input 𝒛 can be selected as 

𝑧 = 𝐺 −
𝑓

𝑚
.              (43) 

Therefore, translational dynamic equation can be simplified as 

�̇� = 𝑧, 

�̇� = 𝑉,              (44) 

By finding 𝒛  from LQR method, control input 𝑓can be easily 
calculated from (43) as 

𝑓 = 𝑚(𝐺 − 𝑧).             (45) 

a) Forming state equation 

To calculate 𝒛, velocity and position vectors are considered as 
state variables. Therefore, simplified state equations can be 
obtained in (46). 

𝑥 = [
𝑉
𝑃
] , [�̇�

�̇�
] = [

0 0
𝐼 0

] [
𝑉
𝑃
] + [𝐼

0
] 𝑧,           (46) 

b) Closed solution for LQR method 

Similar to the solution of the SDRE, First, two positive definite 
diagonal weight matrices 𝑴  and 𝑵 as Q and R matrices for the 
position control are defined as  

𝑀 = [
𝑀1 0
0 𝑀2

],  

𝑀1 = diag(𝑚1𝑖
2 ) 𝐼,            (47) 

𝑀2 = diag(𝑚2𝑖
2 ) 𝐼, 

𝑁 = diag(𝑛𝑖
2)𝐼, 𝑖 = 1, 2, 3 

where 𝑚1𝑖, 𝑚2𝑖, and 𝑛𝑖 are positive real numbers. Considering 
positive definite matrix 𝑆 in (48) as matrix 𝑃 in (27), the response 
of Riccati equation can be found in (49)-(52). 

𝑆 = [
𝑆1 𝑆2

𝑆3 𝑆4
],                           (48) 

𝑆2
𝑇 + 𝑆2 − 𝑆1𝑁

−1𝑆1 + 𝑀1 = 0,            (49) 

𝑆4 − 𝑆1𝑁
−1𝑆2 = 0,                          (50) 

𝑆4 − 𝑆2
𝑇𝑁−1𝑆1 = 0,             (51) 

−𝑆2
𝑇𝑁−1𝑆2 + 𝑀2 = 0.                          (52) 

Now, similar to the attitude control method, 𝑧 can be calculated 
in (53). 

𝑧 = −𝑁−1(𝑆1V+𝑆2𝑃),              (53) 

Therefore, matrices 𝑆1 and 𝑆2 should be calculated from (49) and 
(52). To find 𝑆2 (52) is rewritten as 

𝑆2
𝑇√𝑁−1√𝑁−1𝑆2 = (𝑆2

𝑇√𝑁−1)(𝑆2
𝑇√𝑁−1)𝑇 = √𝑀2√𝑀2,           (54)  

The solution of above equation is presented in (55). 

𝑆2 = 𝑆2
𝑇 = 𝜁√𝑀2√𝑁.             (55) 

Knowing 𝑆2, 𝑆1 can be calculated by rewriting (49) as:  

2√𝑀2√𝑁 + 𝑀1 = 𝑆1𝑁
−1𝑆1,                                   (56) 

Finally, 𝑆1 is obtained from (57). 

𝑆1 = √𝑁√2√𝑀2√𝑁 + 𝑀1.                          (57)  

c) Asymptotically global stability of the closed loop 

attitude control system 

Simplified close loop equation of motion can be noted as (58). 

�̇� = −𝑁−1(𝑆1𝑉 + 𝑆2𝑃), 

�̇� = 𝑉,                (58) 

Now, the following Lyapunov candidate is suggested. 

𝐿 =
1

2
𝑉𝑇𝑆1

−1𝑁𝑉 +
1

2
𝑃𝑇𝑆1

−1𝑆2𝑃,            (59) 

The above Lyapunov candidate is positive definite and is 
radially unbounded with respect to 𝑉 and 𝑃. ( lim

𝑉→±∞
𝐿 =

∞ , lim
𝑃→±∞

𝐿 = ∞  ). The derivative of Lyapunov candidate can 

be attained from (60). 

�̇� = −𝑉𝑇𝑉.              (60) 

IV. SIMULATION RESULTS 

In this section, simulation results for tracking a desired helix 
path defined in (61) are presented. Desired Euler angles are 
considered zero. In this simulation, the simulated UAV equipped 
with 8 rotors having fixed mounted angles of 20 degree. 
Furthermore, initial Euler angles are assumed 5 degree, while 
other initial condition of the UAV states are considered zero. 
The characteristics of simulated UAV are shown in Table 1.  

[
𝑥
𝑦
𝑧
] = [

0.5cos (
𝑡

2
)

0.5sin (
𝑡

2
)

𝑡/10

],             (61) 

Table 1 Specifications of simulated drone 

Value Descriptin Paremeter 

0.21 m 
Distance 

between CG and 

each motor 
𝑑 

0.74 kg UAV’s mass 𝑚 

[
0.004

0
0

0
0.004

0

0
0

0.008
] kg.m2 UAV’s moment 

of inertia matrix 𝐽𝐵 

 
0.1 

Proportion of 

torque over 
produced thrust 

𝑘 

Figure 2 illustrates the 3-dimensional trajectory of the UAV 
whereas figure 3 shows the Euler angles of the simulated UAV. 
It is shown that how UAV's angles have changed from 5 degree 
to 0 and how UAV tracks the desired trajectory with zero desired 
Euler angles. The translational velocity of the UAV in three 
inertial axes and its norm are presented at Figure 4, while Figures 
5 and 6 indicate the control results as produced thrust of each 
motor.  As these graphs show, the thrust of the motors has 
oscillatory behavior in order to generate sufficient force and 
moments to track a desired helix trajectory with zero Euler 
angles.  

  



   

 
Figure 2.  3D trajectory of the UAV  

 
Figure 3.  Euler angles of the UAV 

 
Figure 4.  Velocity of the UAV  

 
Figure 5.  Trust produced by the UAV's motors (1 to 4)  

 

Figure 6.  Peoduced thrust by the UAV's motors (5 to 8) 

V. CONCLUSION 

In this paper, modeling and control of the n-rotor VTOL 
UAV are presented. The suggested general formulation and 
control strategy are not dependent on the number of motors and 
their installation angles. Therefore, they can be used for a verity 
of VTOL’s configurations. Furthermore, the proposed method 
makes it possible to control the attitude and position of the UAV, 
independently. It means that UAV can freely fly with 6 DOF 
controllability. Moreover, this paper proposed an optimal 
controller to control both attitude and position tasks. The 
stability of the proposed control schemes is also proved through 
Lyapunov method which makes the designed controllers 
reliable.  To analyze the system's behavior and verify the ability 
of the proposed controllers, simulation results for tracking a 
helix trajectory are presented, demonstrating the performance of 
the UAV and suggested controllers.  
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